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1 Introduction
With ever-shrinking feature size, the physical characteristics
of optics have stronger impacts on the imaging system. In
particular, the band-limit system causes the output pattern
to be a warped version of the input mask.1 Several resolution
enhancement techniques (RETs) have been developed to
improve the performance of optical lithography.1–3 Optical
proximity correction (OPC) is one of these RETs.4 Its objec-
tive is synthesizing an input mask to deliver a desired output
pattern. Inverse lithography technique (ILT), as an active
approach to OPC, is considered as an economically viable
way to meet various challenges in future technology nodes.
The computational efficiency of ILT is most noteworthy,
especially when handling a large-scale (or full-chip) optimi-
zation problem.

Generally, ILT treats the mask synthesis as an inverse
mathematical problem that aims at minimizing a cost func-
tion for the difference between the output and desired pat-
terns. Various computation techniques have been proposed
to deal with this inverse problem in the literature, such as
the level-set method,5–8 the discrete cosine transform (DCT)-
based method,9 and the gradient-based method.10–15 The
level-set method treats a mask as a sophisticated con-
tinuum,5–8 and consequently, the boundary of the mask is
iteratively evolved according to an optimization algorithm.
The DCT-based method transforms a mask to the frequency
space using a two-dimensional DCT.9 The low frequency
components of the mask are adopted, and the correspond-
ing coefficients are iteratively changed in the optimization
process. As a result, the synthesized mask only possesses
low frequency components and is therefore less complex.
The above two techniques can both result in a smooth
mask contour, while they are both limited in searching
for the whole solution space. The gradient-based method
considers a mask as a raster image constituted by pixels

directly, where it is synthesized pixel-by-pixel in an iterative
direction of the steepest descent, conjugate gradient, and
so on.8,10–15 It is probably the most popular technique in
the literature due to its high flexibility, ease of understanding,
and implementation.

Since the mask is discretized into pixels in ILT, such flex-
ibility often causes the synthesized mask to be a gray-level
image and it may possess small, unwanted block objects,
such as isolated holes, protrusions, and jagged edges, which
in turn are unreachable during the real manufacturing.10–15 To
address these problems, regularization approaches are intro-
duced to guarantee the synthesized mask to be binary and
less complex. In the literature, almost all the regulariza-
tion approaches take the regularization terms as penalty func-
tions incorporated into a cost function with corresponding
weighted parameters10–15 as

FfMg ¼ kΓfMg − Z�k22 þ
Xn
i¼1

λiRiðMÞ: (1)

Here, the operator Γf·g implements the forward mapping
from the input maskM to the output pattern, Z� is the desired
output pattern, and RiðMÞ is the various regularization terms.
Generally, regularization terms can be classified into two
types: one is related to the manufacturability, such as the
quadratic penalty term,11,12 the total variation penalty
term,11,12 and the wavelet penalty term;13,15 the other type is
related to the fabrication process, such as the image slope
term14,16 and the mask error enhancement factor (MEEF).17,18

λi is the weight of the corresponding regularization term
RiðMÞ. It should be noted that λi plays a critical role in the
optimization process; however, how and why values of λi are
chosen is rarely discussed in the literature. From experience,
it is usually initially set to be a constant.10–15
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Here, we take the quadratic penalty term as an example to
illustrate how the weighted parameter λ impacts the optimi-
zation process. In this case, both the lower pattern error and
the mask quadratic error are preferred, where the pattern
error is calculated by kΓfMg − Z�k22 and the mask quadratic
error is equal to the value of the quadratic penalty term
RðMÞ. As shown in Fig. 1, a smaller weighted parameter
λ of this quadratic penalty term results in a rapid convergence
on pattern error. It is observed from Fig. 1(a) that the pattern
error may meet the requirement after 44 iterations where the
mask quadratic error is pretty high at this moment; but it still
needs extra iterations to reduce the mask quadratic error. On
the other hand, a larger λ results in good performance on the
mask quadratic error while causing poor convergence on
the pattern error, as Fig. 1(d) reveals. As shown in Fig. 1,
the convergence of the pattern error and the mask quadratic
error under such a regularization framework is out of syn-
chronization. Notice that a smaller λ will not achieve the
regularization effects, whereas a larger λ may result in a
larger pattern error; it is, therefore, difficult to choose an
appropriate constant value of λ. Moreover, the choice of λ
has a close relation with the mask features and the simulation
resolution. In mathematics, a solid approach is that the λ is
adaptive with each iteration. However, this, in turn, increases
the freedom of design variable, and it is generally difficult to
accomplish.

Most recently, we propose an alternative regularization
framework that regularizes mask directly by using a mask
filtering technique.19 In such a framework, the original
cost function Eq. (1) is changed to Eq. (2) as

FfMg ¼ kΓfS½M�g − Z�k22; (2)

where S½·� is a mask filtering operator, the design of which is
based on manufacturing constraints. It is noted that the pat-
tern error FfMg of the filtered mask S½M� instead of the
original mask M is calculated and will be iteratively reduced
in the optimization process. The filtering technique is widely
used in signal and image processing and has been used for
many years in various application fields as a numerical
method to ensure regularity or existence of solutions to an
engineering problem, such as structural topology optimiza-
tion problems.20,21 In this article, gray-level transitions and
small, unwanted block objects in the mask are all interpreted
as unwanted noise, and it is therefore natural to use filters to

remove or prevent this noise in order to satisfy the manufac-
turing constraints. Section 2.4 details this mask filtering
technique.

Moreover, we introduce a metric called edge distance
error (EDE) to guide mask synthesis in the ILT framework
and establish the correlation between pattern error and edge
placement error (EPE) via EDE. EPE is popularly used in
the polygon-based OPC to convey critical dimension (CD)
information, which is essentially the CD error at one side.4

However, it is seldom used in an ILT framework due to its
discrete form. One reason is that the gradient (or sensitivity)
of EPE with respect to the mask (calculated by a numerical
differentiation method) has a computational complexity of
OðK2Þ, where K is the total number of mask pixels in the
simulation area and is significantly slower than an analytical
gradient calculation with the computational complexity of
O½K logðKÞ�.10,11 Therefore, pattern error instead of EPE
is applied in an ILT framework for its continuous expression
and high computational efficiency.6–8,10–15 The pattern error
employs an approximated and continuous resist model, and
it is defined as a square of the L2 norm of the difference
between the output pattern of the input mask and the desired
feature, which causes pattern error to be continuous and
differentiable with respect to the input mask explicitly.10,11

However, pattern error is a dimensionless quantity and
highly depends on mask feature and simulation parameters,
such as simulation area and simulation resolution. For this
reason, pattern error is not popular in the industry. In this
paper, we, therefore, introduce the metric EDE, which has
the same dimension as EPE and has a continuous expression
as pattern error. The detailed description of EDE will be
given in Sec. 2.2.

In addition, with the CD decreasing, the printed dimen-
sion becomes increasingly sensitive to the fluctuation of the
fabrication process, which limits the yield in the semicon-
ductor industry. Instead of using process penalty terms,
such as the image slope term and the MEEF, a statistical
strategy is applied to minimize a cost function under different
process variations weighted by their statistical probability to
enhance the robustness of layout patterns.7,22–27 This method
is directly related to the fabrication process and is well under-
stood and easily accomplished, while using the process pen-
alty terms can be considered as a roundabout regularization
approach and requires deeper understanding of mask topol-
ogy and the imaging system.
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Fig. 1 Convergence of pattern error, mask quadratic error, and cost function values with different weighted parameters λ of the quadratic penalty
term, for the desired pattern M1 in Fig. 11.
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The remainder of this paper is organized as follows.
Section 2 details the proposed mask filtering technique.
Section 3 provides the simulation results to demonstrate the
validity and efficiency of the proposed method. Finally, we
draw some conclusions in Sec. 4.

2 Methodology

2.1 Lithography Imaging Model

In this section, we review the general lithography imaging
model in ILT.10,15 Abstractly, the imaging process for optical
lithography is mathematically described as

ZðrÞ ¼ ΓfMðrÞg; (3)

where r represents spatial coordinates (x; y), and the operator
Γf·g implements the forward mapping from the input mask
MðrÞ to the output pattern ZðrÞ. In practice, the Γf·g in
Eq. (3) consists of the projection optics effect and the resist
effect.

The projection optics effect, namely the optical image
in resist IðrÞ, can be modeled as a pupil function with
a partially coherent illumination source.28 This is called the
partially coherent imaging system,29 which can be approxi-
mated by the sum of the coherent systems method,4 the opti-
mal coherent approximation approach,30 or the analytical
circle-sampling technique31 as the superposition of several
coherent systems

IðrÞ ¼
XQ
q¼1

μqjhqðrÞ ⊗ MðrÞj2: (4)

Here, hqðrÞ is the q’th optical kernel, μq is the eigenvalue
of the q’th kernel with Q kernels in total, and ⊗ denotes
the two-dimensional convolution. The resist effect can be
approximated by a constant threshold resist model using
the following logarithmic Sigmoid function:11

sig½IðrÞ� ¼ 1

1þ e−aðIðrÞ−tÞ
; (5)

with a being the steepness of the Sigmoid function and t
being the threshold. In reality, t is equal to the threshold
level of the resist.

Combining Eqs. (4) and (5), we can write the lithography
imaging equation as

ZðrÞ ¼ ΓfMðrÞg ¼ sig½IðrÞ�

¼ sig

�XQ
q¼1

μqjhqðrÞ ⊗ MðrÞj2
�
: (6)

2.2 Edge Distance Error

Due to the low-pass nature of the optical imaging system,
ZðrÞ is typically a blurred version of MðrÞ. Generally, the
L2 norm is employed as a metric to evaluate the difference
between the output pattern MðrÞ and the desired pattern
Z�ðrÞ as

FfMðrÞg ¼ kΓfMðrÞg − Z�ðrÞk22: (7)

Here, FfMg is called pattern error or fidelity error. The
only difference between pattern error and fidelity error is
that fidelity error uses a Sigmoid function to characterize
the resist effect, whereas pattern error uses a step function.
The values of fidelity error and pattern error are almost the
same since the steepness of the Sigmoid function a is large
enough. Therefore, in this paper, we would like to call FfMg
pattern error without distinguishing between them. It is noted
that pattern error is a continuous function and hence, the gra-
dient of FfMg with respect to the mask can be analytically
calculated. However, this metric is not intuitive, for its mag-
nitude is not directly related to the CD error and strongly
depends on the mask feature and simulation parameters,
such as simulation grid size. In other words, different sim-
ulation parameters will result in a different pattern error
although with the same pattern.

Therefore, we try to derive a metric from pattern error and
explicitly relate it to the commonly used EPE in industry.
This metric EDE should convey CD information and be in-
dependent of the mask feature and simulation parameters.
Figure 2(a) depicts the pixel-based representation of a mask
pattern and its output pattern on the wafer, where the red
dots are discrete sampling elements (pixels) of the patterns,
Sshadow denotes the absolute difference area between the
desired pattern contour and the output pattern contour, and
L is the perimeter of the desired pattern contour. EDE is
defined as

EDE ¼ Sshadow
L

: (8)

This means that EDE has the dimension of length and
thus has an intuitive physical meaning.

Assuming the grid size is small enough in Fig. 2(a), the
absolute difference area Sshadow can be approximated by
multiplying the total number of elements in shadow and
the element area as

Output Pattern

Desired Pattern

Element (Pixel)

Sshadow

EPE

Output Pattern

Desired Pattern

EPE

Segment

Hotspot

(a)

(b)

y

x  

Fig. 2 (a) Pixel-based representation of a mask pattern and its output
pattern on the wafer and (b) polygon-based representation of a mask
pattern.
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Sshadow ¼ N · ðδx · δyÞ: (9)

Here, N is the total number of red dots (elements) in
shadow, and δx and δy are the lengths of the element along
the x and y directions, respectively, as shown in Fig. 2(a).
Since the value of the element in the output pattern is either
0 or 1, according to the definition of pattern error in Eq. (7),
the number N is approximately equal to the pattern error,
namely, N ¼ FfMg. So, the absolute difference area Sshadow
can be expressed as

Sshadow ¼ N · ðδx · δyÞ ¼ FfMg · ðδx · δyÞ: (10)

Substituting Eq. (10) into Eq. (8), we have the expression
of EDE as

EDEðMÞ ¼ Sshadow
L

¼ ðδx · δyÞ
L

· FfMg: (11)

It is noted that Eq. (11) directly relates EDE to pattern
error FfMg. The portion of ðδx · δyÞ∕L is a constant related
to the simulation resolution and desired pattern, which makes
pattern error have a dimension of length as EPE. This means
that EDE is continuous as pattern error, and the computa-
tional complexity of EDE is the same as pattern error,
i.e., OðNÞ, where N is the total number of elements in
shadow as shown in Fig. 2(a).

Alternatively, the absolute difference area Sshadow can be
formulated as an integral of EPE taken along the closed
desired pattern contour curve C:

Sshadow ¼
I
C
EPEðpÞdl; (12)

where p denotes an infinite small segment on the desired
pattern contour curve and dl is the corresponding segment
length. When the pattern contour curve is discretized into
a finite number of segments, the pattern is represented as
multiple polygons, and this representation is popularly
used in polygon-based OPC. In this case, as shown in
Fig. 2(b), the absolute difference area Sshadow can be approxi-
mated as

Sshadow ¼
I
C
EPEðpÞdl ¼

X
i

EPEðpiÞli: (13)

Here, pi is the i’th segment, and li is the corresponding
length of the segment pi. Substituting Eq. (13) into Eq. (8),
EDE can be alternatively expressed as

EDEðMÞ ¼ Sshadow
L

¼ 1

L

X
i

EPEðpiÞli: (14)

Therefore, EDE may be interpreted as the mean EPE.
Equations (11) and (14) establish the correlation between
pattern error and EPE, and these two metrics are actually
equivalent in a sense via EDE. Either of the pattern error,
EPE or EDE, can act as a metric (or cost function) to
guide mask synthesis. However, since EDE has the same
dimension as EPE and has a continuous expression as a pat-
tern error, it outperforms the other two.

Furthermore, EDE can convey the local CD information
and can be weighted by adding some metrology windows.
Considering a practical case, customers are sometimes
only concerned about some special locations (hotspots) in
the resist. In this case, we add a window function around
the hotspots as shown in Fig. 3. The value inside the metrol-
ogy windows is usually set at 1 and that outside at 0. The
weighted (or local) area Sshadow is expressed as

Sshadow ¼ Nw · ðδx · δyÞ: (15)

Here, Nw is the total number of elements in shadow as
shown in Fig. 3 and is approximately equal to the weighted
pattern error FwfMg as

Nw ¼ FwfMg ¼ k
ffiffiffiffiffiffiffiffiffiffi
wðrÞ

p
· fΓfMg − Z�gk22; (16)

where wðrÞ is a window function represented by rectangular
functions with appropriate shifting and scaling constants.
Hence, the weighted EDE in this case is

EDEwðMÞ ¼ ðδx · δyÞ
Lw

· k
ffiffiffiffiffiffiffiffiffiffi
wðrÞ

p
· fΓfMg − Z�gk22; (17)

where Lw is the length of the desired pattern contour within
the metrology windows.

For simplicity, GðMÞ is used to represent the weighted
EDE. Generally, GðMÞ is treated as a cost function to guide
mask synthesis under nominal conditions, i.e., no defocus
and dosage variations, etc. In order to enhance the process
robustness, process variations should be taken into account
under the mask synthesizing process. Here, we use the
expectation of the weighted EDE under different variations
as a cost function as expressed by

JðMÞ ¼ ζ½ψðvÞ · GðM; vÞ�; (18)

where ζ denotes the expectation operation over v, v is a vec-
tor representing a combination of multiple process variations
including, for example, defocus, exposure dosage variation,
and lens aberrations, etc., and ψðvÞ is the statistical pro-
bability of the corresponding process variations, which is
defined by users and is usually obtained via various experi-
ments or measurements of lithographic tools. JðMÞ is called

Metrology Window

Output Pattern

Desired Pattern Hotspot

Sshadow

Fig. 3 Schematic of the weighted (local) edge distance error (EDE)
with metrology windows.
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the statistical EDE and is used as a cost function to guide the
mask synthesis. The gradient of JðMÞ with respect to mask
M will be used in the optimization process. According to
Refs. (8, 13, and 15), the gradient of JðMÞ with respect
to mask M is given as

∇MJ ¼
X
v

a ·
ðδx · δyÞ

Lw
· ψðvÞ ·

�XQ
q¼1

μqh
flip
q ðr; vÞ

⊗ ½w · ðZ − Z�Þ · Z · ð1 − ZÞ · ðh†qðr; vÞ ⊗ MÞ�
�

þ
X
v

a ·
ðδx · δyÞ

Lw
· ψðvÞ ·

�XQ
q¼1

½μqhflipq ðr; vÞ�†

⊗ ½w · ðZ − Z�Þ · Z · ð1 − ZÞ · ðhqðr; vÞ ⊗ MÞ�
�
;

(19)

where † means the conjugate operator; a is the steepness of
the Sigmoid function in Eq. (5); and hqðr; vÞ is the q’th
optical kernel under the process variations v; hflipq (r; v) is
the up–down and left–right flip of hqðr; vÞ.

2.3 Inverse Lithography Problem Definition and
Regularization

The objective of inverse lithography is synthesizing an input
mask to deliver a desired output pattern. In order to guarantee
the manufacturability of synthesized mask, mask quadratic
error and complexity should be considered. The quadratic
metric RQðMÞ and the complexity metric RTVðMÞ, i.e.,
total variation, are usually adopted to quantify the corre-
sponding performance. In this paper, we focus on the binary
mask. So, the quadratic metric RQðMÞ and the complexity
metric RTVðMÞ are expressed, respectively,11,12 as

RQðMÞ ¼
Z
Ω
½1 − ð2M − 1Þ2�dr; (20)

RTVðMÞ ¼
���� ∂M∂x

����
1

þ
���� ∂M∂y

����
1

¼ kDMk1 þ kMDTk1;
(21)

where Ω is the simulation area or the number of pixels in
M, k · k1 is the L1 norm, and D is an operator of the first
derivative

D ¼

2
666664

1 −1 0

1 −1
. .
. . .

.

1 −1
0 −1 1

3
777775: (22)

Therefore, combining the optimization objectives of the
mask quadratic error, the complexity, and the statistical
EDE, we state the inverse lithography problem as

Finding M�ðrÞ to minimize: JðMÞ, RQðMÞ and RTVðMÞ
subject to: 0 ≤ M ≤ 1.

It is noted that this problem has three mutually exclusive
minimization objectives. In the literature, they are usually
combined with certain proportions λ1 and λ2 to be stated
as a single-objective minimization problem:10–15

Finding M�ðrÞ to minimize: JðMÞ þ λ1RQðMÞþ
λ2RTVðMÞ

where: λ1, λ2 ≥ 0,
subject to: 0 ≤ M ≤ 1.

2.4 Mask Filtering Method

In this section, we propose an alternative method to solve this
multiobjective minimization problem. We first interpret
gray-level transitions and small, unwanted block objects,
such as isolated holes, protrusions, jagged edges, or other
layouts that cannot be fabricated, as unwanted noise in
the mask, and then we design a specific filter S½·� to remove
or prevent this noise to satisfy manufacturing constraints

M̃ ¼ S½M�: (23)

After the filtering process, the quadratic metric RQðMÞ
and complexity metric RTVðMÞ of the filtered mask ~M are
rather small. Then, we calculate the cost function of this
filtered mask

JðS½M�Þ ¼ ζ½ψðvÞ · GðS½M�; vÞ�: (24)

Thus, the multiobjective minimization problem is con-
verted into a simpler single-objective minimization problem
as

Finding M�ðrÞ to minimize: JðS½M�Þ
subject to: 0 ≤ M ≤ 1.

We employ an iterative method to solve this problem. In
the iteration process, we ensure that the statistical EDE, i.e.,
JðS½M�Þ, of the filtered mask is iteratively decreasing. It is
noted that each obtained mask is filtered and satisfies all
the optimization objectives except for the statistical EDE;
namely, it satisfies the manufacturing constraints. As a result,
we only need to reduce the statistical EDE of this filtered
mask. This approach is called the mask filtering technique.

The filter operator S½·� can be designed based on different
mask manufacturing rules. The most basic filter should filter
the gray-level image to be a district 0 or 1 and guarantee the
mask to be less complex. We, therefore, define a basic mask
filter as

S½M� ¼ sig½O ⊗ M�: (25)

Here, the steepness of this Sigmoid function is aS and the
threshold is tS. O is a Gaussian filter to relieve mask com-
plexity,

OðrÞ ¼ τ−1 · e−ð1∕2Þðkr−r0k∕σOÞ2 ; (26)

where r0 is the center point and kr − r0k means the distance
from r to r0. τ is the normalized weight of the Gaussian filter,
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τ ¼
Z
Ω1

e−ð1∕2Þðkr−r0k∕σOÞ2dr; (27)

whereΩ1 is the number of pixels inOðrÞ. The gradient of S½·�
with respect to M is given as

∇MS½M� ¼ aS · Oflip

⊗
�
sig½O ⊗ M� · ½1 − sigðO ⊗ MÞ�

�
: (28)

The detailed derivation of Eq. (28) is given in the
Appendix.

Combining Eqs. (19) and (28), the gradient of JðS½M�Þ
with respect to M is

∇MJ ¼ ∂J
∂S

∂S
∂M

¼ ∇SJ · ∇MS: (29)

With the gradient Eq. (29), we apply a steepest descent
method to solve this problem.11 The optimization procedure
is

Iteration 0: Since the value of the mask is bound con-
strained to [0, 1], we use the following parametric
transformation as

M ¼ 1þ cosðΘÞ
2

; Θ ∈ ð−∞;∞Þ: (30)

Then, given a desired output pattern Z�ðrÞ, we
compute the initial input mask Θ0

M0ðrÞ ¼ κ1 · ½HðrÞ ⊗ Z�ðrÞ� þ κ2; (31)

Θ0 ¼ cos−1ð2M0 − 1Þ; (32)

S0 ¼ S½M0�; (33)

where κ1 and κ2 are parameters to adjust the initial
value of the mask; for example, κ1 ¼ 0.90 and κ2 ¼
0.05 in this paper. We do that because Mði; jÞ ¼ 0 or
1 would degrade the gradient of location (i; j) to 0
and therefore, the optimization freedom would be
reduced.15 HðrÞ is a Gaussian function to make the
initial mask continuous so that the gradient with
respect to the initial mask is smooth. HðrÞ is defined
as

HðrÞ ¼ η−1 · e−ð1∕2Þðkr−r0k∕σHÞ2 ; (34)

where r0 is the center point and kr − r0k means the
distance from r to r0. Ω2 is the number of pixels in
HðrÞ and η is the normalized weight

η ¼
Z
Ω2

e−ð1∕2Þðkr−r0k∕σHÞ2dr: (35)

Finally, we calculate the initial gradient

∇Θ0
J ¼ ∂J

∂S0
∂S0
∂M0

∂M0

∂Θ0

; (36)

where

∂M
∂Θ

¼ − sinðΘÞ
2

: (37)

Iteration k:

Step 1: Search the step length γk ∈ R in the direction
∇Θk

J,

γk ¼ arg min
γ
½JðΘk − γ · ∇Θk

JÞ�: (38)

Step 2: Update Θkþ1, Mkþ1, and Skþ1

Θkþ1 ¼ Θk − γk · ∇Θk
J; (39)

Mkþ1 ¼
1þ cosðΘkþ1Þ

2
; (40)

Skþ1 ¼ S½Mkþ1�: (41)

Step 3: Calculate the gradient for the next iteration,

∇Θkþ1
J ¼ ∂J

∂Skþ1

∂Skþ1

∂Mkþ1

∂Mkþ1

∂Θkþ1

: (42)

If k∇Θkþ1
Jk < Λ or kJðΘkþ1Þk < Ξ or k > Ψ,

go to Stop.
Else, return to Step 1.

Stop: Obtain the optimized mask,

M�ðrÞ ¼ Skþ1: (43)

In the above procedure, the iteration is terminated when
k∇Θkþ1

Jk < Λ or kJðΘkþ1Þk < Ξ or k > Ψ, where Λ is
defined as the minimum value of the norm of velocity, Ξ
is defined as the minimum value of the statistical EDE,
and Ψ is the prescribed upper limit of the number of itera-
tions. The termination criterion k∇Θkþ1

Jk < Ξ means that the
iteration stops when the gradient is zero or rather small.

3 Simulations
Simulations were performed on a partially coherent imaging
system with an annular source illumination whose outer
radius was σout ¼ 0.7 and whose inner radius was σin ¼ 0.4.
The wavelength in the simulations was set at 193 nm, and the
numerical aperture (NA) was 1.35. The resist effect was
approximated by a Sigmoid function with a ¼ 100 and t ¼
0.7. The Gaussian filterOðrÞ consisted of 21 × 21 pixels and
σO ¼ 4. The parameters of the Sigmoid function in the pro-
posed filter S½·� were aS ¼ 300 and tS ¼ 0.5. The parameter
κ1 and κ2 of the initial mask in Eq. (31) were 0.90 and 0.05,
respectively; HðrÞ consisted of 21 × 21 pixels and σH ¼ 2.
The window function wðrÞ had the same size as the mask
image, and all the values were set at 1. Instead of computing
the step length γk in Eq. (38) accurately, we set γk at a
constant 0.3 in each iteration. Since this paper focuses on
developing a new regularization framework, process varia-
tions will not be taken into consideration in the proposed
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simulations. That means v is the nominal process condition
and therefore ψðvÞ ¼ 1. All the simulations were carried out
with in-house MATLAB codes on a HPZ800 (3.47 GHz
Xeon) workstation using a Windows 7 (64 bit) operating
system.

3.1 Edge Distance Error

Figure 4 depicts an example of a desired pattern and its out-
put pattern on the wafer. In this case, the true absolute area
between the desired pattern contour and its output pattern
contour is 1.853 × 104 nm2, the perimeter of the desired
pattern is 1.70 × 103 nm, and therefore, the true EDE is
10.90 nm. Table 1 summarizes the relative error compared
to the true EDE when using different pixel grid sizes. The
EDE in Table 1 is calculated by Eq. (11) and the pattern
error is calculated by Eq. (7). From Table 1, it is observed
that the magnitude of pattern error varies with the pixel grid
size, whereas EDE does not. When the pixel grid size is
small enough (e.g., 0.5 nm), the EDE calculated by the pro-
posed method is approximately equal to the true EDE. With
the increase of pixel grid size, the accuracy of EDE remains
acceptable. So, the EDE calculated by the proposed method
can be used to guide mask synthesis.

3.2 Mask Filter

As shown in Eq. (25), the proposed mask filter consists
of two portions: a Gaussian convolution operation and a
Sigmoid (or thresholding) operation. Figure 5 demonstrates
these filtering operations, where OðrÞ is a defined Gaussian
filter with a size of 21 × 21 pixels and σO ¼ 4,M is an inter-
mediate mask pattern with a size of 321 × 321 pixels and a
grid resolution of 2.5 nm, which is commonly encountered
during the optimization process of ILT, and S½M� is the
filtered pattern calculated by Eq. (25). As expected, the
Gaussian convolution operation,O ⊗ M, weakens the weight
of the small details in M, and the Sigmoid operation leads to
a sharper contour. As a result, the filtered pattern S½M� has
a lower complexity, and its mask quadratic error (denoted
as QE in Fig. 5) reduces from 4.28 × 104 to 531.

Figure 6 presents another set of simulations for the pro-
posed filter, where M is an input mask pattern with a size of

321 × 321 pixels and a grid resolution of 2.5 nm. This input
mask pattern is artificially introduced with some objects that
are difficult to manufacture in practice, including some small
isolated holes, protrusions, hollows, and irregular features
shown inside the red circles. From the perspective of signal
processing, these details can be considered as high-fre-
quency noise in the mask and can be evaluated with total
variation.11,12 As revealed in Fig. 6, the total variation
(denoted as TV in Fig. 6) of M reduces from 3080 to 2416
via the Gaussian convolution operation, which removes these
small details. Subsequently, by the Sigmoid operation, it
leads to a close-to-binary mask with a total variation of 2677,
which reduces total variation by 13.1% compared to the
original mask M. On the other hand, it is interesting to
find that the EDE of the output pattern of the mask M,
the Gaussian filtered mask, and the filtered mask S½M� are
almost the same. That is because the optical lithography sys-
tem with a low-pass nature does not deliver high-frequency
details to the output pattern on the wafer. Similar to the opti-
cal lithography system, the mask filter acts as a low-pass fil-
ter to remove these details that are produced in ILT, whereas
it does not cause distortions on the output pattern on the
wafer. As demonstrated in Figs. 5 and 6, the proposed filter
reduces the mask complexity and achieves a close-to-binary
mask, so that the filtered mask S½M� is reachable in real
manufacture.

3.3 Results of Mask Filtering Technique

Figure 7 shows the simulated images by using the proposed
method for a desired pattern with a CD of 45 nm. The opti-
mization is terminated after 200 iterations. The desired pat-
tern M�, which is commonly encountered in the design of
static random access memory circuits, consists of 321×
321 pixels with a grid resolution of 2.5 nm. As expected,
the optimized mask patterns by the proposed method achieve
much smaller EDE compared to that obtained by simply
inputting the desire pattern M� as the mask pattern. It is
also observed that the optimized gray-mask MS is very
close to the postprocessing mask MP and reaches an almost
identical output pattern and EDE. This demonstrates that the
validity of the proposed method is to synthesize a regular
mask pattern and to reach a considerably low EDE.

Figure 8 presents some intermediate results obtained in
the iteration process by the proposed method. M#0 denotes
the initial mask and is calculated by using Eq. (31); M#n
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Fig. 4 Comparison of the desired pattern and its output pattern on the
wafer.

Table 1 Results of pattern error and edge distance error (EDE) when
using different pixel grid sizes.

Pixel grid
size (nm) Pattern error EDE (nm)

Relative EDE
error (%)

0.5 7.410 × 105 10.897 0.28

1 1.831 × 105 10.768 1.2

1.5 8.017 × 104 10.610 2.7

2.5 2.816 × 104 10.352 5.0

3 1.912 × 104 10.124 7.1

J. Micro/Nanolith. MEMS MOEMS 043003-7 Oct–Dec 2013/Vol. 12(4)

Lv, Xia, and Liu: Mask-filtering-based inverse lithography



Pixel Number

Pi
xe

l N
um

be
r

O(r)

1 11 21
1

11

21

M
QE=4.28×104

−400 −200 0 200 400
−400

−200

0

200

400

O(r)⊗M
QE=1.0×105

−400 −200 0 200 400
−400

−200

0

200

400

S[M]
QE=531

−400 −200 0 200 400
−400

−200

0

200

400

Γ(M)
EDE=2.24nm

−400 −200 0 200 400
−400

−200

0

200

400

Γ(O(r)⊗M)
EDE=4.09nm

−400 −200 0 200 400
−400

−200

0

200

400

Γ(S[M])
EDE=3.85nm

−400 −200 0 200 400
−400

−200

0

200

400

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

2

4

6

8

10
x 10−3
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means the mask that is obtained after the n’th iteration and is
calculated by using Eq. (41). The EDE means EDE between
the output pattern of the M#n and the desired pattern. It is
noted that each obtained intermediate mask by the proposed
method is very close to binary and has a low mask complex-
ity. This demonstrates that the proposed method can filter
(regularize) the mask to eliminate the gray-level transitions
and small, unwanted objects. In comparison, Fig. 9 also
shows some intermediate results obtained in the iteration
process by the conventional regularization method. The con-
ventional regularization method takes different penalty terms
and incorporates them into the cost function with the corre-
sponding weight and then seeks the minimum of such a
weighted cost function. In this case, we take the quadratic
term, for example, and the corresponding weighted param-
eter λ is set at 0.1. From Fig. 9, it is observed that the inter-
mediate result with this method possesses gray-level
transitions. The EDE may satisfy a 5% CD error after 50
iterations, while the mask quadratic error is pretty high at
this moment; it still needs extra iterations to reduce the
mask quadratic error although the EDE achieves the
demanded result. This is one of the drawbacks of the conven-
tional regularization method. Comparing Fig. 8 to Fig. 9, the
intermediate mask by using the proposed method has a lower
level in both mask quadratic error and mask complexity,
which is quite an improvement over the conventional regu-
larization method. Since the convergence of EDE and mask
quadratic error by the conventional regularization method is
out of synchronization, it, therefore, needs several iterations
to achieve a low level on both EDE and mask
quadratic error, although in the proposed method, the itera-
tion (optimizing process) can be stopped whenever EDE
reaches the demanded result without worrying about the
manufacturability.

Figure 10 depicts the convergence properties with differ-
ent methods. The results by the conventional regularization
method with different weighted parameters λ demonstrate
that a small weight causes a fast convergence on EDE but
results in a slow convergence on mask quadratic error; a
large weight results in a fast convergence on mask quadratic

error while finally causing a higher EDE. That means a
smaller λ will not achieve the regularization effects, whereas
a larger λ may result in a large EDE. For this reason, it is
difficult to choose an appropriate value of weighted param-
eter λ to get a win–win situation. This is the second drawback
of the conventional regularization method. On the other
hand, it is observed that the EDE by the proposed method
converges rapidly while the mask quadratic error remains
at a low level, which demonstrates that all the intermediate
masks satisfy the mask quadratic error constrains.

Another two sets of simulations under different illumina-
tion conditions are shown in Fig. 11. Simulation of the
designed mask pattern M1 is performed on a partially coher-
ent imaging system with an annular source illumination
(σout∕σin ¼ 0.7∕0.4) and the NA of 0.85. The mask M1S,
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Fig. 9 Some intermediate results obtained in the iteration process by the conventional regularization method. The horizontal axis and vertical axis
denote x position and y position of the patterns in nanometers, respectively.
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i.e., obtained by the proposed method consists of a size
401 × 401 pixels with a grid resolution of 2.5 nm.
Simulation of the designed mask pattern M2 is performed
on a partially coherent imaging system with a quasar source
illumination (σout∕σin∕ deg ¼ 0.9∕0.6∕45°) and the NA is of
1.25. The mask M2S, i.e., obtained by the proposed method
consists of a size 361 × 361 pixels with a grid resolution of
2.5 nm. From Fig. 11, it is demonstrated that the proposed
method can synthesize a mask pattern under different imag-
ing conditions and shows the possibility of reaching a con-
siderably low EDE.

We also performed simulations for more complicated
patterns by using the proposed method. Figure 12 depicts
the results for one desired pattern M�, which is a contact

layer of the benchmark AND-OR-INVERT gate circuit lay-
out,32 consisting of 601 × 1081 pixels with a grid resolution
of 2.5 nm, i.e., the simulation area is 1500 × 2700 nm2. The
proposed method results in a smooth mask pattern with an
EDE of 2.11 nm compared to 8.37 nm by simply inputting
the desired pattern as the mask pattern. These results further
demonstrate that the proposed method has the capability of
achieving a small EDE and of ensuring the regularity of the
synthesized mask.

Table 2 summarizes the average runtime of each iteration
using different methods with different mask patterns. As
revealed in Table 2, the average runtime of each iteration
by the proposed method is almost the same as that by the
conventional method. That is because the proposed method
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just adds a computation of Eq. (28), whose runtime is far less
than the total calculation time compared to the conventional
regularization method. In other words, the proposed method
enhances the mask manufacturability with an almost equal
runtime. In this perspective, the proposed method is therefore
more efficient than the conventional regularization method.

4 Conclusions
In this paper, we have demonstrated the application of a
mask filtering technique and the metric EDE to solve the
inverse lithography problem. The mask filtering technique
interprets gray-level transitions and small, unwanted block
objects as unwanted noise in the mask, and employs a filter
to remove this noise to satisfy manufacturing constraints.
The proposed filter consists of two portions: a Gaussian con-
volution operation to weaken the weight of the small details
in mask and a thresholding operation to produce a sharper
contour. The advantage of this approach lies in that it enhan-
ces the manufacturability of each intermediate mask without
raising computational complexity and avoids choosing
weighted parameters of various regularization terms.

In addition, we introduce a metric called EDE to guide
mask synthesis and establish the correlation between pattern
error and EPE. EDE is defined as the absolute area between
the desired pattern contour and its output pattern contour di-
vided by the perimeter of the desired pattern. It can be inter-
preted as the mean EPE and can be approximated by pattern
error multiplied by a constant portion that only depends on
the simulation resolution and desired pattern. Therefore,
EDE has the same dimension as EPE and has a continuous
expression as pattern error. The mask filtering technique and
the metric EDE are expected to have direct applications in
mask optimization and synthesis for optical lithography in
semiconductor industry.

Appendix: Derivation of Eq. (28)
To derive Eq. (28), we first give some useful intermediate
results such as

∂sig½x�
∂x

¼
∂ 1
1þe−aðx−tÞ

∂x
¼ a ·

�
1

1þ e−aðx−tÞ

�
2

· ½e−aðx−tÞ�

¼ a · sig½x� · ½1 − sigðxÞ� (44)

and

∂½hðρÞ ⊗ MðρÞ�
∂MðrÞ ¼ ∂½Pr1Mðr1Þhðρ − r1Þ�

∂MðrÞ ¼ hðρ − rÞ;
(45)

where r, r1, and ρ denote the spatial coordinates (x; y).
Noticing that Ω1 is the number of pixels in OðrÞ and aS
is the steepness of the Sigmoid function in S½M�, finally
we define and derive the gradient of the mask filter S½M�
with respect to M as

∇MS½M� ¼ ∂
P

ρ∈Ω1
sig½OðρÞ ⊗ MðρÞ�
∂MðrÞ

¼ faS · sig½O ⊗ M� · ½1 − sigðO ⊗ MÞ�g

·
∂
P

ρ∈Ω1
sig½OðρÞ ⊗ MðρÞ�
∂MðrÞ

¼ faS · sig½O ⊗ M� · ½1 − sig½O ⊗ M��g

·

"X
ρ∈Ω1

Oðρ − rÞ
#
¼

X
ρ∈Ω1

½Oflipðr − ρÞ

· faS · sig½O ⊗ M� · ½1 − sig½O ⊗ M��g�
¼ aS · Oflip ⊗ fsig½O ⊗ M� · ½1 − sig½O ⊗ M��g:

(46)
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