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Abstract. With recent advances in the field of deep learning, the use of convolutional neural networks (CNNs) in
medical imaging has become very encouraging. The aim of our paper is to propose a patch-based CNN method
for automated mass detection in full-field digital mammograms (FFDM). In addition to evaluating CNNs pre-
trained with the ImageNet dataset, we investigate the use of transfer learning for a particular domain adaptation.
First, the CNN is trained using a large public database of digitized mammograms (CBIS-DDSM dataset), and
then the model is transferred and tested onto the smaller database of digital mammograms (INbreast dataset).
We evaluate three widely used CNNs (VGG16, ResNet50, InceptionV3) and show that the InceptionV3 obtains
the best performance for classifying the mass and nonmass breast region for CBIS-DDSM. We further show the
benefit of domain adaptation between the CBIS-DDSM (digitized) and INbreast (digital) datasets using the
InceptionV3 CNN. Mass detection evaluation follows a fivefold cross-validation strategy using free-response
operating characteristic curves. Results show that the transfer learning from CBIS-DDSM obtains a substantially
higher performance with the best true positive rate (TPR) of 0.98� 0.02 at 1.67 false positives per image (FPI),
compared with transfer learning from ImageNet with TPR of 0.91� 0.07 at 2.1 FPI. In addition, the proposed
framework improves upon mass detection results described in the literature on the INbreast database, in terms of
both TPR and FPI. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of
this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI.6.3.031409]
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1 Introduction
Breast cancer is the most common form of cancer in the female
population. In the USA, it is estimated that ∼12.4% of women
will be diagnosed with breast cancer at some point during their
lifetime.1 Moreover, it has been demonstrated that the breast
cancer survival rate is strongly dependent on the stage at which
cancer is diagnosed. Although digital breast tomosynthesis is
gradually being adopted, x-ray mammography is still the gold
standard imaging modality used for breast cancer screening
due to its fast acquisition and cost-effectiveness. However, for
certain population groups (young women or women with dense
breasts), it has been shown to have a reduced sensitivity, which
may result in more missed cancers.2

In the past decade, research in breast image analysis has
mainly focused on the development of computer-aided detection
or diagnosis (CAD) systems to assist radiologists in the diagno-
sis. Traditionally, mammography CAD systems relied on hand-
engineered features, which showed limited accuracy in complex
scenarios. More recently, with the advent of deep learning meth-
ods, CAD systems learn automatically which image features
are more relevant to be used to perform a diagnosis, boosting
the performance of these systems. The term “deep learning”
can be defined as any one of a set of methods that learn data
representations using multiple levels of representation.3 They
are obtained by composing simple but nonlinear models
that transform the representation from one level (starting with
the raw input) into increasing levels of representation. Deep

learning strategies have gained a lot of interest in various fields,
including object detection,3–7 image recognition,5–11 natural
language processing,12,13 speech recognition,14,15 etc.

Although several authors have proposed the use of traditional
machine learning and content-based image retrieval techniques
to classify masses and microcalcifications,16,17 the exploitation
of deep learning frameworks in the field of breast imaging has
been limited, as only a small number of datasets are publicly
available (e.g., DDSM,18 INbreast19). In this sense, one should
mention the early paper of Kozegar et al.,20 who used an iterative
breast segmentation approach to subsequently classify the
regions using traditional feature selection and machine learning
paradigms. Later, Dhungel et al.21 proposed a multiscale deep
belief network classifier, followed by a cascade of region-
based convolutional neural networks (R-CNN) and cascades of
random forest classifiers for mass detection, while Carneiro
et al.22 proposed the use of CNNmodels pretrained using a com-
puter vision database (ImageNet) for classifying benign and
malignant lesions in the DDSM and INbreast datasets.

More recently, Lotter et al.23 trained a CNN patch-based clas-
sifier to classify lesions in the DDSM dataset and subsequently
developed a scanning model to provide full mammogram
classification, achieving an area under receiver operating
curve (Az) of 0.92 on the DDSM dataset. In the same year,
Dhungel at al.24 used a deep learning methodology to develop
an approach for mass detection, segmentation, and classification
in mammograms and tested the approach on the INbreast data-
set. Detection results had a true positive rate (TPR) of 0.95�
0.02 at five false positives per image (FPI) on testing data.

In another work, breast abnormalities (masses, microcalcifi-
cations) were simultaneously detected using a faster R-CNN
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model and a CNN-based classifier25 obtaining a TPR of 0.93 at
0.56 FPI for mass mammograms using a subset of the INbreast
database. Recently, Ribli et al.26 used fast R-CNN for the clas-
sification and detection of malignant and benign lesions with a
TPR of 0.90 at 0.3 FPI, using a subset of the INbreast database
with lesions. Regarding the use of private mammography data-
sets, Becker et al.27 developed a multipurpose image analysis
software to detect and classify abnormalities, obtaining an Az
of 0.79 on the testing set. In other works, Kooi et al.28 used
a larger private database of ∼45;000 images to provide a
comparison between traditional mammography CAD systems
relying on hand-crafted features and the CNN methods. It was
shown that the CNN model trained on a patch level with a large
database outperformed state-of-the-art CAD systems and equiv-
alued (less experienced) radiologists with an Az of 0.88.

Generally, the training process for supervised deep CNNs
requires a large number of annotated samples to avoid overfit-
ting to the training dataset. This issue is often addressed by
researchers using transfer learning (also known as domain adap-
tation). Here, the aim is to fine-tune a pretrained model (trained
on a larger database) on a smaller dataset.29 Transfer learning is
considered to be an efficient methodology, in which the knowl-
edge from one image domain can be transferred to another
image domain. Azizpour et al.30 suggested that the success of
any transfer learning approach highly depends on the extent
of similarity between the databases on which a CNN is pre-
trained and the database to which the image features are trans-
ferred. Tajbakhsh et. al.31 debated if the use of pretrained deep
CNNs with sufficient fine-tuning could eliminate the need for
training a deep CNN from scratch. The authors also analyzed
the influence of the choice of the training samples on the
performance of CNNs and concluded that there is no set rule to
say if a shallow tuning or deep tuning is beneficial and that
the optimal method is dependent on the type of application.

In the direction of an automated CAD system, the techniques
for mass-like lesion detection and classification follow a two
stage pipeline with candidate detector and latter classifying
the masses.24,28,32 Recently Chougrad et al.33 focused on the
classification of breast masses and demonstrated that an
increased performance could be achieved using transfer learning
from natural images to mammograms. The authors compared
the performance of three CNNs for the classification of breast
masses into malignant and benign, showing that better classifi-
cation could be obtained using transfer learning from the natural
images (ImageNet). In this work, we have developed an auto-
mated framework for detecting masses in full mammograms.
Here, we use the concept of transfer learning to enhance the per-
formance of the automated framework. Note that, in contrast to
Chougrad et al.,33 we are dealing with the problem of mass
detection instead of classification and have analyzed different
CNNs for classifying mass and nonmass regions instead of
classifying masses into benign and malignant.

In this work, the first step is to analyze the performance of
three popular deep CNN architectures (VGG16, ResNet50,
InceptionV3) in terms of mass and nonmass classification on
a large public dataset of digitized mammogram (CBIS-DDSM).
Second, the best performing CNN is used to classify mass and
nonmass regions in another small public dataset (INbreast).
Here, a study is performed for mass detection in mammograms,
comparing the results when the transfer learning is performed
between the images of similar domains (i.e., digitized and digital
mammograms) against the results obtained when the transfer

learning is performed between the images of different domains
(mammograms and natural images). The classification results
are evaluated using the testing accuracy, while the detection
results are evaluated using the free-response operating character-
istic (FROC)34 analysis.

The paper is structured as follows: Sec. 2 provides the details
of the datasets used and CNN architectures, followed by the
methodology for training and testing the CNN models for clas-
sification and detection of masses. Section 3 provides the details
of the experiments performed in this work; Sec. 4 presents the
results and discussion, and the paper finishes with Sec. 5, where
conclusions and future work are stated.

2 Methodology
In this section, we describe the datasets used, the sampling pro-
cedure for generating input patches, the CNN architectures, and
the strategy used for training the CNN, followed by the strategy
used for detection of masses in mammograms.

A fully automated framework for mass detection is devel-
oped (see Fig. 1); it is initialized by extracting small regions
of the image (referred to as patches) to be used for training
the CNN. The model obtained after the CNN training is first
used to classify the unseen testing patches as mass and nonmass
patches (with different probabilities). The patches are then
recombined to reconstruct the whole mammogram and sub-
sequently the classification probabilities (of each patch) are
used to obtain the mass probability map (MPM) for the mammo-
gram and obtain the probable mass region defined by a bound-
ing box.

2.1 Datasets

2.1.1 CBIS-DDSM

The DDSM18 database contains digitized images from scanned
mammography films compressed with lossless JPEG encoding.
In this work, we have used a version of the database, i.e., CBIS-
DDSM,35 containing a subset of the original DDSM images in
the standard DICOM format. The database was downloaded on
October 10, 2017, from the CBIS-DDSM website36 containing
3061 mammograms of 1597 cases. In total, there are 1698
masses in 1592 images from 891 cases, which include both
cranio-caudal (CC) and medio-lateral oblique (MLO) views
for most of the screened breasts. The CBIS-DDSM database
contains pixelwise annotations for the regions of interest (RoI),
e.g., masses and calcifications, as well as lesion’s pathology,
i.e., benign or malignant.

The CBIS-DDSM database is composed of digitized film-
screen mammography images, which implies a nonhomogene-
ous intensity distribution of the background (nonbreast area).
Therefore, a segmentation step using Otsu segmentation37 is
used to differentiate between the breast area and the background.
Following the standard training and testing split of the data as
suggested by Lee et al.,35 the images are first divided into train-
ing and testing sets with 1231 and 361 images, respectively.
Further, the training set is subdivided into the training and
validation images with 985 and 246 images, respectively.

2.1.2 INbreast

The INbreast dataset is composed of digital mammograms
acquired using a Siemens MammoNovation mammography sys-
tem (Siemens Healthineers, Erlangen, Germany). The images
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were acquired from 115 cases with CC and MLO breast views,
leading to a total of 410 images available in DICOM format.
From these, a total of 116 masses can be found in 107 mammo-
grams from 50 cases. In this work, we have not considered
the cases with follow-up studies (different acquisition times) as
different cases, thus resulting in a total of 108 cases. Regarding
preprocessing of these full-field digital mammograms (FFDM),
global thresholding is performed to segment the breast region
from the background and all right breasts are mirrored horizon-
tally to keep the same orientation.

The dataset contains pixel-level mass annotations and histo-
logical information about the type of cancers. The dataset also
contains some mammograms with multiple masses. We have
found that in four mammograms, the lesions are very close and
the bounding-boxes overlap, so we consider them as a single
lesion. Thus, the total number of masses in this paper is consid-
ered to be 112 instead of 116. A fivefold cross validation is used
to analyze the performance on the whole dataset. The dataset is
divided into training (60%), validation (20%), and testing (20%)
sets on the case level per fold. The distribution is performed in
an stratified manner to ascertain equal ratios of normal and
abnormal cases.

2.2 Input Patch Extraction

In this work, a sliding window approach is used to scan the
whole breast and extract all the possible patches from the
image (see Fig. 1). The total number of patches is controlled
by the stride (s × s), which also defines the minimum overlap
between two consecutive patches. All the patches are then
classified based on the annotations provided in the dataset.
For example, a patch is labeled as positive (mass candidate)
if the central pixel of the patch lies inside the mass (verified
using the corresponding RoI annotation); otherwise, it is
assigned a negative (no mass) label.

Since in the CBIS-DDSM database normal images (without
any abnormalities) are not available, an equal number of positive

and negative patches are extracted from mass images consider-
ing that all the positive patches are extracted first and then
an equal number of negative patches are randomly selected
(excluding the border area patches due to high contrast differ-
ence). This provides a balanced dataset for training the CNN.

On the other hand, the INbreast dataset contains mammo-
grams with and without masses, so positive patches are extracted
only from the mammograms with masses. To maintain a balance
between positive and negative samples for the CNN training,
the negative patches are extracted from the mammograms
without masses using the following formulation:

EQ-TARGET;temp:intralink-;e001;326;343Pnegative ¼ ceil

�
n
N

�
; (1)

where n is the number of positive patches and N is the total
number of nonmass mammograms in the training or validation
set and Pnegative is the required number of patches to be
randomly selected from each of the nonmass mammograms.
Table 1 provides the details of the patches extracted from the
two datasets.

2.3 CNN Architectures

For patch classification, we evaluated three popular, widely used
CNN architectures (VGG16, ResNet50, and InceptionV3) that
have already proven to be excellent for image classifications
using the ImageNet dataset, which we use for transfer learning
from natural images to digitized and digital mammograms.

2.3.1 VGG16

The VGG38 network is the contribution from the Visual
Geometry Group, University of Oxford, and consists of very
small convolutional filters (3 × 3) with a depth of 16 to 19
weight layers, resulting in a simple architecture. In this work,
the VGG16 is used; it consists of 13 convolutional layers

Fig. 1 The proposed framework for automated detection of masses in mammograms, where the first
block shows the patch extraction strategy using sliding window for negative (nonmass candidates)
and positive (mass candidates) mammograms, followed by CNN training in block 2 to obtain a trained
model. The third block shows the patch extraction from a test image followed by patch classification
using the trained model (shown in block 4). The block 5 shows the MPM and the detection on the original
image (with the green bounding box).
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and 2 fully connected or dense layers, followed by an output
dense layer with a softmax activation function. There are also
five max pool layers in the network.

2.3.2 ResNet50

The ResNet5039 architecture consists of convolutional layers,
pooling layers, and multiple residual layers, each containing
several bottleneck blocks: a stack of three convolutional layers
followed by batch normalization (BN) layers. The ResNet50
structure has four residual layers, each comprising 3, 4, 6,
and 3 bottleneck blocks from bottom to top, followed by a dense
layer and the output layer with softmax activation function.
In total, there are 179 layers in the ResNet50 architecture.

2.3.3 InceptionV3

The InceptionV340 model has been developed by Google and is
also known as GoogleNet. The computational cost and memory
requirement of the Inception network is much lower than VGG
and ResNet50, which makes it a prominent network to be used
in Big Data scenarios. The Inception network consists of a col-
lection of Inception modules, each of which uses sets of 3 × 3
kernels to represent larger kernels in a computationally efficient
manner. The network implemented here has five convolutional
layers, each followed by a BN layer, 2 pooling layers, and
11 inception modules.

2.4 CNN Training

The CNNs described above are initially trained on the ImageNet
dataset with input dimensions 224 × 224 × 3, where the three
dimensions represent red, green, and blue color channels. Since
extracted patches from mammograms contain only one channel
(gray level), each patch (224 × 224 × 1) has been replicated onto
the three-color channels to make the input patches compatible
with the input of the pretrained CNNs. To train a CNN, prepro-
cessing or intensity normalization is an important step. In this
work, as part of preprocessing, a zero mean normalization is
applied based on global contrast normalization (GCN), as
described by Chougrad et al.33

For CNN training, the dataset is split into training and val-
idation sets. The training set is used to train the network and
update its weights, while the validation set is used to measure
how well the trained CNN is performing after each epoch.
An epoch here describes the number of times the algorithm

processes the entire dataset. Further, data augmentation is used
to generate more samples from already existing training data.
In this work, the negative and positive patches are augmented
on-the-fly using horizontal flipping, rotation of up to 30 deg,
and rescaling by a factor chosen between 0.75 and 1.25, as
commonly used in the literature.24,25,31,33

We first analyze the performance of the different CNNs for
classifying mass and nonmass region in the CBIS-DDSM data-
set. The optimizer used is Adam41 and the batch size is 128 (for a
GPU of 12 GB). Early stopping is used on validation loss and is
set to 10 epochs. For the random weight initialization, the CNNs
are trained for 100 epochs (maximum) using a learning rate of
10−3. Further, the extent of transfer learning is analyzed by
transferring the domain from natural images to DDSMs. This
is carried out using the pretrained ImageNet weights to initialize
the CNNs and fine-tune the CNN for 100 epochs (maximum)
using a learning rate of 10−6. A higher learning rate is used
while training the models initialized using randoms weights
because training the CNN from scratch would require more
time to learn the features pertaining to the images being ana-
lyzed. By contrast, when the CNN is initialized using pretrained
weights (where the model has already been trained on millions
of images), the features learned during initial training are sen-
sitive to the extent of training, so a smaller learning rate is used
to preserve pretrained features when fine-tuned.

Computations were performed on a Linux workstation with
12 CPU cores and a NVIDIA TitanX Pascal GPU with 12GB
memory using Keras-2 library with Tensorflow as the backend.

2.5 Mass Detection on INbreast

The best performing CNN model is subsequently fine-tuned to
transfer the feature domain from DDSM to FFDMs in the
INbreast dataset. After fine-tuning the CNN weights using
the INbreast training and validation dataset (using a learning
rate of 10−6), mass detection is performed in a fully automated
manner without any human intervention. This is achieved using
the following steps (see blocks 3 to 5 in Fig. 1):

Step 1. First, all the possible patches are extracted from each
image using the sliding window approach.

Step 2. The patches are analyzed using the trained CNN to
obtain the mass probability of the given patch. Patches
are then used to reconstruct the image and generate
the MPM using the linear interpolation of the predicted
probabilities.

Table 1 Data description: pos refers to positives (masses) and neg to negatives (nonmasses).

Dataset Splits

Cases Images Patches

StridePos Neg Pos (mass) Neg Pos Neg

CBIS-DDSM Train 553 — 985 (1055) — 25979 25979 56

Validation 138 — 246 (263) — 6210 6210 56

Test 201 — 361 (378) — 8694 8694 56

INbreast Train 30 35 66 (68) 191 2020 2101 56

Validation 10 11 20 (21) 61 539 549 56

Test 10 12 21 (23) 51 882 918 56
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Step 3. The MPM is then thresholded at different probabil-
ity levels. This step results in the creation of different
regions (each region represents a probable mass) in the
mammogram such that each pixel in those regions has
the probability greater than the threshold value.

Step 4. A bounding box is created to enclose each probable
region using connected component analysis. A mass
is considered detected if the intersection over union
(IoU) between the bounding box and the annotated
ground truth is greater than 0.2, as suggested in earlier
works.20,24,42,43

2.6 Evaluation Metric

The evaluation metrics used in this work are (a) the testing accu-
racy of the model, (b) the area under the receiver operating curve
Az, and (c) FROC curve. The FROC curve is used to evaluate the
performance of the detection tool on the INbreast dataset and is
plotted between the fraction of correctly identified lesions as
TPR and the number of FPI for all decision thresholds. The
TPR is evaluated as μ� σ, where μ and σ refer to the mean
and standard deviation, respectively.

3 Experimental Results
This section presents the different training and transfer learning
experiments performed to evaluate the CNN models. Note that,
in all cases, the original resolution of the processed DICOM
mammograms is used. A patch-level dataset is generated con-
taining patches of size 224 × 224 pixels extracted from the
original mammograms and is used as the input for the CNNs.
We first transfer the domain of convolutional features from natu-
ral images to DDSMs. This is achieved by training the CNNs on
the CBIS-DDSM dataset. Later, the trained CBIS-DDSM net-
work is fine-tuned on the INbreast dataset containing fully dig-
ital mammograms.

In all experiments, the input patches for training the CNN are
generated using a stride of 56 × 56 pixels. The stride value is
selected to obtain a trade-off between the computational require-
ments and the number of training samples. In the following
experiments, a total of ∼65;000 patches for CBIS-DDSM and
∼4500 patches for the INbreast dataset are used (see Table 1).

Experiment #1: The training for each of the three CNNs pre-
viously described, i.e., VGG16, ResNet50, and InceptionV3,
is performed on the CBIS-DDSM dataset using the pretrained
weights obtained from the ImageNet database. This initializa-
tion is compared against the randomly initialized CNNs for clas-
sifying masses. To demonstrate the potential of transfer learning
for mass classification, the CNN training was repeated multiple
times (owing to the randomness of the training procedure).

Table 2 compares the results between the random and
ImageNet weight initialization. Note that, in all cases, the ini-
tialization with ImageNet weights obtained a better accuracy
compared with random initialization, and InceptionV3 CNN
obtained the highest testing accuracy 84.16%� 0.19, and Az
of 0.93� 0.01. Moreover, as shown in Fig. 2, the randomly
initialized CNN required a larger number of epochs to converge
than the pretrained InceptionV3, demonstrating the benefits of
pretraining on ImageNet.

The obtained results show that the difference in performance
(testing accuracy) of the pretrained InceptionV3 with pretrained
ResNet50 and VGG16, respectively, was statistically significant
(p ≪ 0.01). Also, for each CNN, the difference in performance

between the random and ImageNet initialization was found to be
statistically significant (p ≪ 0.01). For the rest of the paper, all
experiments are performed using the pretrained InceptionV3
CNN model, which provides the best results on the CBIS-
DDSM dataset.

Experiment #2: Since both the INbreast and CBIS-DDSM
are mammography datasets, with the only difference being the
mode of acquisition (scanned films and fully digital mammo-
grams), the feature space of the CNN for one is very likely
to be relevant to the other dataset. So, in this experiment, we
fine-tune (using 10−6 learning rate) the best model obtained
from Exp #1 on the INbreast dataset, i.e., the model pretrained
on ImageNet dataset and fine-tuned on CBIS-DDSM. Here, the
fivefold cross-validation strategy is used to analyze the perfor-
mance of the network on the whole INbreast dataset.

Table 3 shows the impact of transfer learning on InceptionV3
CNN. The results indicate that, using the transfer learning
between the images of similar domains (ImageNet →
CBIS-DDSM → INbreast), the testing accuracy is improved
to 88.86%� 2.96 compared with that obtained with the data-
base of natural images (ImageNet → INbreast).

Experiment #3: In the third experiment, we use the best
model obtained from Exp #2, i.e., ImageNet → CBIS-
DDSM → INbreast, to detect the masses in full mammograms

Fig. 2 Validation loss for the random and ImageNet initialization of
InceptionV3.

Table 2 Classification performance (testing accuracy) for mass and
nonmass regions in CBIS-DDSM dataset for VGG16, ResNet50, and
InceptionV3, where μ and σ refer to the mean and standard deviation,
respectively, for five independent training results.

Model Pretrained
Time per
epoch (s)

Testing
accuracy (μ� σ) Az

VGG16 No 518 82.39%� 0.52 0.90� 0.01

Yes 465 83.69%� 0.24 0.92� 0.01

Resnet50 No 483 82.30%� 0.70 0.91� 0.01

Yes 438 83.69%� 0.15 0.92� 0.01

InceptionV3 No 338 82.10%� 0.58 0.90� 0.01

Yes 310 84.16%� 0.19 0.93� 0.01
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in an automated manner without any human intervention. Here,
the full mammogram is divided into small patches using the slid-
ing window approach with a stride of 56 × 56. The trained
model is then used to classify these patches into mass and non-
mass regions and generate the MPM images (see Fig. 1). The
mass detection is then performed following the methodology
described in steps 3 and 4 in Sec. 2.5.

Mass detection is performed on the INbreast dataset using a
fivefold cross validation strategy to analyze the entire dataset.
The detection performance on the full INbreast dataset is
analyzed using FROC curves, as shown in Fig. 3, where the
upper and lower bounds are presented in 95% confidence
interval. It is observed that for the same evaluation measure
of IoU ≥0.2, the performance of CNN is substantially higher
when the transfer learning is performed between the images of
similar domains (i.e., ImageNet → CBIS-DDSM → INbreast)
with TPR ¼ 0.98� 0.02 at 1.67 FPI (Fig. 3), compared with
that obtained when using database of natural images
(ImageNet → INbreast) with TPR ¼ 0.91� 0.07 at 2.1 FPI
(Fig. 3).

Figure 4 illustrates examples of mass detection on a few
testing images (unseen during training) performed using the best
model obtained using CBIS-DDSM → INbreast fine-tuning.

Figures 4(a)–4(h) show examples of correctly detected
masses in CC and MLO views with variable lesion sizes and
contrasts. In addition, Figs. 4(i) and 4(j) show examples of
false positive (FP) detections (red squares), where dense tissue
areas mimic the appearance of lesion-like structures and a false
positive in the pectoral region. Note that the proposed method is

unable to detect only 2 masses (very small size) out of the total
of 112 lesions within the INbreast dataset. The two undetected
masses are shown in Figs. 4(k) and 4(l).

To analyze the performance across different mass sizes, we
have divided the lesions into three categories (following radio-
logical criteria), i.e., small lesions (area <1 cm2), medium size
lesions (1 cm2 < area< 4 cm2), and large lesions (area <4 cm2),
and analyzed the performance of the proposed detection frame-
work. This is shown in Fig. 5. The results show that the small
lesions have a TPR of 0.89 at 0.5 FPI, while the medium
and large lesions have the same TPR of 0.97 at 0.5 FPI.

Table 3 Testing accuracy for classifying mass and nonmass regions in INbreast dataset, where μ and σ refer to the mean and standard deviation,
respectively, for fivefold cross validation.

Model Pretrained weight Fine-tuning on INbreast Testing accuracy (μ� σ) Training cascade

InceptionV3 ImageNet Yes 85.29%� 4.29 ImageNet → INbreast

InceptionV3 CBIS-DDSM Yes 88.86%� 2.96 ImageNet → CBIS-DDSM → INbreast

Fig. 3 FROC curve for mass detection on INbreast using transfer
learning: testing performance of InceptionV3 pretrained on CBIS-
DDSM and fine-tuned on INbreast dataset is plotted using fivefold
cross-validation strategy. The operating points from the literature
are shown for direct comparison with the proposed framework.

Fig. 4 Mass detection examples in INbreast using the ImageNet →
CBIS-DDSM → Inbreast strategy. (a)–(h) Correct detections are illus-
trated, (i)–(j) FP cases, and (k)–(l) missed mass cases. Blue contours
represent the ground truth (masses), green bounding boxes corre-
spond to the detection of the mass (TP), and red squares show
the FP.
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Consequently, the detection performance is inferior for small
lesions below 1 cm2.

4 Discussion
In this paper, we developed an end-to-end mass detection
framework using a CNN-based patch classification approach.
To generalize the applicability of the proposed framework, we
analyzed three different CNN architectures and employed two
public datasets containing digitized and digital mammograms.

The interesting aspect of the transfer learning is to reuse the
CNN model pretrained for a completely different problem and
obtain better results using less complex algorithms. In this
regard, first, we examined the benefit of transfer learning
between two entirely different image domains, i.e., natural
images and mammograms. In this context, we compared the per-
formance of CNNs with randomly initialized weights versus
pretrained (ImageNet) weight initialization for the purpose of
mass classification in mammograms. As shown in Table 2,
despite the differences in the two image domains, the pretrained
CNNs performed substantially better than the randomly initial-
ized CNNs. These results gave confidence on the applicability
of transfer learning in the context of mammograms. This also
supported the fact that the pretrained CNN is able to efficiently
use the information of universal features and patterns learned
from the ImageNet.

In CNN training, the use of a smaller stride did not increase
the variability in the data, so we empirically found a good stride
value to perform training (56 × 56). During the testing, mass
probabilities were calculated on each patch and then used to
obtain the MPM for the whole mammogram. To analyze the per-
formance of network with respect to the stride used, we tried
varying patch strides while testing. This step demanded
a trade-off between the accuracy and the computational cost.
Very large strides resulted in a poorer localized predictions,
whereas very small strides required very high computational
cost. For the testing process, we extracted the patches using
strides of 56 × 56. We also tried a higher detection threshold
(IoU ≥ 0.5), which resulted in TPR ¼ 0.82� 0.2 at 1.7 FPI.

The proposed framework produces the best TPR of 0.98�
0.02 at 1.67 FPI and a TPR of 0.92� 0.04 at 0.5 FPI. The detec-
tion performance of the proposed framework is superior in terms
of TPR when compared with other state-of-the-art methods

using the INbreast dataset (Table 4 and in Fig. 3) on various
other operating points.

For the purpose of preprocessing, two different approaches
were investigated: (1) we scaled the image intensities between
0-255 before extracting the patches and (2) we applied GCN
normalization to obtain the zero mean over the input patches.
Both the approaches showed different impact on the fine-tuning
process, with the GCN approach showing higher performance
compared with the scaling approach. Thus, the results in
Exp#2 and 3 were performed using GCN preprocessing.
Further, we investigated different stride values, which resulted
in a smaller or larger number of patches than those presented in
Sec. 3. Increasing the stride also increases the similarity in the
input data (owing to higher overlap), and vice-versa. It was
observed that CNNs performed better when trained with patches
with more variability in spite of a small amount of input data
compared with the number of CNN parameters to be trained.
This behavior could be explained by the use of data augmenta-
tion at every epoch during training, which increases the size of
the data by increasing variations in the input data.

There are some important things to note about training the
CNN: (1) we tried to fine-tune the CNNs by training only
the last few layers (also referred to as shallow tuning), as dis-
cussed in the literature,31,33 with no significant improvement in
the classification results on the CBIS-DDSM and INbreast
dataset.44 So, we finally fine-tuned the CNNs by training all
the layers at a small learning rate. (2) It was also observed
that the random weight initialization took a larger number of
epochs to converge than initializing using ImageNet weights.

5 Conclusions
In this work, a transfer learning approach is used for automated
mass detection in mammograms. For this purpose, widely used
CNN models are analyzed for the detection of breast masses
using two public mammogram databases (CBIS-DDSM and
INbreast). The methodology presented uses regions of an
image (patches) to train the CNNs. The results of training the
CNN on CBIS-DDSM demonstrated that the feature domain
of the CNN can be well adapted from natural images to classify
masses in mammograms. Thereafter, it has been shown that the

Fig. 5 FROC curve showing the performance of the proposed frame-
work on INbreast dataset with different lesion sizes.

Table 4 Comparison between this work and results published in the
literature using INbreast dataset, where μ and σ refer to the mean and
standard deviation, respectively, for fivefold cross validation.

Methods TPR (μ� σ) at FPI # Images (INbreast)

Kozegar et al.20 0.87 at 3.67 107/410

Akselrod-Ballin et al.25 0.93 at 0.56 100/410

Dhungel et al.24 0.95� 0.02 at 5 410

Ribli et al.26 0.90 at 0.3 Malignant only

Proposed framework 0.87� 0.07 at 0.25 410

0.90� 0.06 at 0.44

0.93� 0.04 at 0.58

0.95� 0.04 at 0.79

0.98� 0.02 at 1.67
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performance of CNN (in terms of mass detection) can be sub-
stantially enhanced using the transfer learning from the images
of similar domain (i.e., mammograms), compared with the
images of different domains (natural images). The automated
framework developed in the work (using InceptionV3) has
shown to obtain the best results based on TPR and FPI, outper-
forming current state-of-the-art approaches using the same
INbreast dataset.

In this work, the patch classification is based on the classi-
fication of the central pixel. In future work, analysis of whether
training the CNN using the volume (i.e., no. of pixels) of tumour
within each patch could increase the accuracy of the prediction
will be conducted. Further, the developed methodology will be
extended for the segmentation of masses in mammograms.
Also, the impact of domain adaptation using different FFDMs
datasets (i.e., from different vendors) will be investigated.
Finally, future work will also focus on the use of transfer learning
for image domain adaptation from 2-D mammography to 3-D
breast tomosynthesis.
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