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1 Introduction
There is enormous current interest in the use of artificial intel-
ligence (AI) in acquiring and interpreting medical images. As an
example, the 2019 SPIE Medical Imaging conference was, as
usual, divided into nine tracks representing different imaging
technologies or clinical applications, but roughly half of all pre-
sentations, across all nine tracks, involved some form of AI.
Evidently the current view is that AI is the solution to virtually
any problem in imaging.

The same sentiment seems to run through almost all applica-
tions of AI. The details of data acquisition and preprocessing are
dismissed as “domain knowledge,” of no direct relevance to the
inference. Given some number of exemplars of the data (often
very few), it is tacitly assumed that a neural network or other AI-
based inference engine can be trained to perform the inference
task “better” in some sense than a more conventional method that
does use domain knowledge. The justification of this assumption,
if any is given, seldom seems convincing to this author.

The objective of this commentary is to survey some basic
results from image science that may be useful in designing and
validating AI-based imaging systems. Throughout, we use the
term AI broadly, to include machine learning (ML), computer-
aided diagnosis (CAD), deep learning (DL), generative adver-
sarial networks (GANs), and other such methods.

For relevant background in imaging, see Foundations of
Image Science1 or any paper containing the acronym OAIQ
(objective assessment of image quality).2–6 For recent papers
on AI in imaging, see the special issue of this journal on the
topic7 or recent Proceedings of the SPIE Medical Imaging
Conference. For an enthusiastic review of deep learning in medi-
cal imaging, see Greenspan et al.8 and the papers that follow it in
another special issue. A comprehensive but readable book on
deep learning is Goodfellow et al.9

2 Key Concepts from Image Science

2.1 Objects and Images

A fundamental error in image analysis is failing to distinguish
objects and images. For example, one might segment an image
with some algorithm and leap to the conclusion that the actual

boundary of the object has been determined. In fact, the actual
boundary may not even be defined unless the object is a geo-
metric solid. For example, the interface between a tumor and
surrounding normal tissue might be best described as a fractal
surface, with an enclosed volume that depends on the measure-
ment scale. More commonly, the density of cancer cells might
fall off gradually rather than abruptly as one moves away from
the center of a tumor; setting a threshold to define the boundary
of the image of the tumor is again to ignore the distinction
between object and image.

Similarly, one might calculate texture features of an image
and infer erroneously that they reflect spatial inhomogeneities
of the underlying object.10 In tomographic imaging modalities,
in particular, image texture can often be the result of noise in
the raw projection data as modified by the reconstruction
algorithm.11,12

Another common error in image-quality assessment is to
assume, implicitly or explicitly, that a good image is one that
accurately mimics the actual object, and hence one should com-
pute the mean-square error (MSE) between an object and its
image. There are many problems with this approach. The most
fundamental one is that a digital image is a finite set of numbers
on some grid, but the object being imaged is a function of
continuous variables, such as fðx; y; zÞ. If the object function
does not go to infinity anywhere and the object fits into a finite
box (such as a CT scanner), then the function fðx; y; zÞ can be
treated as a vector f in a Hilbert space. In a mathematical sense,
therefore, the object and image are vectors in different vector
spaces, so their difference is not defined.

There are three ways to circumvent this problem: (a) sample
the object function on the image grid; (b) interpolate the image
so it better approximates the continuous object; or (c) ignore
the problem and do a simulation where object and image are
on the same grid.

The usual choice is (c), of course, but this still leaves another
problem: How do we interpret the term “mean” in mean-square
error? Again there are three options: (a) perform an average over
pixels for one image of one (discrete) object; (b) perform an
average over multiple realizations of a noisy image for a single
object; or (c) average over both image noise and some ensemble
of objects. Hence there are nine possible definitions of MSE;
examples of all nine can be found in the literature. No justifi-
cation for any of the choices is known to the author.

For AI applications to diagnostic medical imaging, the usual
procedure is to acquire a labeled set of clinical images and use
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them to train an AI system of some kind. In this approach, there
is apparently no need to know what the true underlying object is.
A problem with clinical images, however, is that the true diag-
nosis might be unknown or ambiguous, so simulated images are
often used. In this case it is critical that the simulations be real-
istic, which means that both the object and the imaging system
must be simulated accurately. This requirement, however, mil-
itates against the use of voxels (volume elements) in the object
space. A human body is not a voxel array. The cardinal sin of
image simulation is to use voxels for the object and make them
comparable in size to the image pixels.

2.2 Tasks and Observers

The difficulties with MSE and other fidelity measures can be
avoided with task-based assessment of image quality, a concept
that should be familiar to readers of this journal. In brief, this
approach to image-quality assessment requires specification of a
task (the information desired from an image); the observer (how
the task is performed), and the statistical properties of the object
and image data (which limit the task performance). The observer
in this paradigm can be a human, a computer program, a neural
network or a mathematical construct called the ideal observer,
which by definition achieves the best possible task performance
for the specified task and statistical properties.

Much of the theory needed to perform task-based assessment
of image quality was originally developed in the context
of radar, where the task is implicit in the acronym: RAdio
Detection And Ranging. In a simple radar system, a short pulse
of microwave energy is generated and beamed into a medium
that might contain targets of interest such as airplanes. If the
target reflects sufficient pulse energy its return signal can be
detected and the range to the target can be estimated from the
round-trip transit time. The image data needed to perform the
task are obtained by using multiple microwave pulses while
the beam is scanned.

Receiver Operating Characteristic (ROC) curves were devel-
oped during World War II to quantify the detection performance
of radar systems, and they were published in the open literature
in the following decade.13,14 Detection is performed by comput-
ing some functional of the radar data (the output of a matched
filter, for example) and comparing it to a threshold. As most
readers will know, an ROC curve is a plot of the probability
of detection of a signal that is actually present versus the prob-
ability of a false alarm as the threshold is varied.

Given the ROC curve, there are many choices for a scalar
figure of merit for detection performance. A common choice
is area under the ROC curve, but another possibility is the prob-
ability of detection at a specific false-alarm rate. It is easy to see,
however, that these pure ROC metrics are inadequate, even for
the simple radar system described above. Radar requires range
estimation as well as detection, and there may be a large and
unknown number of targets in the field of view. In addition,
modern radar systems can use Doppler methods to estimate the
speed of each target, and they can use features of each return
signal to distinguish different types of target.

Perhaps the earliest paper on ROC methods in medical im-
aging was by Lee Lusted in 1971.15 Lusted considered human
observers of medical images and only basic ROC detection
methodology without additional estimation tasks. The meaning
and use of area under an ROC curve was clarified by Hanley
and McNeil,16 and maximum-likelihood methods were devised

by Dorfman and Alf17 for estimating ROC metrics and their
expected errors.

Around 1990 some of the deficiencies of simple ROC, nota-
bly the absence of any reference to estimation tasks, were begin-
ning to be recognized, leading to many variants of the original
ROC curve. In 2004, Chakraborty and Berbaum18 summarized
and compared a variety of methods of allowing an unknown
number of targets per image and estimating the location of each.
A major tool that emerged from these endeavors was the locali-
zation ROC (LROC) curve. Khurd and Gindi19 developed the
mathematics of LROC and derived an ideal observer for
estimating the area under it. Eric Clarkson expanded this work
to include more general estimation tasks.20 He proposed an
ROC-like curve, which he called EROC (estimation ROC),
and he derived the corresponding ideal observer in that case.
Subsequent work in many laboratories expanded the concepts
of ROC and ideal observer much further and considered random
backgrounds similar to textures observed in medical imaging.

ROC methods are now beginning to be applied to AI-based
analysis of medical images, but it seems that they mainly
consider simple detection-only task and original-recipe ROC.
It is this author’s opinion that the AI community would benefit
greatly from reading the ROC literature of the last quarter-
century and applying more modern ROC-like methodology to
AI-based imaging systems.

2.3 Linear and Nonlinear Imaging Systems

From the considerations in Sec. 2.1, an image scientist (or any
scientist who uses images) is well advised to treat an object as a
function of continuous variables (which it is) and the resultant
image as a discrete set of numbers (which it usually is, but see
Sec. 2.9). In this viewpoint the imaging system is referred to as a
continuous-to-discrete (CD) operator because it maps a function
of continuous variables (equivalently, a Hilbert-space vector) to
a discrete set of measurements.

The CD imaging operator, which we will denote asO, can be
either linear or nonlinear. By definition, a linear imaging
operator must satisfy O½αf1 þ βf2� ¼ αO½f1� þ βO½f2�, where
f1 and f2 are two different object vectors and α and β are scalar
constants. In words, for a linear imaging operator, the image of
a sum of two objects is the sum of the two images.

There are two forms of nonlinearity in imaging, which
we can distinguish as intrinsic and extrinsic nonlinearities.
Intrinsic nonlinearity is inherent in the imaging process. For
example, x-rays are exponentially attenuated as they traverse
tissue in CT, and in fluorescence lifetime imaging, the desired
information—the lifetime—is a nonlinear functional of the
fluorescence signal. In PET, SPECT and optical fluorescence
imaging, on the other hand, the objects are concentrations of
some radiotracer or fluorophore, which are directly observed in
the imaging process, so intrinsic nonlinearity is not important.

Extrinsic nonlinearity arises from data processing after data
acquisition. For example, modern tomographic imaging systems
such as PET and SPECToften use iterative nonlinear algorithms
to obtain an image. These algorithms are used to search for sol-
utions that are consistent with the data in some sense and also
satisfy certain physical constraints; for example, a concentration
must be nonnegative.

For examples of the mathematical forms of both intrinsic and
extrinsic nonlinearities, see Sec. 7.5 in Foundations of Image
Science.1 It is certainly clear that deep learning and other AI
approaches can learn nonlinear functionals of training images,
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but it does not appear that any work in this field has taken
advantage of these known functional forms.

2.4 Null Functions and Nuisance Parameters

Two features of real imaging systems that are almost always
ignored, in AI and other imaging applications, are null functions
and nuisance parameters, but these features can be the main
determinants of the performance of the imaging system, whether
that performance is determined by AI or old-fashioned methods.

In brief, a null function (often called a ghost object) is a com-
ponent of the object that makes no contribution to the image.
A nuisance parameter, on the other hand, does contribute to
the image data but not to performance of the task for which
the image was acquired.

Almost all biomedical imaging systems exhibit null func-
tions. One way to understand this point is to consider the input
and output (i.e., the domain and range) of the operator O. The
input is a function in a Hilbert space, hence an infinite-dimen-
sional vector. The output is an array of numbers, or an operator
with rank no more than the number of measurements. Thus
an infinite number of object functions can correspond to any
particular data array, and there must be an infinite-dimensional
null space.

If O is linear, then a method called singular-value decompo-
sition (SVD), can be used to decompose any object into
measurement and null functions: f ¼ fmeas þ fnull where Of ¼
Ofmeas and Ofnull ¼ 0. See Foundations of Image Science,1

Chapters 1 and 7, for details.
In some cases null functions are a form of aliasing. For many

readers the term “aliasing”might conjure up the related concepts
of bandlimited functions, Nyquist sampling and the Whitaker–
Shannon sampling theorem, but for tomographic imaging more
general approaches are needed.

The Whitaker–Shannon theorem requires that the functions
being sampled must be bandlimited, but that means that the
functions cannot also be spatially limited. To the contrary,
objects considered in medical imaging must fit into the scanner,
so they are spacelimited. This means that the 3D object can be
represented exactly by a Fourier expansion, albeit with an appa-
rently ridiculous number of terms. From this Fourier expansion
we can form an even larger matrix, called the Fourier crosstalk
matrix (FCM), which is an exact description of an arbitrary lin-
ear CD system with finite support. From the FCM we can com-
pute expressions for task-based image quality, null functions,
and practical reconstruction algorithms.

In tomographic systems, nuisance parameters arise most
commonly from incorrect modeling of the system operator.
In a collimator-based SPECT system, for example, penetration
of gamma rays through the collimator septa might be a nuisance.
Similarly, in PET or SPECT, failure to account for gamma
rays scattered in the patient’s body can lead to long tails on the
reconstructed point-spread function.

The remedy for nuisance parameters in tomography is almost
always better system modeling.

2.5 Estimation and Estimability

As noted in Sec. 2.2, the tasks for imaging systems are estima-
tion, classification, or a combination of the two. In this section,
we consider the role of null functions specifically for estima-
tion tasks.

By way of example, consider the common task of estimating
the amount of a tracer in some defined volume of a digital
image, obtained, say, by PET or SPECT. At first blush this
sounds trivial. One simply sums the reconstructed image voxel
values over the selected region of interest (ROI), which often
approximates a sphere, a cube or even a single voxel. When this
method is attempted in practice, however, the accuracy of the
estimation is often very poor. Many researchers explain that
the errors are due to “partial-volume effects,” which they then
attempt to correct. The author of this opinion has no idea what
a partial-volume effect is; it seems to have something to do with
voxels in the object, but no such voxels exist.

The fundamental problem in this example is that the desired
integral of the tracer distribution is not an estimable parameter.
An estimable parameter is one for which there exists an
unbiased estimate for all true values of the parameter. Bias is
defined as the average (not mean-square) deviation of an esti-
mate from the true value of the parameter over multiple trials. In
imaging, a parameter of the object is a scalar-valued functional
of the object, denoted ΘðfÞ; this parameter is estimable for all f
with a certain imaging system only if its value is independent of
the null functions of the object for this system.

2.6 Noise and Task Performance

A fundamental misconception in much of the imaging literature
is that noise in an image can be quantified by the variance at a
point in the image. This statement would be valid for stationary,
white, Gaussian noise, but the qualifiers rule out virtually
all images. For tomographic images reconstructed with linear
algorithms such as filtered back-projection, the noise may be
approximately Gaussian by dint of the central-limit theorem, but
it is far from stationary (independent of position in the image)
or white (independent of spatial frequency). For nonlinear
reconstruction algorithms such as MLEM (maximum-likelihood
expectation-maximization), even the Gaussian property is lost
because of the positivity constraint in the algorithm; log-normal
statistics are common when images are reconstructed with the
MLEM algorithm or its variants.

Correlations between random fluctuations at different points
in an image play a critical role in determining task-based
image quality in medical images for both human observers and
machine observers. There are models of the human visual sys-
tem that predict human task performance accurately, and there
are many ways to compute the performance of the ideal
observer. In these endeavors, the most common way of speci-
fying the noise is in terms of covariance matrices.

There has been much less attention to trying to predict the
task performance of AI systems for imaging applications. We
note, however, that the AI performance depends not only on the
task and noise properties of the data, but also on properties of
the training data. There is a widespread intuition in the AI field
that adding noise to the training data is equivalent to increasing
the number of training samples. There is some anecdotal evi-
dence of a small improvement in point variance by this so-called
data-enrichment, but the author knows of no case where task
performance has been improved.

A related point goes back to our discussion of objects and
images in Sec. 2.1. If the objective of an AI system is deblurring,
it would seem to be beneficial to train the system on high-
resolution objects rather than blurred images. Indeed, a reason-
able conjecture is that it is impossible for an AI system to
recover fine details or high spatial frequencies that are not
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represented in the training data. The author eagerly awaits a
disproof of this conjecture.

2.7 Random Variables and Random Processes

We have emphasized that the objects of interest in real-world
imaging are spatiotemporal functions, not arrays of voxels.
Specifically in biomedical imaging, the functions are indicative
of physiological or pathological processes in a patient. Though
we hope to learn something about the patient by imaging meth-
ods, we can never hope to recover the functions in detail, so they
must be described by the language of probability theory. We
refer to the functions of medical or biological interest as physio-
logical random processes (PRPs). Here the word “random”means
simply “unpredictable”; a common synonym is “stochastic.”

In elementary probability theory, the statistical properties of a
continuous-valued scalar random variable are usually specified
by a probability density function (PDF), but the same informa-
tion can be conveyed by the characteristic function (ChFcn),
which is the one-dimensional Fourier transform of the PDF.

The ChFcn formalism can also be applied to finite-dimen-
sional random vectors such as images. If a random vector has
M components (think detector pixels), then it is straightforward
to define an M-dimensional PDF or the M-dimensional Fourier
transform of the PDF, again referred to as the ChFcn.

Random processes are functions of continuous variables,
hence vectors in an infinite-dimensional space. In this case it
is very difficult to define a properly normalized PDF, but still
straightforward to define its infinite-dimensional Fourier trans-
form, which we now call a characteristic functional (ChFcnal).

Remarkably, there are large families of random processes for
which the analytic form of the ChFcnal is known, generally with
some freedom to tailor them to specific applications. Once this
specialized ChFcnal is known, it is straightforward to compute
finite-dimensional ChFcns for image data or for specific features
of interest.

For more details on ChFcnals, see Foundations of Image
Science1 or the recent review by Clarkson and Barrett.21 An
extensive treatment of PRPs and ChFcnals in precision cancer
therapy is given by Henscheid et al.22

2.8 Efficacy and Risk

In medicine, the use of ROC curves and their variants such as
LROC and EROC is related to diagnostic tasks. There is also a
burgeoning interest in ROC-like curves for therapy. The therapy
operating characteristic (TOC) curve, a term first coined by
Metz23 in the context of radiation therapy, is a plot of probability
of tumor control versus the probability of some critical adverse
side effect as the radiation dose is varied. In the past decade, the
TOC curve has been used for many radiation-therapy applica-
tions with both external and internal radiation sources, and it has
been extended to chemotherapy.24

These ROC-like curves are all plots of the probability of a
favorable outcome (e.g., tumor detection, tumor control) versus
the probability of an unfavorable outcome (false alarm, damage
to a normal organ) as something (detection threshold, radiation
dose) is varied. In each case the vertical axis can be called an
efficacy, and the horizontal axis is a risk to the patient (risk of
missing a tumor or damaging a normal tissue).

Additional kinds of ROC-like curves can be generated by
considering more general forms of efficacy and new forms of
patient risk. The roadmap for this kind of investigation was

developed by Fryback and Thornbury,25,26 who identified six
stages of efficacy:

1. technical capacity,

2. diagnostic accuracy,

3. diagnostic impact,

4. therapeutic impact,

5. patient outcomes, and

6. societal outcomes.

For more details on these forms of efficacy, see the extensive
review article on task-based measures of image quality and their
relation to radiation dose and patient risk.27 This reference also
shows how different levels of efficacy can lead to new image-
quality metrics and new kinds or ROC-like curves.

All of these approaches to efficacy-based assessment of
image quality can also be applied to AI systems. At the least,
considering new forms of efficacy and corresponding new tasks
might help to move the AI world away the search for a universal
AI inference engine and into the direction of solving meaningful
medical problems with realistic data.

2.9 Photon Counting and Photon Processing

The picture painted so far in Sec. 2 is that task-based assessment
of image quality might ultimately be limited by null functions.
We argued that real objects of biomedical interest are vectors in
an infinite-dimensional space, and real digital images are finite
sets of numbers, hence vectors in a finite-dimensional space.
The difference in dimensionality implies, we asserted, that the
imaging system must have a null space. In this subsection we
explore a possible exception to this assertion.

The historical thread to be traced here begins with the classic
Anger scintillation camera. developed over 60 years ago for im-
aging gamma rays in nuclear medicine – and still in wide use
today. The earliest Anger cameras used a single-crystal sodium
iodide (NaI) scintillator and a hexagonal array of seven photo-
multiplier tubes (PMTs). Each gamma-ray photon that was
absorbed in the NaI produced a flash of light that spread out
and produced signals in all seven PMTs. A capacitor array then
functioned as an analog computer to estimate the x-y coordi-
nates of the scintillation flash. The device was thus a photon-
counting gamma-ray camera with analog estimation of x-y
position of each event.

Inevitably, the analog computer was replaced by a digital
one, the NaI crystal became much larger and the number of
PMTs increased accordingly. Most importantly for this discus-
sion, users saw opportunities to get more and better information
from each scintillation event. New search algorithms and
accurate camera calibration methods allowed researchers at the
University of Arizona to get high-precision maximum-likeli-
hood estimates (MLE) of gamma-ray energy and depth of inter-
action of each gamma-ray photon, as well as improved estimates
of the x-y position of each event.28 To avoid losing this precision
in the data storage, the digital estimates were stored an a list,
where each entry consisted of the four high-precision estimates
(x-y-z-E) for each detected gamma-ray photon, without any
binning. These four estimates are referred to as the attributes
of each photon absorption event. For single-photon imaging
(SPECT) we have four attributes per event, but for coincidence
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imaging in PET with two detectors in play we can add time of
arrival for each gamma ray and get as many as 10 attributes per
positron annihilation.

This storage mode, referred to as list mode, turned out to
have some important practical and theoretical advantages.6,29

There was no loss of information, in the sense of reduced detec-
tor performance, if MLE and listmode storage were used. We
showed in a recent publication27 that MLE/listmode had to
be a component of the ideal dose utilizer, which obtains best
performance for any task in imaging with ionizing radiation.
We refer to image detectors that satisfy these conditions as pho-
ton-processing detectors rather than photon-counting ones.

In simulations of tomographic imaging with alpha or beta
particles, where we can also estimate direction of travel of each
particle, we have demonstrated that the null functions nearly
disappear if we have 4-6 attributes per event.30,31

3 Computational Methods for Image Science
To the unitiated, concepts from image science may seem arcane,
even bewildering. How do we actually compute the performance
of an ideal observer or the null functions of a particular imaging
system? How dowe handle tasks that require detection of a com-
plex signal followed by estimation of some signal parameters?
For any task, how do we assess the statistical significance of
our results?

A good place to start reading about these issues is Barrett and
Myers, Foundations of Image Science,1 especially Chaps. 13
and 14. Chapter 13 covers the basics of statistical decision
theory, with many worked examples, and Chapter 14 applies
these methods to image quality. Later chapters work through
the application of the methods in 13 and 14 to specific imaging
systems, again with worked examples.

Foundations was finalized in 2003, and there have been
many new developmens in computational image science since
then. For example, Foundations placed considerable emphasis
on continuous-to-discrete models of digital imaging systems,
which seemed in 2003 to be the only possible approach. Now
the new field of photon-processing detectors is leading to con-
tinuous-to-continuous (CC) systems with advantages not only in
null functions as in Sec. 2.9, but also in sensitivity and spatial
resolution. For some recent results, see Caucci.32

A long review article on radiation dose and risk for imaging
with ionizing radiation27 provides a general review of methods
of computing image-quality metrics as a function of radiation
dose. This paper also develops several new graphical methods
for depicting the tradeoffs among radiation dose, image quality
and patient risk.

Eric Clarkson and coworkers have developed many novel
uses for Fisher information matrices (FIMs) in image-quality
assessment. The FIM is traditonally used in estimation prob-
lems, but Clarkson showed that it is also useful for approximat-
ing the ideal observer for classification problems.33,34 Another
powerful tool for computing the ideal observer and its task-
based performance is Markov-chain Monte Carlo simulation.35

Finally, a pervasive problem in image-quality assessment is
that inverses of very large matrices may be needed, leading to
a malady called megalopinakophobia (fear of large matrices);
cures for this disease are discussed in Foundations.1

Software for task-based assessment of image quality with
both human and model observers has been developed at
FDA; it can be found on Github at DIDSR/IQmodelo.

4 Maxims and Minims

4.1 Maxims

Here we present some maxims that one should observe in
designing, evaluating and using any medical imaging system,
whether or not it uses AI methodology in any sense.

• Many simulated imaging systems have no null functions;
this means they have no relevance to real systems.

• If you must use MSE, be sure to specify which of the nine
possible definitions you choose. And why.

• In tomography, don’t forget the reconstruction algorithm;
it may control the properties of the image more than the
object does.

• Imaging systems include image detectors; models of
imaging systems must do the same.

• Study nothing; i.e., characterize the null space of your
imaging system.

• Decide what nuisances (parameters) arise in real life, and
how you will deal with them.

• Enumerate all sources of randomness in your problem.
Which dominate?

• Decide on a clinically relevant task.

• Choose the proper operating characteristic for your appli-
cation. Turn it into a scalar figure of merit.

• If you want to solve an inverse problem, concentrate on
the forward problem. Take advantage of everything about
your data that is known from physics and mathematics.

• Embrace OAIQ. Do not substitute fidelity measures or
point statistics for task performance. Why was the image
acquired in the first place?

• OAIQ is inherently stochastic. One image tells you noth-
ing at all. Especially if it has an arrow pointing to a tumor.

4.2 Minims

The term minim is used in many contexts to mean something
very small. In music it is a half note. As a liquid measure a
minim is 1/60th of a dram, which of course means it is 1/20th
of a scruple. In the world of British apothecaries, it serves as
a standard drop. In this paper it is a suggested minimal standard
for designing and evaluating AI-based imaging systems.

• Eschew toy problems. Don’t pretend that some collection
of geometric shapes is a surrogate for a medical image.

• Do a background check. Fine anatomical structure in an
image can be treated as a random background; it should
not be ignored.

• Seek realism. If you are simulating clinical images for
training or testing, do so realistically.

• Don’t use apples to classify oranges. If clinical training
data come from different sources, pay attention to the
properties of the imaging hardware and algorithm at each.

• Be very skeptical of correlations. Is there any physical
mechanism by which expression of a certain gene can
affect a CT scan? The null hypothesis should be that it
cannot.
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• Explore conventional alternatives to machine learning.
If you want to “learn” the Radon transform, for example,
why not read the literature? Hint: it starts in 1917.

• Seek the ideal. Compute the performance of the ideal
observer, or at least a lower bound to it. A good AI system
might beat that lower bound, but if your AI system beats
the IO itself, you are doing something wrong.

5 Conclusions
To answer the question in the title, we might pose the converse:
Can there be a scientific approach to AI in imaging without
image science? To paraphrase Descartes, “Dubito, ergo sum”
(I doubt, therefore I am).

Readers who do not yet share these doubts are invited to
study the two bullet lists above and see which, if any, of the
issues highlighted there can be addressed satisfactorily without
appeal to the theory of image science. Other readers may con-
tribute to developing a scientific approach to AI in imaging by
finding additional items to add to one or both lists.
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