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Abstract. We develop a mathematical framework for the design of orbital trajectories that are optimal to a
particular imaging task (or tasks) in advanced cone-beam computed tomography systems that have the capabil-
ity of general source–detector positioning. The framework allows various parameterizations of the orbit as well as
constraints based on imaging system capabilities. To accommodate nonstandard system geometries, a model-
based iterative reconstruction method is applied. Such algorithms generally complicate the assessment and
prediction of reconstructed image properties; however, we leverage efficient implementations of analytical pre-
dictors of local noise and spatial resolution that incorporate dependencies of the reconstruction algorithm on
patient anatomy, x-ray technique, and geometry. These image property predictors serve as inputs to a task-
based performance metric defined by detectability index, which is optimized with respect to the orbital param-
eters of data acquisition. We investigate the framework of the task-driven trajectory design in several examples
to examine the dependence of optimal source–detector trajectories on the imaging task (or tasks), including
location and spatial-frequency dependence. A variety of multitask objectives are also investigated, and the
advantages to imaging performance are quantified in simulation studies. © 2019 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JMI.6.2.025002]
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1 Introduction
Cone-beam computed tomography (CBCT) finds application
in many clinical interventions to provide up-to-date imaging
(often in conjunction with hardware/instrumentation) for
improved localization and assessment of treatment delivery.1–5

Intraoperative CBCT imaging platforms are often based on
C-arm devices with flat-panel detectors that are capable of radi-
ography and fluoroscopy in addition to the three-dimensional
(3-D) CBCT. Advanced versions of these systems are motorized
on several axes to permit nonisocentric source–detector orbits,
to expand the field of view (FOV) in 3-D image reconstructions,
and to quickly reposition between specific radiographic/
fluoroscopic views. Such systems include floor- and ceiling-
mounted C-arms as well as robotic C-arms6 with many degrees
of motion freedom. In addition to C-arm systems, some CBCT
mammography7 and body imaging systems8 are also capable of
complex source–detector trajectories.

The additional flexibility provided by these systems permits
more general orbits beyond the traditional circular and helical
source–detector trajectories that have been the norm for CT
for decades. To date, these flexible orbits have mainly been
used to address the FOV and the sampling issues in interven-
tional CBCT. For example, noncircular trajectories have been
used to provide extended axial9 and elliptical10 FOVs and to
improve 3-D sampling and data completeness11–14 to avoid

cone-beam artifacts that arise from traditional circular cone-
beam orbits.

Tilted circular orbits are commonly used for their ability to
positively impact image quality and/or localization. For exam-
ple, tilting the CT gantry relative to the patient’s longitudinal
axis improves the image quality adjacent to the skull base,15

reduces eye lens dose,16 improves localization in CT-guided
biopsies,17,18 and reduces metal artifacts associated with
prostheses.19 These examples suggest that modifications of the
orbit beyond simple tilts may also provide clinical advantages.
However, selection of an optimal trajectory presents many chal-
lenges. For example, the above-mentioned simple tilt examples
depend on the patient anatomy and/or the interventional pro-
cedure, e.g., aligning the gantry along the canthomeatal line,
to the axis of the biopsy needle, etc. Thus, optimal trajectories
are likely patient- and imaging-task-dependent. Moreover,
data acquired from noncircular trajectories can be difficult to
reconstruct, as the sampling conditions for traditional filtered-
backprojection methods no longer apply.

There is a growing trend in the use of task-based measures
in performance assessment.20–22 Such measures have also
been used in prospective task-driven optimization of system
design,23–25 regularization of model-based reconstruction,26

and CT data acquisition parameters like dual-energy imaging,27

tube current modulation,28 and fluence-field modulation.29

Thus, we expect that task-based performance models similarly
provide a basis for optimizing the source–detector orbit in
CBCT.
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Interventional imaging presents an ideal opportunity to cus-
tomize orbits to the patient and diagnostic task for a number of
reasons: (1) most patients in interventional imaging have pre-
vious diagnostic imaging studies, meaning that a detailed rep-
resentation of the patient anatomy is available; (2) additional
information, including surgical plans, the location and sizes
of implants or tools, and particular anatomical targets, is
known prior to the intervention; and (3) interventional imaging
tasks tend to be well defined, including the particular volume of
interest and specific image features that need to be identified or
localized.

In this work, we present a mathematical model that leverages
prior knowledge, including anatomical dependencies, to predict
the imaging task performance for different trajectories. This pre-
dictor is integrated into an optimization framework that seeks
the scan trajectory that maximizes performance. This framework
is applied in simulation studies illustrating behavior and perfor-
mance in simple digital phantoms. This work is built on pre-
vious reports on task-driven orbits,30–32 with a comprehensive
introduction to the framework as well as an improved imple-
mentation and application to optimization for multiple tasks
varying in location and/or spatial-frequency content.

2 Methods for Task-Driven Trajectory
Optimization

2.1 Overview and Proposed Imaging Workflow

CBCT image quality can be highly dependent on patient size,
anatomical site, and the presence of interventional hardware in
the FOV. Even within a scan for a single patient, the data fidelity
can vary widely with orders of magnitude differences in the
noise for different measurements. This work seeks to develop
a new imaging workflow in which CBCT scans are driven
by the particular patient anatomy, selecting projections that
maximize data fidelity for a specific imaging task. In general,
this requires some knowledge of patient anatomy for prospective
trajectory design. Such information is often available in inter-
ventional imaging but is typically not used directly by the im-
aging device.

Figure 1 illustrates a proposed imaging workflow that lever-
ages preoperative imaging and planning data and contrasts
the proposed methodology with a conventional workflow.
Conventionally, a patient’s diagnosis is obtained via CT (or
other modality) to define and plan the particular interventional
approach. In many procedures involving implantation of exog-
enous devices, this includes specification of the particular hard-
ware required for the procedure (e.g., device size, location for
deployment, and model number). Minimally invasive treatment
increasingly relies on intraoperative imaging or immediate post-
operative imaging for assessment of the surgical product and
identification of possible complications. Intraoperative imaging
has the advantage of detecting complications while the patient is
still in the operating room with better opportunity to revise if
necessary. Image quality for intraoperative and postoperative
assessment is often challenged by the surgical tools and implants
delivered during the procedure—often metallic and/or high
density. Most importantly, image quality often suffers most in
the vicinity of the implant, which, unfortunately, is the part
of the image where complications are most likely to be found.
In the conventional workflow, the imaging system ignores the
wealth of knowledge about the patient anatomy, planned hard-
ware delivery, and specifics of the imaging task. In contrast,
a task-driven imaging workflow leverages this information to
improve performance for pertinent imaging tasks associated
with the particular intervention.

An overview of the task-driven optimization is illustrated in
Fig. 2. The approach combines an anatomical model of the
patient (as well as planning information), which is important
for predicting the fidelity of the projection data, with an imaging
system model, which accounts for the entire imaging chain,
including any parameters to be optimized (e.g., source–detector
trajectory). These models incorporate prediction of imaging per-
formance, including local spatial resolution and noise in the
reconstructed image volume. These measures of imaging perfor-
mance may then be used to compute task performance using a
particular observer model. With the ability to model the end-to-
end system from data collection to observer performance, vari-
ous parameters may be tuned in an iterative process to find the
optimal source–detector trajectory that maximizes the imaging

Fig. 1 Illustration of prospective task-driven imaging using a robotic C-arm. Preoperative data from a
diagnostic CT scan may be used for both preoperative planning (e.g., defining the interventional
approach) and prospective design of the intraoperative scan. That is, an initial CT may be used to
define the location of interest and the anatomical model used in predicting data characteristics like
noise in projection data. The proposed task-driven workflow (white arrows) integrates knowledge,
which is conventionally ignored (gray arrows), directly into acquisition design with the goal of optimized
performance.
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performance. The modeling and predictive framework in Fig. 2
are detailed in the following sections.

2.2 Task-Based Performance Prediction and
Optimization

Various mathematical observer models have been used for per-
formance prediction. The authors have previously demonstrated
basic agreement between human observer performance and a
non-prewhitening observer model over a broad range of imaging
conditions33 and have therefore elected to use this model to
evaluate imaging tasks. Alternative metrics could be considered
in future work, e.g., a prewhitening observer model to examine
fundamental signal and noise content or a channelized Hoteling
observer model to potentially capture aspects more closely
related to a human observer. A metric based on large-area trans-
fer characteristics (e.g., contrast-to-noise ratio) captures only the
low-frequency performance and would likely miss aspects
related to spatial resolution and frequency response. The non-
prewhitening model chosen here derives detectability in terms
of the local spatial resolution and noise properties of the recon-
structed image as well as a task function that specifies the spatial
frequencies of interest. The detectability index for the non-
prewhitening observer model may be written as

EQ-TARGET;temp:intralink-;e001;63;327d 02
j ðΩÞ ¼

�RRR ½MTFjðΩÞ · HTaskðjÞ�2 dfx dfy dfz

�
2

RRR
NPSjðΩÞ · ½MTFjðΩÞ · HTaskðjÞ�2dfx dfy dfz

;

(1)

where MTFj denotes the local modulation transfer function,
NPSj is the local noise-power spectrum, and HTaskðjÞ is the
task function describing the location of interest (j) and the spa-
tial frequencies of interest (e.g., formed by the difference of
Fourier transforms between two stimuli in a binary hypothesis
test, such as signal-present versus signal-absent, or discrimina-
tion between two stimuli). The subscript j indicates the locality
of the various measures, centered at voxel j within the recon-
structed image. The various quantities associated with image
acquisition and/or reconstruction technique are denoted gener-
ally as Ω, which in this work refers to the source–detector
trajectory.

The detectability index provides an objective for the design
of an optimal source–detector orbit. The most straightforward
objective that seeks to optimize detectability index for a single
location in the imaging volume may be written as

EQ-TARGET;temp:intralink-;e002;326;588Ω̂ ¼ argmaxΩ∈Ωfeasible
d 02
j ðΩÞ; (2)

where we seek the parameter set Ω̂ that yields the maximum
detectability index constrained by the physical or practical lim-
itations (Ω ∈ Ωfeasible). This constraint permits specification of
maximum tilt angles achievable by a particular system as well as
limits to avoid contact of the gantry with the patient, patient
table, or other obstacles.

Although single-location optimization may be appropriate
for some imaging tasks, this objective does not consider perfor-
mance at any other location in the image, thus leading to sol-
utions that may be highly optimized to a single point and
sacrifice image quality everywhere else in the image. As such,
we also consider multilocation objectives. There are many
possible choices for a multilocation objective; however, the
principal concern is how to weigh the relative importance of
performance at different locations in the FOV. We explore the
following three choices in this work:

Maximum mean detectability (maxi-mean)—in which the
average detectability index over an ensemble of locations within
a specified region of interest (ROI), jROI, is computed and maxi-
mized. Mathematically, this objective is written as

EQ-TARGET;temp:intralink-;e003;326;342Ω̂ ¼ argmaxΩ∈Ωfeasible
meanj∈jROIfd 02

j ðΩÞg: (3)

This objective treats all performance gains equally through-
out the ROI, including potential solutions where detectability is
decreased in one region for a larger gain in another region.

Maximum median detectability (maxi-median)—in which the
median detectability index over the regional ensemble is maxi-
mized. Mathematically, it can be written as

EQ-TARGET;temp:intralink-;e004;326;241Ω̂ ¼ argmaxΩ∈Ωfeasible
medianj∈jROIfd 02

j ðΩÞg: (4)

This is similar to the maxi-mean objective, except that it per-
mits larger outliers. For example, if overall detectability can be
increased at the cost of a significant decrease at a few locations,
this would be deemed an advantage.

Maximum minimum detectability (maxi-min)—in which one
seeks to achieve the highest minimum detectability over an
ensemble of locations. Mathematically, it can be written as

EQ-TARGET;temp:intralink-;e005;326;130Ω̂ ¼ argmaxΩ∈Ωfeasible
minimumj∈jROIfd 02

j ðΩÞg: (5)

This objective indicates that it is the location of minimum
performance that drives the design, and that imaging

Fig. 2 Illustration of the task-driven optimization framework.
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performance cannot be sacrificed in one location (in the desig-
nated region of interest) for an improvement in another location.

Both the single-location and multilocation objectives are
investigated below. To estimate the solution to any of these
objective functions, we used the covariance matrix adaptation
evolution strategy (CMA-ES) algorithm.34 In CMA-ES, a pop-
ulation sample is randomly drawn according to a multivariate
normal distribution at each iteration. The best solutions in the
population are used to estimate the local covariance matrix of
the objective function in an adaptive manner. The mean, covari-
ance matrix, step size, and evolutionary paths are then updated
to generate the next population with the goal of maximizing the
number of successful samples in each successive population.
This is repeated until convergence, defined as the iteration
beyond which changes in function evaluation are negligible.
This stochastic approach is attractive, as only function evalua-
tions are required and populations of solutions are used, which
helps to find global optima in nonlinear and nonconvex objec-
tives. Another attractive feature of CMA-ES is its improved
robustness with increased function evaluations (e.g., increasing
population size), which can be tuned to help avoid local optima.

2.3 Imaging System and Reconstruction Model

To use the performance objectives defined in the previous sec-
tion, one must be able to predict imaging properties (viz., local
spatial resolution and noise). This necessitates an imaging sys-
tem model that includes all of the pertinent imaging physics and
acquisition parameters as well as the reconstruction process.
Starting with data acquisition, we adopt the following forward
model for a CBCT system for which mean measurements are
modeled as

EQ-TARGET;temp:intralink-;e006;63;403yi ¼ gi exp ð−½AðΩÞμ�iÞ; (6)

where the subscript i denotes values associated with the i’th
measurement in vector y, gi denotes a measurement gain
(e.g., unattenuated x-ray fluence, and detector sensitivity),
μ is a vector of attenuation values specifying the image volume,
and AðΩÞ represents the projection operation for a particular
trajectory, parameterized by the vector Ω. The specific param-
eterization of A is discussed below.

Traditional analytic reconstruction methods are challenged
by orbits that deviate from standard designs (e.g., circular
and helical). However, model-based reconstruction methods
are straightforward to apply on unusual and even incomplete
data orbits—providing the “best” possible estimates, given
the data that was collected. Thus, we adopt a statistically moti-
vated model-based reconstruction for this work. Presuming a
Poisson noise model for the measurements, we may write the
following penalized-likelihood estimator:

EQ-TARGET;temp:intralink-;e007;63;196μ̂ ¼ argmax Lðy; μÞ − RðμÞ; (7)

where Lðy; μÞ ¼ P
N
i¼1 yi logðgi expð−½AðΩÞμ�iÞÞ − gi exp

ð−½AðΩÞμ�iÞ and denotes the log-likelihood function, which
is a function of the pre-log-transformed measurements y, and
RðμÞ ¼ βμTRμ represents a roughness penalty used in control-
ling the noise in the reconstruction with a strength parameter β.
In this work, we focus on a quadratic penalty that is specified by
the matrix R, a constant matrix that defines how voxels are com-
bined and penalized such that RðμÞ ¼ 1

2

P
j

P
k wj;kðμj − μkÞ2,

where wj;k ¼ 1 for the six nearest neighbors in 3-D space and

0 otherwise. Although there are many more sophisticated regu-
larization schemes, this particular choice of roughness penalty
is well suited to previously developed imaging performance
predictors.35

Another advantage of the penalized-likelihood framework is
that arbitrary source–detector trajectories may be reconstructed
without modifying the underlying algorithm used in solving
Eq. (2). In contrast, many direct reconstruction approaches
will not implicitly handle noncircular or nonhelical trajectories
without substantial modification or rederivation of the algo-
rithm. In this work, we have solved Eq. (7) iteratively using
the ordered subsets, separable quadratic surrogate approach dis-
cussed in Ref. 36. At each iteration, all voxels are updated
simultaneously, requiring one forward-projection and one back-
projection to compute the likelihood gradient. The penalty gra-
dient and curvature are computed directly from the image. In
experiments described below, the penalized-likelihood estimator
is run to convergence using a specific number of iterations and
a zero image has been used for initialization.

2.4 Parameterization of the Source–Detector
Trajectory

As described above, the system geometry associated with a par-
ticular source–detector trajectory was parameterized by the vec-
tor Ω. Parameterization of the trajectory can take many possible
forms that depend on the particular capabilities of the imaging
system. In this work, we considered two parameterizations of
the orbit and concentrated on orbits that sample a sphere around
a common center of rotation whose x-ray source positions are
specified by the coordinate pair ðθ;ϕÞ with rotation angle θ and
tilt angle ϕ. Other geometrical parameters, such as source–
detector distance and translations, remained fixed in the current
studies. We chose orbits that are continuous functions of the
rotation angle θ such that the gantry tilt ϕ is defined by the rota-
tion angle.

A simple parameterization involves periodic basis functions
using constant, sine, and cosine terms such that
EQ-TARGET;temp:intralink-;e008;326;337

ϕðθÞ ¼
XK
i¼1

ΩibiðθÞ b1ðθÞ ¼ 1; b2ðθÞ ¼ sin θ;

b3ðθÞ ¼ cos θ; b4ðθÞ ¼ sin 2θ; : : : ; (8)

as shown in Fig. 3. Both short scans and full 360 deg orbits may
be defined using this scheme with, for example, uniform sam-
pling of the rotation angle θ. This parameterization provides a
low-dimensional space to perform the orbital optimization.
Because there are practical limitations to the orbit (e.g., collision
with the table or patient), we apply hard constraints on the orbit
by limiting the maximum tilt angle to �50 deg.

A second parameterization of the source–detector trajectory
uses B-spline basis functions, where the individual parameters
Ωi define a limited set of knot locations. Each knot is fixed to a
single rotation angle with equal spacing throughout the orbit and
is allowed to vary in tilt angle. This parameterization may more
easily admit nonperiodic designs while maintaining relatively
low dimensionality. The orbit may be similarly constrained to
those feasible with a given C-arm gantry and to avoid table
collision. Using either the periodic or B-spline basis functions
as presented here not only reduces the dimensionality of the
parameterization but also imposes the additional constraint that
the trajectory be smoothly changing, which is beneficial for
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practical implementation of a task-driven orbit from a mechani-
cal point of view.

2.5 Imaging Performance Prediction and
Anatomical Modeling

For prospective design of source–detector trajectories, the imag-
ing performance must be estimated for various orbits. Although
exhaustive simulation of projection data, reconstruction, and
assessment is possible, it is more practical to estimate the
imaging properties of the reconstruction directly. Previous
work derived closed-form approximations for local spatial
resolution35 and noise37 in penalized-likelihood reconstructions
of the type in Eq. (7). Specifically, the local impulse response, lj,
and local covariance, cj, may be approximated as

EQ-TARGET;temp:intralink-;e009;63;390lj ≈ ½AðΩÞTDfygAðΩÞ þ βR�−1AðΩÞTDfygAðΩÞej; (9)

EQ-TARGET;temp:intralink-;e010;63;347

cj ≈ ½AðΩÞTDfygAðΩÞ þ βR�−1½AðΩÞTDfygAðΩÞ�
× ½AðΩÞTDfygAðΩÞ þ βR�−1ej; (10)

where ej denotes the j’th unit vector which is all zeros except for
the j’th location which is unity, and Df·g denotes the operator
that places its vector argument on the diagonal of a matrix. Note
that Eqs. (9) and (10) capture the various dependencies of the
reconstructed image on system geometry ½AðΩÞ�, regularization
(βR), location (j), and the patient anatomy via projections (y) of
the attenuation distribution (μprior) via Eq. (6). A recent work38

extended these predictors to nonideal detectors and validated the
predictions in flat-panel CBCT reconstructions.

Thus, we may predict local noise and resolution properties
prospectively, given knowledge of μprior and a system model
through which y may be simulated. As previously discussed,
preoperative CT (or CBCT acquired earlier in the procedure)
can provide an anatomical model for prediction, recognizing
that the model may be mismatched to the intraoperative data
for a number of reasons. First is registration of the previous
image to the current measurements. For many anatomical sites
(e.g., in neurointerventions), a rigid registration may be suffi-
cient, allowing the designed trajectory to be transformed into
the intraoperative patient coordinates using, for example, 3-D
to two-dimensional (2-D) registration, as shown in Ref. 39.
In this work, we will presume that an accurate registration is

achieved and will focus on the subsequent improvements in im-
aging performance gained from a task-driven design of the orbit.

Other mismatches in patient anatomy include the delivery of
hardware and changes in anatomy that might be found in the
intraoperative data. Again, the workflow presented in Fig. 1
offers a means to model implanted hardware. As the preopera-
tive scan is often used for planning, e.g., to determine the size
and location of an implant, it is relatively straightforward to
include these attenuation changes in a modified anatomical
model. Modeling of significant attenuation changes like metal
implants is important as these changes have a significant impact
on the statistics of the data (i.e., the diagonal weighting Dfyg in
the predictors). In contrast, soft-tissue differences like hemor-
rhage (an important complication one would like to detect) have
a relatively small effect on noise in the projection data. This
suggests that those more subtle changes do not need to be mod-
eled explicitly for the proposed trajectory design.

2.6 Approximate Predictors and Practical
Implementation

Although the predictors in Eqs. (9) and (10) describe the basic
imaging performance metrics required for evaluation of
detectability index, these expressions contain large matrix inver-
ses that challenge efficient computation of the local spatial res-
olution and noise for such a large optimization space. Previous
work used local Fourier approximation40,41 to yield approximate
forms for the local MTFj and local NPSj as

EQ-TARGET;temp:intralink-;e011;326;247MTFj ¼ Ffljg ≈
FfAðΩÞTDfygAðΩÞejg

FfAðΩÞTDfygAðΩÞej þ βRejg
; (11)

EQ-TARGET;temp:intralink-;e012;326;190NPSj ¼ Ffcjg ≈
FfAðΩÞTDfygAðΩÞejg

jFfAðΩÞTDfygAðΩÞej þ βRejgj2
;

(12)

where F denotes the 3-D discrete Fourier transform and the
division is element by element. Although Eqs. (11) and (12)
eliminate the computationally expensive matrix inverse, these
expressions still require repeated computations involving pro-
jection, backprojection, and Fourier transforms. Following
Ref. 42, a number of observations permit additional speedups
for practical implementation. In particular, one may compute
the regularization term once for a shift-invariant penalty,

Fig. 3 Illustration of a short-scan orbit parameterized by constant, sine, and cosine basis functions.
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and only local volumes within a N × N × N region of
interest of the voxel j are required. Repeated calculation of
the Fourier transform of the weighted projection-backprojection
(FfAðΩÞTDfygAðΩÞejg) represents a significant computa-
tional burden in direct computations of Eqs. (11) and (12).
However, efficient calculation is possible by leveraging the
observation, as described in Ref. 42, that the projection-back-
projection term is linear in the diagonal weighting. Specifically,
we may write

EQ-TARGET;temp:intralink-;e013;63;653FfAðΩÞTDfwgAðΩÞejg ¼ Ljw; (13)

which means that a linear operator, Lj, may be precomputed
and stored for fast application. In addition, noting that the pro-
jection of a single point AðΩÞej is very sparse with nonzero
values located at about one point per projection view, one
may precompute a much smaller Lj that is only N3 × Nviews

for each location j. One may form Lj by substituting
w ¼ ei for i ¼ 1 to Nviews to build up Lj column by column.
Thus, as long as the number of potential view angles is suffi-
ciently small (e.g., one needs to storeNviews Fourier volumes of
N × N × N), this precomputation approach becomes tractable
without additional modification.

For a large number of potential views, memory limitations
may challenge the precomputation approach. In the spirit of
Refs. 43 and 44, one can also recognize that we may replace
Lj with an analytic form. That is, each column of Lj is the
Fourier transform of the backprojection of a single projection
view consisting of a single point projection. The backprojection
of a point is a line in 3-D space through the original location j
connecting both the source and detector. The Fourier transform
of this line is a Fourier plane centered at the origin at the same
angle as the line. However, for a discrete system model with
finite-sized detector elements, voxels, etc., this Fourier plane
will not be infinitely thin. Whereas Schmitt derived closed-
form analytic expressions that specify the form and profile
through this plane, we opted to use a plane whose profile is
Gaussian with a width specified by fitting an empirical calcu-
lation of the Fourier-domain projection-backprojection. This
results in a very fast analytic form for Lj that may be computed,
given the location j and the coordinates of the x-ray source. This
on-the-fly computation approach is another efficient alternative
for calculating Eqs. (11) and (12). The difference between the
precomputation and on-the-fly approaches is largely computa-
tional (without significant difference in noise and resolution
estimates) and represents a classic computing trade-off between
storage and speed. As both approaches are potentially useful,
both are presented in studies below.

3 Experimental Methods
Three experiments were conducted to investigate various aspects
of the proposed task-driven trajectory design process, summa-
rized in Fig. 4. Each experiment is detailed in the following
subsections.

Two simulation configurations were used in these studies.
Studies that investigated basic trajectory design behavior used
a compact system geometry to better illustrate dependencies
on location and task, specifically 700-mm source-to-detector
distance and 350-mm source-to-axis distance. A flat-panel
detector with 560 × 1000 pixels at 1-mm pitch was simulated.
This geometry is referred to as the compact geometry. A second
system geometry emulated a C-arm geometry with 1200-mm

source-to-detector distance, 800-mm source-to-axis distance,
and a 960 × 1240 pixel detector at 0.308-mm pitch.

3.1 Location Dependence: A Sphere in a Cylinder

The first experiment used a simple object to illustrate location
dependence. Specifically, a 20-cm diameter cylinder was
simulated with 1-mm voxels and an attenuation of 0.05 mm−1

[Fig. 4(a)]. A relatively high attenuation was used to exaggerate
the location-dependent effects. Two 3-mm spheres with
0.03 mm−1 contrast relative to background were added to the
cylinder, centered in the axial slice, at the central slice and at
15 cm below the central slice. This study used the compact
geometry, and bare-beam fluence was set at 105 photons
per pixel.

Trajectory design was conducted using the single-location
objective in Eq. (2) using nine periodic basis functions given
in Eq. (8), constrained to tilts in the range of ϕ ¼ −50 deg to
50 deg, and with rotation angles θ ¼ 1 deg to 360 deg with
1 deg increments. The task function in the objective corre-
sponded to the 3-mm spherical stimulus [Fig. 4(d)] and optimi-
zation was performed for each stimulus location individually.
For computation of detectability, the on-the-fly method was
applied with statistical weights (w, calculated as described in
Sec. 2.6) sampled over 110 equally spaced rotation angles
and 51 equally spaced tilt angles. To estimate the solution of
Eq. (2), the CMA-ES optimization was applied using a popu-
lation size of 40 without restarts due to the simplicity of the
search space.

Penalized-likelihood reconstruction using the optimized tra-
jectory found for each sphere location (central slice and 15 cm
below the central slice) was performed using dynamically
relaxed ordered subsets with the number of subsets changing
every five iterations through the sequence {54, 24, 12, 6, 4,
2, 1} for a total of 50 iterations. This schedule was chosen
to accelerate the convergence of the simple object. Quadratic
regularization with a regularization strength of β ¼ 106 was
applied using 1-mm isotropic voxels on a 240 × 240 × 500

Fig. 4 Summary of the three simple scenarios studied. Cases are dis-
tinguished by the stimulus and anatomical model (top row) and the
frequency-domain task function (bottom row). Different task functions
are explored, including Gaussian detection, line-pair discrimination,
and midfrequency discrimination.
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grid. This choice of regularization strength was empirically
selected based on visual assessment of noise and resolution
in the images.

3.2 Task Dependence: Line Pairs in a Cylinder

The second study used the same 20-cm cylinder as the first
experiment—in this case involving a line-pair stimulus placed
in the center of the central slice. Specifically, the line pairs
were a 20 × 20 × 20 mm3 cube with 2 lp∕mm and a contrast
of 0.015 mm−1 relative to background. The cube was rotated
20 deg around the x-axis to angulate the features relative to
the coordinate axes [Fig. 4(b)].

Trajectory design was performed using the single-location
objective, nine periodic bases, and the same angular sampling,
constraints, geometry, and bare-beam fluence as in the first
experiment. Two task functions were examined: the 3-mm
sphere detection task from the first experiment and a line-
pair discrimination task. The discrimination task was defined
as the difference between the true rotated line-pair stimulus
and a stimulus consisting of an identically rotated solid cube
of the same dimensions and attenuation, i.e., a binary hypothesis
of line pairs “present” or “absent” [Fig. 4(e)]. As in the first
experiment, on-the-fly detectability computations were adopted
and the same CMA-ES parameters were used. Penalized-like-
lihood ordered-subset reconstructions were computed as in the
first experiment, using the {54, 24, 12, 6, 4, 2, 1} schedule, 50
iterations to reach convergence, β ¼ 106, and 1-mm isotropic
voxels on a 240 × 240 × 500 grid.

3.3 Multiple Locations: Elliptical Cylinder with
Needle

The third experiment examined task-driven imaging in a situa-
tion for which the precise task location was unknown. We
therefore chose several potential task locations and solved for
a single trajectory that maximized a multilocation objective.
A digital elliptical cylinder phantom was modeled with major
and minor axis diameters of 25 and 17.5 cm, respectively,
and with a height of 25 cm. The elliptical cylinder had a
12-mm outer shell with attenuation coefficient of 0.04 mm−1

and the core was filled with low-contrast spheres of diameter
80 mm and attenuation coefficients ranging from 0.0175 to
0.0225 mm−1. A high-contrast cylinder (attenuation coefficient
0.2 mm−1) with a diameter of 5 mm and a length of 75 mm was
added at a 10-deg angle in the central coronal plane to simulate
a needle entering the body [shown in Fig. 4(c)]. Nine 8-mm
spheres with 0.08 mm−1 contrast were added along the length
and tip of the cylinder and their nine locations were used for
multilocation optimization. We used the C-arm geometry
with bare-beam fluence lowered to 104 photons per pixel to
mimic scanning at lower dosage.

Trajectory design was first performed for each task location
using the single-location objective in Eq. (2), followed by the
three multilocation objectives in Eqs. (3)–(5). The B-spline
basis functions were used with eight equally spaced knots,
and the trajectories were constrained to tilt angles in the
range of ϕ ¼ −30 deg to 30 deg and rotation angles of
θ ¼ 1 deg to 360 deg. The task function at all nine locations
consisted of midfrequency content [Fig. 4(f)] to discriminate
the presence of a single object or two separate objects (needle
and sphere), as described in the ICRU Report 54.45 The precom-
putation approach was used with w sampled over 72 equally

spaced rotation angles and 13 equally spaced tilt angles to
compute detectability. The CMA-ES optimization algorithm
was used to estimate Ω̂ using a population size of 200 with
six restarts and random initialization to ensure that the optimal
detectability values were achieved due to the more complicated
search space compared to the previous two experiments.

Quadratic penalized-likelihood reconstructions for the nomi-
nal circular orbit, nine independent single-location optimiza-
tions, and three variations of multilocation optimization were
performed using 10 ordered subsets over 200 iterations. The
total number of iterations was increased and the number of sub-
sets was decreased from previous experiments to achieve stabil-
ity in convergence of the structurally more complicated object.
Regularization strength β was set at 105.5 to decrease noise in the
highly attenuating object, and 0.5-mm isotropic voxels were
used in a 512 × 512 × 512 grid.

To illustrate the convergence of the CMA-ES algorithm, the
optimization for a single sphere was performed as described
above, using a circular orbit for initialization as opposed to ran-
dom initialization. This allowed comparison of the detectability
index and the reconstructed images associated with the initial
circular orbit, an intermediate (suboptimal) orbit, and the result-
ing optimal orbit.

4 Results

4.1 Location Dependence: A Sphere in a Cylinder

Results from the first experiment are summarized in Fig. 5.
Task-driven source trajectories are shown for the cylindrical
object and two optimizations: maximum detectability of the
spherical stimulus at locations #1 [Fig. 5(b)] and #2 [Fig. 5(c)].
Source orbits are shown for each case in magenta as well as a
sampled sphere of all possible source locations (blue dots). Note
that the designed orbits suggest that a simple equatorial source
trajectory around each stimulus is optimal for detection of that
stimulus. Reconstructions using the two orbits confirm that con-
spicuity of each sphere is maximized for such an equatorial
orbit, with reduced detectability for the stimulus in the location
that is not optimized. That is, the stimulus at location #2 is more
difficult to detect when using the orbit designed to maximize
detectability at location #1, and vice versa.

This simple, idealized simulation offers basic intuition to the
optimization by considering the fluence through each stimulus
location for all potential views. This fluence is equal to the stat-
istical weighting—w in Eq. (13)—and we see that the orbit
(dashed magenta line) in each case maximizes fluence through
the target location, thereby maximizing data fidelity by selecting
projection views with the shortest path length through the object.
This experiment illustrates the importance of location in task-
driven designs and shows that using a single-location objective
can maximize task performance at a given location but may do
so at the cost of decreased performance at other locations.

4.2 Task Dependence: Line Pairs in a Cylinder

The results for a task with strong directional dependence (a line-
pair stimulus within a cylinder) are summarized in Fig. 6.
Single-location task-driven designs are performed for two
tasks: the sphere detection task from Sec. 3.1 [Fig. 6(b)] and
a discrimination task corresponding to the frequency content
and angulation of the line-pair stimulus [Fig. 6(c)]. For the
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task function corresponding to the line-pair stimulus, the task-
driven orbit (orbit A) is tilted to match the angulation of the
line-pair stimulus. Example reconstructions illustrate that the
task-driven design outperforms the nominal orbit (orbit S), thus

showing increased noise between the line pairs for the trajectory
optimized for the spherical task [Fig. 6(b)] and improved dis-
crimination of line pairs for the orbit optimized according to
the line-pair task [Fig. 6(c)].

Fig. 5 Location dependence. (a) Spherical stimuli are placed at the center (location #1) and 15 cm below
(location #2) in a cylindrical object. (b) Task-driven trajectory design for the sphere detection task at
location #1. (c) Task-driven design for the same task at location #2. Sample reconstructions and the
fluence through each location for all potential views (analogous to the statistical weighting) are
shown. Optimal orbits are identified in magenta.

Fig. 6 Task dependence. (a) Line-pair stimuli are placed at the center of a cylindrical object. (b) Task-
driven trajectory design for the sphere detection task (orbit S, not optimal for this object). (c) Task-driven
design for an angulated line-pair discrimination task (orbit A). Sample reconstructions and the fluence
through each location for all potential views are shown. Orbits are identified in magenta.
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4.3 Multiple Locations: Elliptical Cylinder with
Needle

Figure 7 summarizes the task-driven trajectories resulting from
optimization with respect to a single-location objective (in
which d 0 is optimized for each location independently), and
for the three variations of a multilocation objective [maxi-
mean, maxi-median, and maxi-min shown in Eqs. (3)–(5), in
which d 0 is optimized over all locations simultaneously]. The
fluence through the stimulus location for all potential views
is shown for each of the nine task locations with the optimal
orbits shown in magenta. The orbits resulting from a single-
location objective are shown in the left-most column, and the
single orbit resulting from a multilocation objective is shown
in the three right columns for the maxi-mean, maxi-median,
and maxi-min objectives for all nine locations. The single-loca-
tion objective shows a different orbit for each location, and these
can be considered the best possible trajectory for each location.
Note that at some of the locations the tilt angle differs for the
starting and ending views (i.e., locations 4, 5, and 7). The 2-D
B-spline basis function representing the source trajectory is not
constrained to be equal at the start and end vertices, allowing a
discontinuity. In these cases, an orbit with a discontinuity pro-
duces a higher d 0 value at the task location. We may theorize that
allowing discontinuities at any point in the orbit (not only at start
and end vertices) might increase d 0; however, doing so loses the
advantage of a low-dimensional parametrization and increases
the difficulty of implementation on a robotic C-arm.

When comparing the three multilocation objectives (in which
a single trajectory is generated for all stimulus locations), each
objective function yields a different result, as expected. The tra-
jectory generated when using a maxi-median objective is dic-
tated by the median d 0 value, which in this case corresponds
to location 3 for the optimal trajectory. Note that the orbit is

not the same as that for location 3 achieved when using a sin-
gle-location objective. This is because further changes to the
orbit would cause all d 0 values to shift, which would generate
a new median value that does not maximize the objective func-
tion. The maxi-min objective is similarly driven by a single loca-
tion, i.e., location 1. Location 1 is at the tip of the needle and is
subsequently obscured by the angulated needle to some extent at
all possible views. This results in the lowest fluence, compared
to all other locations for all possible views. As the d 0 value at
location 1 is significantly smaller than the values at locations 2
to 9 due to the lower fluence, it remains the minimum d 0 value
for all trajectories examined during optimization. This results in
an equivalent optimization as when using a single-location
objective at location 1, and the resulting orbit is almost
identical to that case. When using a maxi-mean objective, all
locations jointly drive the orbit, and no single location skews
the result.

Figure 8(a) shows detectability index for the nine task loca-
tions corresponding to a circular trajectory, using a single-loca-
tion objective, and using the three multilocation objective
functions. The single-location objective is seen to provide the
highest d 0 value and represents the upper limit of improvement
in d 0. The respective advantage of each multilocation objective
function is evident, with maxi-mean having the highest mean d 0
value at 3.1, maxi-median having the highest median d 0 value at
3.7, and maxi-min having the highest minimum d 0 value at 1.3.
Figure 8(b) shows the percentage increase (or decrease) in d 0
compared to the location-matched d 0 value for a circular
orbit. For a single-location objective, all d 0 values increase,
ranging from 5.5% at location 8 to 121.1% at location 1. In con-
trast, for all three multilocation objectives there are locations
that exhibit a decrease in detectability. For maxi-mean, the
change in d 0 ranges from −8.4% at location 4 to þ37.7% at
location 1. For maxi-median, the range is from −46.1% at

Fig. 7 Comparison of multilocation and single-location objectives. The task-driven trajectory resulting
for each case is shown overlaid on the statistical weights for all source locations at each task location
(1 to 9). Using a single-location objective shows the ideal task-driven trajectory for each location.
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location 4 to þ45.4% at location 9. For maxi-min, the range is
from −35.4% at location 3 to þ120.9% at location 1.

The reconstructed image in the region around each stimulus
is shown for each orbit in Fig. 8(c), as well as for a nominal
circular orbit for comparison (top row). Either the axial, coronal,
or sagittal plane is chosen at each location for visual represen-
tation of improvements, although the reconstructed plane could

be arbitrary. Improvements are particularly apparent for loca-
tions 2, 7, and 9.

Figure 9 demonstrates convergence of the CMA-ES algo-
rithm for the single-location objective performed for the task
defined at location 7. Images reconstructed for a circular
orbit, suboptimal intermediate orbit, and optimal task-driven
orbit are shown in Figs. 9(a)–9(c). The d 0 values for each are

Fig. 8 Optimization for multiple task locations. (a) Boxplots showing detectability index for the nine loca-
tions for a circular orbit, a single-location objective, maxi-mean, maxi-median, and maxi-min objective
functions. On each box, the central line indicates the median, and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The whiskers indicate the range of the data excluding
outliers, which are indicated with the “+” symbol. (b) Boxplots showing the percentage change in detect-
ability from a nominal circular orbit after optimization at all the nine locations for the single-location objec-
tive function and the three multilocation objective functions. (c) The resulting image for each orbit in a
region around each stimulus location, demonstrating improved visualization of small spheres placed
adjacent to a high-contrast cylindrical “needle.” Corresponding images from a nominal circular orbit
are shown for comparison in the top row.

Fig. 9 Convergence of the optimal orbit at location 7. (a) Image reconstructed from a circular orbit (inset
below the image, plotted in magenta overlaid on a map of statistical weights). (b) Image reconstructed
from a suboptimal orbit representing an intermediate solution between a circular orbit and the optimal
orbit. (c) Image reconstructed from the optimal orbit for this task and object model. (d) Convergence of
the CMA-ES optimization showing detectability (d 0) versus iteration. The d 0 value for the orbits shown in
(a)–(c) are indicated in the plot.
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2.85, 3.35, and 4.08, respectively. Visualization of the spherical
stimulus alongside the highly attenuating needle is progressively
improved as the algorithm converges on the optimal orbit, con-
sistent with the increase in d 0. A plot of detectability index ver-
sus iteration is shown in Fig. 9(d), which shows a fairly smooth
convergence for the CMA-ES optimizer when initialized with
the circular orbit. The d 0 values corresponding to the three orbits
(A–B–C) in Figs. 9(a)–9(c) are indicated in the plot.

5 Discussion
In this work, we have presented a framework for task-driven
trajectory design for advanced CBCT imaging systems that lev-
erages knowledge of both the patient anatomy and imaging task
and exercises the motion capabilities of motorized, multi-axis
CBCT systems to maximize imaging performance. The task-
driven approach provides a strategy to overcome traditional im-
aging limitations via orbital flexibility, e.g., challenges associ-
ated with highly attenuating anatomy or implants that can be
mitigated through intelligent data collection, selecting the best
projection views to accomplish a particular task.

The importance of both the location and spatial-frequency
dependence of the imaging task has been investigated. Each
of these elements can contribute significantly to which projec-
tion views carry the greatest information for a specific task. In
general, the task-based approach balances the data fidelity of a
view (i.e., noise) with the signal content (frequency response)
that each view provides toward the imaging task. Because
the trajectory design for a single stimulus location in the
image volume can optimize performance at that location to
the detriment of performance elsewhere, a number of multilo-
cation design objectives are examined to obtain optimal perfor-
mance over regions of interest.

The proposed framework is general with respect to various
options for parameterization of the source–detector trajectory,
including constraints based on system geometry, degrees of free-
dom, and collision avoidance—permitting application to robotic
C-arms and other CBCT systems with additional flexibility to
gantry tilt, etc. This includes short-scan geometries, which are
popular in CBCT imaging. A short-scan can be similarly opti-
mized as the above-described full-scans with additional param-
eters such as start and end rotation angles included in the
optimization to seek the views that are best for the object
and task. Moreover, it is straightforward to further generalize
these methods with additional geometric degrees of freedom
(e.g., axial translation and variation in source–detector distance),
acquisition parameters (e.g., tube current modulation28 and flu-
ence-field modulation29), and reconstruction parameters (e.g.,
regularization strength, β26). Such factors certainly carry inter-
dependency in a full multivariate optimization over all param-
eters—well beyond the scope of the current work, which focuses
specifically on optimization of the source–detector orbit (hold-
ing other parameters fixed).

We note that Fourier approximation of both the MTF and
NPS is one potential source of error in orbital design.
Specifically, this presumes that the term ATDAej is locally
shift-invariant. For heterogeneous objects, the diagonal weight-
ing is variable with location. However, we note that the data-
dependence of this term falls between projection and backpro-
jection operations, which have the effect of strong smoothing
even for highly nonuniform weights. The impact of this smooth-
ing is that the Fourier approximation tends to hold well even for
very nonuniform objects; however, there is the potential for

breakdown of the approximation when shift variance is pushed
to the same scale as the spatial resolution of the system.

Consideration should also be given to challenges of accurate
CBCT image reconstruction. Physical factors that are not
accounted for include x-ray scatter, beam hardening, image
lag, detector glare, and patient motion, which may produce arti-
facts that confound visualization of the task. Recent work has
investigated the optimization of orbits based on scatter and scat-
ter-to-primary ratio for imaging the weight-bearing spine using a
robotic CBCT system, indicating that these effects are small and
can be included in the overall optimization.46 Effects that occur
from the sampling pattern itself, such as streakiness and cone-
beam artifacts, are included in the model of the local MTF and
are therefore represented in the task-driven image in such a way
as to improve the detectability of the task (although they may not
be eliminated from the image).

Accurate geometric calibration of noncircular orbits is also
required for accurate image reconstruction. The motion of the
C-arm gantry as it moves through complex task-driven orbits
may result in gantry wobble. This can be accounted for using
a calibration technique like the “self-calibration,” as described
in Ref. 47, that performs the geometric calibration subsequent to
the scan using the set of acquired projections.

Because the design objectives are generally nonconvex
and require many predictions of image quality, different strate-
gies for efficient evaluation and solution of the design objective
are presented. Image quality predictors in the current work focus
on quadratically penalized model-based image reconstruction;
however, future work aims to extend this methodology to non-
quadratic regularization.44,48

Task-driven trajectory design has the potential for application
in a number of imaging scenarios. This work has focused on
theoretical underpinnings of the framework and has illustrated
the method in a series of experiments ranging from simple to
complex. Although the phantoms used in these scenarios had
somewhat uniform backgrounds, the method is designed to
incorporate complex anatomic variations in the optimization
via the patient model. In fact, the complexity of the model drives
the selection of optimal trajectory. This is demonstrated in the
Part II companion paper49 titled “Task-driven source–detector
trajectories in cone-beam computed tomography: II. Application
to neuroradiology,” where we investigate application to imaging
scenarios in neuroradiology with complex surrounding
anatomy. We expect that the methodology also has potentially
broad application in other interventional imaging scenarios
(e.g., orthopedic procedures). The above-detailed theoretical
foundations suggest a new paradigm for interventional imaging
wherein preoperative information is included explicitly within a
rigorous definition of the imaging task to prospectively drive
customized data acquisition that maximizes performance. The
framework is an important first step in realizing advanced
CBCT capabilities and more fully leveraging the wealth of infor-
mation available in interventional imaging scenarios.
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