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Abstract. A system where a Bose-Einstein condensate of exciton-polaritons coexists with a
Fermi gas of electrons has been recently proposed as promising for realization of room-
temperature superconductivity. In order to find the optimum conditions for exciton and exciton-
polariton mediated superconductivity, we studied the attractive mechanism between electrons of
a Cooper pair mediated by the exciton and exciton-polariton condensate. We also analyzed the
gap equation that follows. We specifically examined microcavities with embedded n-doped
quantum wells as well as coupled quantum wells hosting a condensate of spatially indirect exci-
tons, put in contact with a two-dimensional electron gas. An effective potential of interaction
between electrons was derived as a function of their exchanged energy ℏω, taking into account
the retardation effect that allows two negatively charged carriers to feel an attraction. In the
polariton case, the interaction is weakly attractive at long times, followed by a succession of
strongly attractive and strongly repulsive windows. Strikingly, this allows high critical tempera-
ture solutions of the gap equation. An approximate three-steps potential is used to explain this
result that is also obtained numerically. The case of polaritons can be compared with that of
excitons, which realize the conventional scenario of high-Tc superconductivity where a large
coupling strength accounts straightforwardly for the high critical temperatures. Excitons are
less advantageous than polaritons but may be simpler systems to realize experimentally. It is
concluded that engineering of the interaction in these peculiar Bose–Fermi mixtures is complex
and sometimes counter-intuitive, but leaves much freedom for optimization, thereby promising
the realization of high-temperature superconductivity in multilayered semiconductor structures.
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1 Introduction

The electron gas undergoes, in some conditions, a phase transition to bound pairs of electrons (the
so-called Cooper pairs), which replace electrons as the fundamental agent of the electronic proper-
ties. Cooper pairs are, from the point of view of their electric charge, objects qualitatively identical
to the underlying electrons. From the point of view of their spin, on the other hand, they become
integer-spin particles, that is, from the spin-statistics theorem, bosons rather than fermions.
This shift of statistical paradigm of the carriers—from Fermi to Bose-statistics—results in the
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outstanding behavior of superconductivity, that is, conduction of electric charge by amacroscopic
coherent wavefunction (akin to a Bose–Einstein condensate). It has taken some time to capture
the fundamental and universal features of this phenomenon and set them apart from parti-
cularities of certain cases only. The gap of excitations, responsible for zero resistivity, for instance,
results from the long-range nature of the Coulomb interaction, but gapless superconductivity is
also possible. One of the central, fundamental concepts of superconductivity is that of a coherent
quantum state of charged bosons. Although superconductivity was discovered empirically, and its
theoretical construction consisted in assembling a puzzle, it is now possible to envisage engineer-
ing superconducting phases in other systems, based on this understanding of condensation of
charged bosons. If superconducting phases can be identified in other systems, progresses will
be quick for the understanding of cuprate superconductivity, which still eludes compelling
theoretical explanation of its intrinsic mechanism.

A system that is making rapid and impressive progress in terms of creating and controlling
macroscopic quantum states is that of microcavity exciton-polaritons1 (see Ref. 2 for a review).
These quasi-particles which combine properties of light (cavity photons) and matter (quantum
well excitons) have been noted for their predisposition to accumulate in macroscopic number in a
single or few quantum states.3,4 They have many advantages from a practical point of view, such
as their 2D geometry, which allows straightforward manipulation by lasers impinging at an
angle, and their short lifetime, which allows continuous monitoring of the system, reconstructing
its internal dynamics also by angle-resolved spectroscopy.5 The pumping can be either coherent
(driving states in parametric scattering configurations)6–10 or incoherent (with a constant flow of
unrelated particles relaxing into the ground state).11–16 In nitride systems, the formidable claim
has been made of room-temperature Bose–Einstein condensation.17,18 Recently, there has been
great interest in propagation of polariton fluids19,20 and their superfluid properties,21 with reports
of quantized vorticity22,23 and persistent currents.24

These rising stars of macrosopic coherence have also been proposed to realize another much
sought after quantum phase at high-temperature: superconductivity. Polariton condensates can-
not conduct electric current themselves, being neutral particles. One of the proposed implemen-
tations involves “ quatrons” (or quadrions) rather than polaritons.25 Quatrons are bound states of
two electrons with a polariton. They remain bosons from spin-addition rules but carry an electric
charge. A Bose condensate of quatrons would, through its superfluid propagation, exhibit super-
conductivity. To date, however, the existence of the quatron, predicted theoretically,25 has not
been found experimentally. Recently, we have approached the problem from another, and more
conventional, angle, that of the Bardeen, Cooper, and Schrieffer (BCS) mechanism26 with an
important new feature: replacement of phonons by Bose-condensed exciton-polaritons in the
role of a binding agent between electrons. In the present paper, we generalize the model proposed
in Ref. 26 to describe a wide range of hybrid Bose–Fermi semiconductor systems where a Bose–
Einstein condensate of neutral quasi-particles (excitons or exciton-polaritons) coexists with a
Fermi sea of electrons. We show that indeed such systems are promising for observation of
(high-temperature) superconductivity. Moreover, as the superconducting gap and critical tem-
perature are very sensitive to the concentration of bosons in the system and the latter may be
controlled by direct optical excitation, light-induced superconductivity in semiconductor hetero-
structures appears to be possible. In this work we closely follow the BCS approach, generalized
and adapted to the case of superconductivity mediated by a Bose–Einstein condensate. Solving
the gap equation in this case turns out to be a nontrivial problem, requiring careful analysis.

1.1 BCS with a Bose–Einstein Condensate as a Binding Agent

BCS is a pillar of superconductivity theory, which relies on three main tenets:

1. Instability of the Fermi sea,
2. Existence of an attractive interaction,
3. Condensation of charged bosons.

These are the three insights that were mainly contributed by Cooper, Bardeen, and Schrieffer,
respectively, and that they could assemble into the BCS theoretical edifice and exploit to repro-
duce strikingly or predict successfully most of the superconductivity phenomenology.
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The first point follows from Cooper’s observation27 that an arbitrarily small attractive
interaction between two electrons on top of the Fermi sea leads to a bound state (the Cooper
pair), thanks to the truncation of the momentum space for states with wavevector k > kF (Fermi
wavevector). This is a general result, which follows from the Bethe-Goldstone equation for the
two-electron problem.

The second point is the identification of an effective attraction between electrons that
normally experience bare Coulomb repulsion. This attraction is attributed for conventional
superconductors to an interaction through phonons, the Bardeen-Pines potential,28 that consists,
vividly, of one electron wobbling the lattice at a first time, which affects another electron
at a second time (and at a larger timescale, since the lattice dynamics is much slower than
that of electrons).29 If the frequency of the lattice vibration is smaller than that of the propagating
electron, the net effect results in an effective attraction [Leggett offers an insightful toy model
of coupled oscillators to capture the essence of the interaction character (attractive or
repulsive)].30

The last point is the so-called BCS state, which is a coherent superposition of paired bound
states and which brings the two-particle Cooper effect to a collective behavior of all electrons in
the system.31

With these three ingredients put together, the BCS theory is complete.32 For our purposes,
points 1 and 3 will be regarded as fundamental and well-established features of (BCS type of)
superconductivity. Point 2, which might appear a mere desiderata for point 1 to apply, leaves us
room for identifying and designing new types of attractive potentials, optimizing the range of
applicability and strength so as to obtain robust superconductivity (e.g., holding at high tem-
peratures or high magnetic fields) or its manifestation in a new class of systems (in microcav-
ities). Bardeen himself, with coworkers,33 investigated possibilities to engineer a more robust
BCS state in a bilayer structure where excitons replace phonons as mediators of the interaction.
The idea of substituting phonons by excitons was pioneered by Little34 and developed by
Ginzburg,35 who coined the term and theorized the possibility of high-temperature supercon-
ductivity, much before it came to fruition with cuprates.36 Cuprates, however, exploit another
(still unknown) mechanism different to BCS.37

In the following, we revisit the Ginzburg mechanism, based on BCS, with emphasis on max-
imizing the strength of interaction between electrons, so as tomaintain their binding, and therefore
superconductivity, to higher temperatures. The text is organized as follows: in Sec. 2, we give a
short overviewof theBCSmechanism and the exciton (Ginzburg)mechanism, outlining the points
of special interest in our case. In particular, we introduce the gap equation. In Sec. 3, we introduce
our hybrid Bose–Fermi system configuration, its Hamiltonian and microscopic interactions, and
the effective electron-electron Hamiltonian that results from a mean-field approximation for the
condensate and the usual Frölich transformation. We obtain the shape of the effective electron-
electron interaction U, that we find to be quite different in character to the Cooper (square well)
potential. We also consider possible variations of our scheme, namely, a microcavity with a con-
densate of exciton-polaritons and a condensate of indirect excitons in coupled quantum wells.38

The systemof coupled quantumwells explored by several groups39,40might be easier to realize and
study (it does not need a cavity) and presents some interesting differences as compared to the
polariton system. On the other hand, polaritons condense at much higher temperatures.18 In
Sec. 3.2, we study the gap equation for a Bose condensate-mediated effective interaction. Because
the potential is not positive-definite, the problem is not well-posed numerically. We propose a
simplified potential and an approximate solution of the gap equation, which we motivate by
studying its validity on well-established approximations. We obtain the critical temperature in
this case. In Sec. 4, we give our conclusions and perspective on this new application of excitons
and polaritons and discuss how to measure the effect experimentally.

2 BCS and Ginzburg Mechanisms

Superconductivity is a fundamental property of solids. At low enough temperatures, most metals
superconduct. As the mechanism is rooted in quantum mechanics, temperatures are expected to
be very low and indeed this is the case for all metals. After considerable theoretical efforts
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from various groups, a compelling theoretical model was assembled by Bardeen, Cooper, and
Schrieffer, the so-called BCS theory.29 The model provides the critical temperature:

kBTC ¼ Θe−
1
g; (1)

where, in conventional superconductivity, Θ is the Debye energyℏωD, and g ¼ N ð0ÞV with
N ð0Þ the density of electrons at the Fermi energy and V the electron-phonon coupling strength.
The Debye energy is, in good approximation, the maximum energy that can be carried by a
phonon. The mechanism therefore relies heavily on phonons, as was realized empirically before
the advent of BCS (good conductors, for instance, are bad superconductors, since V is small; also
through the isotope effect, which correlates critical temperature with mass of the crystal atoms,
and thus with resonance frequency). The exponential form and the presence of N ð0Þ show
that the effect is a collective one involving all electrons, which have formed a new phase of
matter that cannot be approached perturbatively by the independent electron pictures (since
f ðzÞ ¼ e−1∕z has no Taylor expansion around zero). Based on the theory, and accumulated
experience, it was widely accepted that critical temperatures would not exceed a few tens
of Kelvins, since the Debye energy, which can be quite large in some systems (hundreds
of Kelvins), is exponentially reduced. In all conventional superconductors N ð0ÞV ≪ 1 (the
so-called weak-coupling regime).

Ginzburg made the obvious but daring assumption that to achieve higher critical
temperatures—crucial for technical applications which can easily be understood to be momen-
tous—it is enough to find a system where Θ and/or g are increased. Replacing phonons by
excitons, for instance, Ginzburg found that values Θ∕kB ≈ 103, 104 K as well as g ≈ 1

5
, 1
3
are

obtained, yielding temperatures of several hundred Kelvin.41 High critical temperatures have
been later reported in cuprates36 and nowadays, temperatures as high as 125 K are obtained
in systems such as Tl-Ba-Cu-oxide. Cuprate superconductivity does not appear to follow the
BCS pattern.42 On the other hand, all attempts to date to realize the exciton mechanism or a
variation of it have remained fruitless. This is this mechanism, rooted in BCS, which we consider
in this text. Since it consists in substituting the phonons of conventional BCS—or the excitons of
Ginzburg scheme—by a Bose–Einstein condensate (BEC) of excitons or exciton-polaritons,
the starting point for its microscopic description starts with the same zero temperature
gap equation:

Δk ¼ −
X
k 0

Ukk 0
Δk 0

2Ek 0
; (2)

where Ukk 0 is the effective interaction between electrons with wavevectors k and k 0 and
energy E. The gap Δ can be identified as the macroscopic wavefunction of a Cooper pair,
which is also the order parameter for the superconducting phase. If it is nonzero, the system
is in the superconducting state. A realistic microscopic treatment of U is very complicated.
A simplified version is provided by the Jellium model, which is a toy model of a metal that
gives predominance to electron-electron interactions, that is, in particular, the underlying crystal
is approximated as a uniform (structureless) background (like a “jelly”) in which the interacting
electron gas evolves under its own self-interactions and the overall charge cancellation of the
background. A popular effective interaction is given by the Bardeen-Pines potential30 which is
derived from the microscopic form of the electron-lattice interaction:

UBPðω; qÞ ¼
κ0

1þ q2∕q2TF

�
1þ ωphðqÞ2

ω2 − ωphðqÞ2
�
; (3a)

¼ κ0�
1þ q2

κ2
3D

��
1 − ω2

i
ω2

� ; (3b)

with q the phonon wavevector. In Eq. (3a), qTF is the Thomas-Fermi screening parameter andωph

is the phonon dispersion. The first term between the brackets is bare Coulomb repulsion, and the
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second term, which is frequency dependent, follows from the perturbative coupling to the lattice,
tracing out the phonons.

The physical meaning of Eq. (3a) is at the heart of the phonon-mediated mechanism. The
interaction is ω dependent, which means, in Fourier transform, time dependent. This reflects the
famous retardation effect in superconductivity. This effect is based on the strong difference
between the electron Fermi velocity in metals and the sound velocity. Roughly speaking,
a fast electron from the Fermi surface creates a slow phonon and goes away. After some
time, another fast electron arrives and absorbs the slow phonon. The average distance between
these two electrons remains of the order of 100 nm, the distance at which the screened Coulomb
repulsion can be safely neglected. Due to the retardation effect, a weak phonon-mediated
attraction of electrons wins over their Coulomb repulsion and provides formation of Cooper
pairs at low enough temperatures.

3 Interaction Hamiltonian

A sketch of the structure we propose appears in Fig. 1(c). A QW is doped negatively (with
density of electrons n) and is put in contact with another QW where excitons are formed
and are stable. The first (lower) QW hosts the 2DEG which is to undergo superconductivity
while the second (upper) QW hosts the condensate of excitons that is to mediate it. This structure
can also be placed at the maximum of the optical field confined in a microcavity26 (formed by
two Bragg mirrors facing each other). The latter configuration also has the advantage that two
excitonic- QWs can sandwich the 2DEG-QW since in this case the condensate is delocalised
in the entire structure thanks to the photon fraction of the polariton. This allows an increase by a
factor of 2, or more if the multilayer structure is further repeated, of the densities achievable in
this system. The drawback of microcavities is a short radiative lifetime of polaritons. In order to
maintain the polariton condensate one needs to pump it resonantly by a high-intensity laser,
which may lead to undesirable heating of the system. The alternative system which we consider
is a condensate of long-living spatially indirect excitons in coupled QWs, separated by a thin
but high barrier from a QW containing a two-dimensional electron gas (2DEG). This system is
simpler to realize as it does not contain the optical cavity. The condensate of indirect excitons
may be maintained by a low-intensity optical excitation. Moreover, indirect excitons in coupled
QWs possess very significant dipole moments which strengthens their interaction with electrons
from a 2DEG. However, Bose condensates of indirect excitons have been found only at tem-
peratures below 1 K,38 while condensates of exciton-polaritons are now routinely produced at
room-temperature.43 In the following, we compare the advantages of the two respective schemes.
Most of the underlying model applies to both equally. We focus more particularly on the
microcavity system since it is more general. The exciton system is recovered by decoupling
the photons.

Fig. 1 One of the possible designs to evidence exciton-polariton mediated superconductivity.
(a) Polariton (thick blue solid line) and exciton (magenta dashed line) dispersions with schematic
representation of scattering of the boson that mediates the interaction between electrons. Also
shown in thin blue solid line is the renormalised dispersion Ebog, essentially identical to Epol.
(b) Corresponding scattering of two electrons on the surface of the Fermi sea, exchanging momen-
tum q through scattering of a boson in panel (a). (c) detail of the sandwich structure, showing the
doped well (below) containing free electrons and the well hosting the condensate (above) of exci-
tons or of exciton-polaritons. This layer can be sandwiched in different ways.
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In Fig. 1(a), the exciton (resp. polariton) dispersion is shown in dashed magenta (resp. solid
blue). The difference between the bare polariton dispersion (thick blue) and the bogolon
dispersion (thin blue) is very small over the range of exchanged momenta of interest (of the
order of the Fermi wavevector). The condensate in both cases is at k ¼ 0. Scattered particles
at any wavevector between −2kF and 2kF mediate electron-electron interactions on the
Fermi sea, as sketched on Fig. 1(b). The model microscopic Hamiltonian is taken as:26

H ¼
X
k

½EpolðkÞa†kak þEelðkÞσ†kσk�þ

þ
X

k1;k2;q

½VCðqÞσ†k1þqσ
†

k2−qσk1σk2; þX2VXðqÞσ†k1σk1þqa
†

k2þqak2 þUa†k1a
†

k2þqak1þqak2 �;
(4)

with EpolðkÞ and EelðkÞ the polariton and 2DEG dispersions for the in-plane wavevector k,
respectively. In the exciton case (without the microcavity), it suffices to replace Epol with
Eex in the above. VX is the electron-polariton interaction, U the polariton-polariton interaction
and VC the electron-electron repulsion. We now consider these terms in turn. Parameters
assumed are listed in Table 1.

3.1 Electron-Electron Interaction

In the original BCS mechanism, electron-electron repulsion is either neglected altogether or
overcome by the attractive mechanism and not manifested outside of the attractive window.
We take it into account here since it is a detrimental factor for binding and most of our concern
for experimental realization is to optimize this value. The full form of the potential is given by the
Yukawa potential:

VCðqÞ ¼
e2

2ϵA
1

jqj þ κ
; (5)

with screening constant κ. We get rid of the momentum dependence by averaging the potential
V effðω; qÞ over the Fermi surface (FS), where:

Table 1 Parameters used in the numerical simulations. In square brackets, the value for the
exciton case when the parameter differs from the polariton case, otherwise parameters have
been taken the same for comparison.

Parameter Meaning Value

ϵ Permittivity 7ϵ0 ≈ 6.2 As∕ðmVÞ

βe Electron reduced mass 0.22
0.22þ1.25 ≈ 1.15

βh Hole reduced mass 1.25
0.22þ1.25 ≈ 0.85

L Distance between wells 5 nm

κ Coulomb screening length ≈1.2 × 109 m−1

mx Exciton mass ð0.22þ 1.25Þme ≈ 1.3 × 10−30 kg

mc Photon mass 10−5me ≈ 9.1 × 10−36 kg

2g Rabi splitting 45 meV [0]

X Hopfield coefficient (exciton weight) 1∕
ffiffiffi
2

p
[1]

kF Fermi wavevector 5 × 108 m−1

aB Exciton Bohr radius 1.98 × 10−9 m

Ry Exciton Rydberg 32 meV

d Dipole moment 4 nm [12 nm]
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q ¼ k1 − k2 (6)

and k1;2 are the initial and final states of the electrons scattered with the exciton (polariton) from
the condensate. The second electron scatters between states k 0

1 and k 0
2 such that k 0

1 − k 0
2 ¼ q.

The characteristic energy EðqÞ is that of a bogolon (an elementary excitation of the condensate).
In 3D, the FS where these electrons that scatter lie, is the surface of a sphere, while in 2D, it is a
circle (we will speak of surface in both cases). The vector difference is therefore joining the two
end-points on the surface. If the potential has spherical symmetry ½VðqÞ ¼ VðqÞ�, the average of
all two vectors on the FS reduces to that where q is pinned at one point of the surface (the south
pole in Fig. 2) and runs overs the FS. This average, in the particular choice of Fig. 2, is the usual
polar integration with k2 describing the surface as θ (and ϕ in 3D) are varied, with:

q2 ¼ 2k2Fð1þ cos θÞ; (7)

from Al Kashi’s theorem, so that the average potential V̄ eff reads, in 3D:

V̄effðωÞ ¼
Z

2π

0

Z
π

0

Veffðq;ωÞk2F sin θ dθdφ∕N ; (8)

whereN is the normalization, i.e., the same integral where Veff is replaced by unity. This gives,
in 3D:

V̄effðωÞ ¼
1

2

Z
1

−1
V eff

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2Fð1þ cos θÞ

q
;ω

�
d cos θ; (9)

¼ 1

4

Z
4

0

V effðkF
ffiffiffi
ϑ

p
;ωÞdϑ; (10)

where we integrate over ϑ ¼ 2ð1þ cos θÞ since this is a natural variable in Eq. (7), and, in 2D:

V̄effðωÞ ¼
1

2π

Z
2π

0

V eff

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2Fð1þ cos θÞ

q
;ω

�
dθ: (11)

Our system is 2D, in which case, from Eqs. (5) and (11):

V̄C ¼ e2

4πϵA

Z
2π

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2Fð1þ cos θÞ

p
þ κ

¼ e2

2πϵA

ln
2kFþ

ffiffiffiffiffiffiffiffiffiffiffi
4k2

F
−κ2

p
2kF−

ffiffiffiffiffiffiffiffiffiffiffi
4k2

F
−κ2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2F − κ2

p . (12)

When κ > 2kF, both the numerator and the denominator become pure imaginary so their
quotient remains real. When κ ¼ 2kF, V̄C ¼ e2 \ Φ2 \ εA \ κ. This is plotted in Fig. 3. Since
we are trying to maximize attraction, that is, minimize repulsion, systems with small screening
length and large wavevectors should be favored (but these parameters play critically on other
aspects of the mechanism and the optimum is not compulsorily kF∕κ ≫ 1).

Fig. 2 Average over the Fermi surface, in 3D and 2D.
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3.2 Electron-Exciton Interaction

The electron-exciton or exciton-polariton interaction is one of the most important ingredients of
the mechanism, as it ultimately determines the shape of the effective potential. In the micro-
cavity, an electron (from the 2DEG) interacts with a polariton (from the condensate) through
its excitonic component, so this is really the electron-exciton interaction that is to be computed,44

weighted by the Hopfield coefficient (the excitonic fraction) X. Let us consider, therefore, the
scattering of an electron in one of the parallel QW, separated by a distance L from the QW with
excitons.45 The matrix element of the direct interaction between excitons and electrons reads:

VXðqÞ ¼
Z

Ψ�
XðQ; re; rhÞΨ�ðk; r1ÞVðr1; re; rhÞΨXðQ; re; rhÞΨðk; r1Þdr1dredrh; (13)

where r1, re, rh correspond to the 2D coordinates of the 2DEG electron, the exciton electron and
the exciton hole respectively. The 2DEG electron is described by a plane wavewhile the electron/
hole in the condensate are assumed to be in the 1s bound state with plane wave center-of-mass
motion:

Ψðq; r1Þ ¼
1ffiffiffi
A

p eikr1 ; (14a)

Ψ�
XðQ; re; rhÞ ¼

ffiffiffiffiffiffi
2

πA

r
UeðzeÞUhðzhÞ

aB
eiQ·RX e−rX∕aB ; (14b)

where RX ¼ βere þ βhrh, rX ¼ re − rh are in-plane coordinates of the center-of-mass of the
exciton and relative coordinate of electron and hole in the exciton, UeðzeÞ and UhðzhÞ are normal
to the QW plane electron and hole envelope functions, respectively. We also consider the exis-
tence of a dipole moment d for the exciton, which can be intrinsic to the structure, because of
spatial separation of electrons and holes in coupled QWs, or (in the case of microcavities) be
induced by an internal piezo-electric field, or result from an externally applied electric field. To
account for all these possibilities, one can consider the layers of electrons and holes in the exci-
ton shifted in the z-direction with respect to the position of the center-of-mass by a distance
l ¼ d∕e ≪ L. The matrix element of the interaction is then computed to be:

VdirðqÞ ¼
e2

2ϵA
e−qL

q

�
1

½1þ ðβeqaB∕2Þ2�3∕2
−

1

½1þ ðβhqaB∕2Þ2�3∕2
�

(15a)

þ ed
2ϵA

e−qL
�

βe
½1þ ðβeqaB∕2Þ2�3∕2

þ βh
½1þ ðβhqaB∕2Þ2�3∕2

�
; (15b)

Fig. 3 Average electron-electron repulsion (in natural units) in the QW. This should be made as
small as possible, which is obtained for higher Fermi wavevectors (for a given screening length).
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where Eq. (15a) is the direct electron-exciton interaction that exists even in the absence of a
dipole moment of the exciton, and Eq. (15b) is the dipolar interaction. The direct interaction
vanishes at small exchanged momenta, while the dipolar-induced one assumes its maximum
value here of 2d∕ð2ϵ0ϵAÞ. Overall, the dipolar interaction is naturally much larger than the direct
one, since the exciton is electrically neutral.* These facts are summarized in Fig. 4.

3.3 Polariton-Polariton Interaction

We treat the polariton-polariton interaction within the s-wave scattering approximation with
strength U ¼ 6a2BRyX4∕A (where aB is the exciton Bohr radius, Ry the exciton binding energy
and A the normalization area. X is the exciton Hopfield coeffcient, the square of which quantifies
the exciton fraction in the exciton-polariton condensate).46 For interaction between bare exci-
tons, X ¼ 1. Exciton-exciton (polariton-polariton) interactions are repulsive, in general. They
result in linearization of the elementary excitation spectra, the Bogoliubov dispersion, but its
role is not crucial to the mechanism of superconductivity we discuss, since at the wavevectors
of interest, the changes brought by this term are very small compared to the kinetic energy of
noninteracting excitons (exciton-polaritons).

3.4 Effective Interaction

We now proceed to bring our microscopic model toward a form suited to study Cooper-pairing
and superconductivity, that is, we apply the canonical Fröhlich transformation that will result in
an effective BCS Hamiltonian. Just as in the case of phonons, we start by getting rid of polar-
itons. We assume a condensate is formed with mean population N0. We do not consider which
mechanism, coherent or incoherent, is responsible for creating and maintaining this state. We do
assume, however, it is coherent and with a definite phase, so that we can apply the mean-field
approximation a†k1þqak1 ≈ ha†k1þqiak1 þ a†k1þqhak1i and haki ≈

ffiffiffiffiffiffiffiffiffi
N0A

p
δk;0 with N0 the density of

polaritons in the condensate. This allows us to obtain the following expression for the Hamil-
tonian, after diagonalizing the polariton part by means of a Bogoliubov transformation (that
leaves the free propagation of electrons and their direct interaction, HC, invariant):

H ¼
X
k

EelðkÞσ†kσk þ
X
k

EbogðkÞb†kbk þ HC þ
X
k;q

MðqÞσ†kσkþqðb†−q þ bqÞ; (16)

where EbogðkÞ describes the dispersion of the elementary excitations (bogolons) of the interact-
ing Bose gas, which is very close to a parabolic exciton dispersion at large k:

Fig. 4 Electron-exciton interaction in the geometry of Fig. 1, decomposed as the direct interaction
(dashed magenta) and dipolar interaction (solid blue) when the exciton is induced with a dipole
moment d . The latter is both much larger and maximum at zero exchanged momentum.

*Note at this point that there is an error in Ref. 26 where only the direct exciton interaction has been taken into account with an incorrect
power in the parenthesis, which led to an expression similar to the dipolar interaction. The direct interaction by itself turns out to be too
small to evidence superconductivity with the parameters chosen in Ref. 26, therefore a dipole moment should be induced in this case, say
by applying an external electric field, to restore the effect.

Laussy et al.: Superconductivity with excitons and polaritons: review and extension

Journal of Nanophotonics 064502-9 Vol. 6, 2012



EbogðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ẼpolðkÞðẼpolðkÞ þ 2UN0AÞ

q
; (17)

where ẼpolðkÞ ≡ EpolðkÞ − Epolð0Þ and with the renormalized bogolon-electron interaction
strength:

MðqÞ ¼
ffiffiffiffiffiffiffiffiffi
N0A

p
X2VXðqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EbogðqÞ − ẼpolðqÞ

2UN0A − EbogðqÞ þ ẼpolðqÞ

s
: (18)

The last term of Eq. (16) coincides with the Fröhlich electron-phonon interaction Hamilto-
nian, which allows us to write an effective Hamiltonian for the bogolon-mediated electron-
electron interaction. This results in an effective interaction between electrons, of the typeP

k1;k2;qV effðq;ωÞσ†k1σk1þqσ
†

k2þqσk2 . The effective interaction strength reads V effðq;ωÞ ¼
VCðqÞ þ VAðq;ωÞ, with:

VAðq;ωÞ ¼
2MðqÞ2EbogðqÞ
ðℏωÞ2 − EbogðqÞ2

: (19)

Equation (19) recovers the boson-mediated interaction potential obtained for a Bose–Fermi
mixture of cold atomic gases,47 in the limit of vanishing exchanged wavevectors. It describes the
BEC induced attraction between electrons. Remarkably, it increases linearly with the condensate
density N0. This represents an important advantage of this mechanism of superconductivity with
respect to the earlier proposals of exciton-mediated superconductivity,33,34,48 as the strength of
Cooper coupling can be directly controlled by optical pumping of the exciton-polariton conden-
sate. The attractive potential is displayed for various exchanged energies in Fig. 5, as a function
of θ, defining the exchanged momentum expressed directly through the angle θ defined in the
Fermi circle (cf. Fig. 2). As commented earlier, the negative part corresponds to attraction, and
the potential alternates between repulsive and attractive character, obtained at different
exchanged momenta. We do not want to keep track of such complicated wavevector dependence,
and therefore will average the interaction over the Fermi sea. A notable feature is, for most
values of ω, the presence of a pole θ0, where Ebog½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2Fð1þ cos θ0

p
Þ� ¼ ℏω. As is seen in

the figure, θ0 separates the attractive part from the repulsive part. The average will bring the
additional convenience of canceling such divergencies. We note as well that the spectrum of
excitations of the exciton-BEC may be changed in the presence of the electron gas, so that
their eventual dispersion may be different to Ebog.

49 This has no effect on the Cooper-pairing
of electrons which we discuss here.

We therefore wish to perform the average

U0ðωÞ ¼
Z

2π

0

VAðq;ωÞdθ; (20)

Fig. 5 Effective electron-electron interaction as a function of θ, defining the exchanged momen-
tum q ¼ ffiffiffi

2
p

kF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos θ

p
on the Fermi sea at energies ℏω ¼ 40, 50, and 60 meV, respectively.

The potential is symmetric around π. In the first case, the whole dependency (over ½0; 2π�) is
shown, with a first zoom in the inset showing two poles and another the attractive region that
is of small amplitude but extends over a large range. With increasing energies, the poles recede
towards smaller values of θ with a dominating effect of the repulsive (positive) energy. In the
central panel, in dashed magenta, the regularized potential is superimposed.

Laussy et al.: Superconductivity with excitons and polaritons: review and extension

Journal of Nanophotonics 064502-10 Vol. 6, 2012



where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2Fð1þ cos θÞ

p
, as seen previously. Since VA is symmetric around π we perform

the integral ∫ π
0 only. The integral would be easily computed numerically if there were no pole.

There are dedicated numerical methods to compute principal values numerically,50,51 but in our
case, since the pole is first order, it is enough to isolate it analytically by defining

f ðθÞ ¼ ðθ − θ0ÞVA½qðθÞ;ω�; (21)

so that

U0 ¼
Z

2π

0

f ðθÞ − f ðθ0Þ
θ − θ0

dθ þ f ðθ0Þ ln
2π − θ0

θ0
; (22)

where f ðθ0Þ ¼ limθ→θ0 f ðθÞ and the first integral is regular (it is shown in Fig. 5 in dashedmagenta).
The integration (average) is then straightforward and produces the results shown in Fig. 6.

If we take instead of Epol a quadratic dispersion for the excitation

ExðkÞ ¼
ℏ2k2

2mx

(23)

and assume all-excitonic interactions, X ¼ 1, we can consider the same effect in the absence of a
microcavity, relying on a purely excitonic (rather than polaritonic) BEC. In this case, the same
procedure as detailed above leads to an effective potential as shown in Fig. 7. We kept all para-
meters the same for comparison except for the dipole moment, which we have taken three times
as large (d ¼ 12 nm). This corresponds to the spatial separation of electrons and holes in the

Fig. 6 Exchanged-momentum averaged interaction U0ðωÞ between electrons of the 2DEG, as N0

is increased. It is dimensionless and is attractive (resp. repulsive) when negative (resp. positive).
DensitiesN0 are shown in units of 1012∕cm2. In insets (a) and (b), a zoom of the regions delineated
on the left panel, firstly in the small energies (long time) range, where the attraction is seen to be
repulsive for smaller densities, because of the Coulomb repulsion (shown in red), and secondly for
the densities ≈1012∕cm2 in the area where the character of the interaction changes abruptly from
attractive to repulsive (higher densities are shown in dotted lines).

Fig. 7 Same as Fig. 6 (also in units of 1012∕cm2) but for the case of an exciton condensate. A
larger dipole moment d has also been assumed. The potential is different in character, much clo-
ser to Cooper’s potential with larger attraction at longer times.
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system of indirect excitons studied by Butov et al.38 The potential we obtain in the exciton case is
very different in character from the polariton case, and is more closely related to the Cooper
(conventional) shape of a square well, or the Bogoliubov potential including repulsive elbows.

From these potentials, one can proceed to solve the gap equation.

4 Gap Equation

4.1 Cooper Potential

The BCS gap equation (2) is easier to tackle as a continuous equation:

Δðξ; TÞ ¼ −
Z

∞

−∞

U0ðξ − ξ 0ÞΔðξ 0; TÞ tanhðE∕2kBTÞ
2E

dξ 0; (24)

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðξ 0;TÞ2 þ ξ 02p

where we have also introduced a finite temperature T from the Fermi-
Dirac distribution of elementary excitations.52 With the BCS approximation of a step potential,
the gap equation at zero temperature simplifies to Δðξ; TÞ ¼ −U0∫

ξþℏωD

ξ−ℏωD
Δðξ 0; TÞ∕2Edξ 0. If

Δ ≫ ℏωD, the ξ dependence in the integral boundaries can be neglected (or, coming back to
Eq. (2), one sees that in the initial gap equation, Δk is exactly constant if Ukk 0 ¼ U0 and is
zero otherwise). Thus, we can assume in this case the gap to be of the form:

ΔðξÞ ¼
�
Δð0Þ if jξj ≤ ℏωD;
0 otherwise:

(25)

In this case, simplifying Δð0Þ on both side of Eq. (24), we obtain:

Δð0Þ ¼ ℏωD∕ sinhð1∕U0Þ: (26)

Equation (26) is better known as its approximation when U0 ≪ 1, in which case it takes the
form of the famous BCS gap expression,

Δð0Þ ≈ 2ℏωD expð−1∕U0Þ (27)

Solving exactly the gap equation calls for some numerical method. Equation (24) is a non-
linear integral equation, of the type studied by Hammerstein, i.e.,

Δðξ; TÞ ¼
Z

Kðξ; ξ 0Þf ½ξ 0;Δðξ 0Þ�dξ 0 (28)

where in our case Kðx; yÞ ¼ −U0ðx − yÞ∕2 and f ½y; z� ¼ z tanhð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
Þ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
. There are

strong conditions of existence of non-trivial (nonzero) solutions when U0 ≤ 0;53,54 however, the
case when the kernel K is not positive-definite, that is, in presence of repulsion,† has been much
less studied mathematically.55 Cooper’s potential, being always negative, falls in the category of
potentials which admit a unique non-trivial solution, with a stable numerical technique to obtain
it, namely, since the mapping is contractive, by iterations of the gap equation: an initial (nonzero)
function Δ0 is used to compute the rhs of Eq. (24), providing Δ1 which is injected back until
the function converges. The gap computed in this way for a given Cooper potential is shown in
Fig. 8(a). As one can see, the BCS approximation [Eq. (26)] remains a rather coarse approx-
imation, since the gap turns out in this case to be bell-shaped rather than being a step function.
Surprisingly, Δð0Þ is however in much closer agreement with its approximation [Eq. (28)], as
shown on Fig. 8(b) and 8(c) in the weak and strong coupling regime, respectively. There are
small quantitative deviations in (b) between the numerical points and the formula when
using the exact parameters of the potential. By fitting the numerical results, a perfect agreement
can be found for slight variations of ℏωD and U0. The BCS approximation therefore turns out to
be an exceedingly good one as compared to an exact solution of the gap equation. For the

†as well as attraction, since the case of only repulsion admits only Δ ¼ 0 as a solution.
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procedure to make sense, similar results should be obtained for a smoothed well that approx-
imates the BCS square well.41 We will not address this point here, but go directly to the case
where the potential is not always attractive.

4.2 Bogoliubov Potential

The potential is not always attractive when, for instance, some overall repulsion, such as direct
Coulomb interaction, is superimposed on the attractive Cooper potential, as shown on Fig. 9. The
Coulomb interaction is time independent and should therefore extend to all ω but here also a
cutoff ωC is introduced to avoid divergencies. This results in an attractive, Cooper-like potential,
flanked by two repulsive windows. Such a potential is known as the Bogoliubov potential.56,57

This approximation has been used to show extremely counterintuitive behavior of the gap
equation and justify a-posteriori another heavily criticized approximation of BCS, neglecting
Coulomb repulsion: the BCS mechanism indeed assumes only attraction between electrons,
which can be dimmed by Coulomb repulsion, but which never explicitly appears as such
(like in the Bogoliubov scenario). The great result of Cooper was that binding occurs at
arbitrarily small attraction. An important result of the Bogoliubov potential is to show that
the detrimental effects of Coulomb repulsion are greatly reduced in the gap.57

We now present a linearization of the gap equation that allows one to obtain an approximate
solution for the critical temperature.56 By assuming the gap equation to be a two-step valued
function Δ ¼ ðΔ1;Δ2ÞT , the gap equation becomes ðI − 1ÞΔ ¼ 0 with

I ¼ −
�
−U0I1 VCI2

VCI1 VCI2

	
; (29)

where

I1 ¼
Z

ℏωD

−ℏωD

tanh ½ξ∕ð2kBTCÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

1

p dξ ≈ ln

�
1.13ℏωD

kBTC

	
; (30a)

Fig. 8 Numerical solution to the gap equation with the BCS square well potential (a). The gapΔðξÞ
is not step-wise as approximated in the BCS model, but its value at zero exchanged energy, Δð0Þ,
is in close agreement with the analytical expressions, as seen in (b) and (c): Δð0Þ as obtained from
numerically solving the gap equation (dashed blue) and from Eq. (26) (solid magenta), (b) in the
weak-coupling limit when U0 ≪ 1, with small deviations as coupling is increased, and (c) in the
strong-coupling where the agreement becomes perfect again. Note that Δ increases linearly with
the coupling strength out of the weak-coupling limit.

Fig. 9 Adding an overall repulsive Coulomb repulsion VC (red, left) until a cutoff ωC to the BCS
potential V 0 (green, left) results in the Bogoliubov step-wise potential (right). We take the conven-
tion V 0, VC, U0 positive in the above representation and U0 ¼ V 0 − VC, so that, e.g., VC < 0
means attractive contribution of the “Coulomb repulsion.”
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I 2 ¼
Z

ℏωC

ℏωD

tanh ½ξ∕ð2kBTCÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

2

p dξ ≈ ln

�
ωC

ωD

	
; (30b)

appear invariably in the columns of I. In Eq. (30a), the BCS approximation has been applied
while in Eq. (30b), the fact that jξj ≫ 0 has been used to neglect Δ in the denominator and the
temperature in the numerator. The parametrization of the matrix in terms of the potential depends
on the particular configuration (for example the relative widths of the various layers of the struc-
ture). Here we have adopted the original parametrization of Bogoliubov, which assumes narrow
repulsive elbows surrounding a large attractive central region. Solving the linear equation for I1

and then for the critical temperature, we find:

kBTC ≈ 1.13ℏωD exp

�
−

1

V0 −
VC

1þI 2VC

	
: (31)

In this form, one can see how Coulomb repulsion indeed introduces a small correction to the
original BCS formula. The expression also seems to indicate that U0 could be repulsive
(V0 − VC < 0) and still lead to a gap as long as the denominator in Eq. (31) remains positive.

In the following, we compare these predictions with numerical solutions of the gap equation,
keeping in mind that the iterative procedure is not assured, mathematically, to converge. We have
observed that indeed, it sometimes encounters problems and exhibits strong instabilities, with
bifurcations of solutions, for example.

In Fig. 10, we show the evolution of the gap function as VC is increased, from zero (BCS) to a
point where the overall potential is essentially repulsive. With onset of the repulsion, the gap
acquires two negative sides and becomes a highly distorted function for large VC. Note that the
approximation of constant gap over the various regions is at least as good as for the case of BCS.

In Fig. 11, we now show the case where U0 ¼ V0 − VC is held constant as the strength of the
repulsion is varied independently. In foresight of what is to come later, we also allow the elbows
to be negative, that is, to contribute an additional attraction to the conventional mechanism (for
now we do not consider physical justification of this). Another unexpected result is obtained:
the repulsive potential is in this case favoring a larger gap, as can be seen by comparing (a),
where the gap function is highly oscillatory, to (d) where it recovers the BCS bell-shape. In (h),
the distorted but overall attractive potential still results in a BCS type gap, but wider and larger.
Note how the repulsion, by “squeezing” the gap, allows it to achieve much higher values than for
the case of smaller or no repulsion.

These unexpected results are confirmed phenomenologically by the Bogoliubov approxima-
tion Eq. (31), which reproduces qualitatively the trend of the gap Δð0Þ as shown in Fig. 12. Here
we should emphasize that the two quantities are not meant to be compared quantitatively, since
one, Δð0Þ (computed numerically) is the gap at zero temperature while the other, kBTC is the
temperature at which the gap vanishes. There is a monotonous relationship between the two, that
is, increasing Δð0Þ implies increasing TC, so one can appreciate the consistency of the results by
observing similar trends. The obstacle to conducting an extensive numerical comparison is that it
is an intensive task numerically to compute TC, since this requires solution of the gap equation
for various temperatures until the curve ΔðTÞ is obtained and its intersect with zero is found.

Fig. 10 Gap (thick magenta and, magnified, thick khaki) of the Bogoliubov potential (filled blue)
solved numerically for the parameters: ℏωD ¼ 1, ℏωC ¼ 2, V 0 ¼ 1 and VC taking values from (a) to
(d) of: 0 (BCS), 0.1, 0.3 and 0.495. Coulomb repulsion results in a dip in the gap function that, for
increasing values, results in oscillations in the gap function. Paradoxically, even when it is large
and dominating attraction, repulsion does not prevent a gap, as seen in (d).
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A critical slowing down phenomenon makes the iterative process slower as the critical tempera-
ture is approached. In addition, numerical instabilities are stronger at nonzero T . Therefore,
although it is relatively straightforward to compute Δð0Þ numerically, it is not convenient to
use this method to obtain TC. On the other hand, the Bogoliubov approximation gives a fair
estimate of TC, but is not able to provide the gap at zero temperature, since at the core of
its method, there is an assumption of vanishing Δ. Therefore, we have two complementary
methods, each suited to provide a relevant aspect of the problem. We note that the gap at
zero temperature is an important quantity which can be measured independently from TC by
Andreev reflection in conductivity experiments.

4.3 Polariton Potential

In the case of the polariton problem, we have seen that, even when neglecting Coulomb repulsion
(as in the original BCS formulation), the potential UðωÞ departs strongly from the Cooper poten-
tial and features two large attractive regions far from small energies, immediately followed by
two strong repulsive windows. We extend the Bogoliubov method to a three-step approximation
of this potential, such as displayed in Fig. 13, with, in reference to previous potentials, notations
ωD,ωC and ωB for the boundaries of the central, shallow attractive region, narrow, deep attractive
region and repulsive region, respectively. This is a notation only and is not mean to be under-
stood as referring to Debye, Coulomb, or Bogoliubov in any strict sense. Following the same
premises, we approximate the gap equation by a three-step valued function Δ ¼ ðΔ1;Δ2;Δ3ÞT .
This approximation turns out to be an exceedingly good one in certain cases, such as the one
displayed in Fig. 13, where the gap itself is also a three-steps function in good approximation.
Here there is even more room to choose a parametrization of the I matrix. We now give general
guidelines on how to build this matrix. The simplest method is to fix ξ on the lhs of Eq. (25) at the

Fig. 12 Δð0Þ for the case of Figs. 10(a) and 11(c), for their respective parameters, and (b), with
ℏωD ¼ :5, V 0 ¼ 1, ωC changing as indicated and VC changing such that the area of the repulsive
elbow is conserved.

Fig. 11 Gap (thick magenta and, magnified, thick khaki) of the Bogoliubov potential (filled blue)
solved numerically for the following parameters: ℏωD ¼ 0.5, ℏωC ¼ 2, V 0 − VC ¼ 0.5 (fixed) and
VC (the height of the elbow) taking values from (a) to (h) of: −5, −0.5, −0.1, 0 (BCS), 0.3, 0.5
(BCS), 1.5 and 5. The repulsive nature of the elbows change the character of the gap from
bell-shaped to an oscillating function. The oscillating gap in the presence of strong repulsion
allows, paradoxically, high values of the gap at zero-exchanged energy.
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center of each region and, in the corresponding row, take for each column the potential that is
sampled more by the difference jξ − ξ 0j. Refinements are possible, such as weighting elements of
I by coefficients which reflect how much time the variables ξ and ξ 0 spend in the regions that
determine the matrix equation. This problem has the following mathematical expression: how is
the random variable X − Y distributed when X (resp. Y) is uniformly distributed in an interval
½gi; giþ1� (resp. ½hi; hiþ1�). The solution is easily obtained as proportional (normalize to unity) to:

PðX − Y ¼ θÞ

∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½maxðgi; hi − θÞ� −minðgiþ1; hiþ1 − θÞ�2 þ ½maxðθ þ gi; hiÞ −minðθ þ giþ1; hiþ1�2

q
:

(32)

This is easily obtained geometrically (the square root comes from Pythagoras’ theorem) and the
problem results in finding the intersect of a line with the grid. There are two configurations.
Working out the cases shows that Eq. (32) reduces to a triangular or a top-head truncated tri-
angular distribution. The coefficients entering I can then be taken as the potentials weighted by
the area intersecting their corresponding region. The soundness of such an approach can be
checked numerically to compare quantitatively various parametrizations. For simplicity, we
shall here consider cases where only the dominant potential is considered. An example of
such a gap equation ðI − 1ÞΔ ¼ 0 is defined with:

I ¼ −

0
B@ V0I1 V1I 2 −VCI3

V1I1 V0I 2 V0I3

−VCI1 V0I 2 V0I3

1
CA; (33)

where

I i ¼
Z

ℏω>
i

ℏω<
i

tanh ½ξ∕ð2kBTCÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

i

p dξ; (34)

and I i is integrated on the respective steps, as defined by the integral boundary conditions,
i.e., ðω<

1 ;ω
>
1 ;ω

<
2 ;ω

>
2 ;ω

<
3 ;ω

>
3 Þ ¼ ð0;ωD;ωD;ωC;ωC;ωBÞ.

As before, we estimate the critical temperature by the condition that gives vanishing values of
the gap on the whole interval. The first integral I1 is evaluted in the same approximation as for
the usual BCS (or Bogoliubov) potential:

I1 ¼ ln

�
1.13

ℏωD

kBTC

	
: (35)

Fig. 13 (solid blue) Three-step potential that models the form of effective electron-electron inter-
action when polariton-mediated with the three parametersωB;C;D and, (thick magenta) the gapΔðξÞ
as computed numerically for this potential. In good approximation, the gap is also itself a three-
steps function.
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I 2 and I 3 are also essentially logarithmic in their energy range and we take:

I2 ¼ lnðωC∕ωDÞ; and I3 ¼ lnðωB∕ωCÞ: (36)

We solve the gap equation by setting its determinant to zero and solving for TC, giving

kBTC ¼ 1.13ℏωD exp

2
64− 1

V0

1

1þ lnðωCωDÞ lnðωBωCÞðV1þVCÞ2þlnðωCωDÞ
V2
1

V0
þlnðωBωCÞ

V2
C

V0

1þlnðωBωDÞV0

3
75: (37)

We see that the impact of the polariton potential shape on the gap is rather intricate, here as
well, with some unexpected behavior, produced both numerically and from this formula. In
Fig. 14, we show the effect of widening the central, attractive region of the potential. Naively
one would expect this to increase the gap (or critical temperature), since Δð0Þ increases linearly
with ℏωD. However, Eq. (37) predicts a decrease of the critical temperature, as shown in Fig. 15.
The reason why is understood by computing the gap at zero temperature, as seen in Fig. 14,
where the repulsive barrier is shown to behave as a trap for the gap function, which results, as the
width is increased, in a loosening of the gap strength, akin to the quantum mechanical situation
of a bound state in a square potential. The numerical and linearized models display a good qua-
litative agreement, as seen in Fig. 15. Let us repeat that we are not considering here quantities
that can be directly compared, since ΔðTCÞ should be used for this purpose.

Another example is shown in Fig. 16, where both the attractive and repulsive parts of the
potential are increased together. This results in a rapid increase of the gap. The result is also
confirmed by numerical simulations, as shown in Fig. 17, and a good agreement is obtained.
Unexpectedly, if the repulsive part grows twice as fast as the attractive one, not only does this
also result in an increase of the gap, but even a faster one. This, too, is confirmed by the
numerics. Note that in this case, we reach a region where our numerical procedure jumps to

Fig. 14 Potential (filled blue) and its corresponding gap equation, solved numerically, as the size
of the central attractive plateau is increased. Somewhat unexpectedly, the gap decreases as a
result. The repulsive barriers have the effect of squeezing the gap up.

Fig. 15 Δð0Þ (joined points, blue) and kBTC (magenta) from the three-step Bogoliubov approx-
imation, in the case where the width of the central attraction is increased. Unexpectedly, this
results in a decrease of the critical temperature and of the gap.
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other solutions (usually of a highly oscillatory character, such as those reported in57), but behaves
as expected until then. In this regard, the value of having an approximate analytical solution is
obvious.

This analysis is finally applied to the case of the gap equation with the numerical results of
the critical temperature obtained in both the polariton and exciton cases for the cases of Figs. 6
and 7. The parameters are gathered in Table 1 and the results plotted in Fig. 18. Both cases show
a strong variation of the critical temperature with moderate variations of the condensate density
(one order of magnitude). The polariton case is steeper and roughly linear while the exciton case
increases less quickly but begins earlier. In both cases, temperatures are very high, and other
effects will surely break the mechanism, for instance the loss of the condensate. This shows,
however, the robustness of the mechanism in the conditions where it should apply.

5 Conclusions

We have studied possible mechanisms of superconductivity in semiconductor heterostructure
systems where a Bose–Einstein condensate mediating the effective electron-electron interaction

Fig. 16 Numerical solution of the gap equation when both the attractive and repulsive parts of
the potential are increased together (here in the same proportions), showing a rapid increase
of the gap.

Fig. 17 Δð0Þ (joined points, blue) and kBTC (magenta) from the three-step Bogoliubov
approximation.

Fig. 18 Critical temperature as a function of the condensate density N0 for the case of a polariton
condensate (solid blue) and of an exciton condensate (dotted magenta).
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leads to enhancement of the coupling, yielding very high critical temperatures. We have con-
sidered the case of an exciton-BEC, consisting of a sandwich of an n-doped QW containing the
superconducting electrons, in contact with coupled QWs where the BEC of indirect excitons is
formed, for instance by optical excitation. We have also considered the case of a polariton BEC,
where n-doped QWs and undoped QWs hosting excitons are embedded in a microcavity. We
have computed in these two cases the effective electron-electron interaction UðωÞ as a function
of the exchanged energy ℏω, showing how the retardation effect acquires a peculiar character in
the polariton case, namely, yielding a weakly attractive potential at long times, followed by a
succession of strongly attractive and strongly repulsive windows. The gap equation in this case
exhibits strong differences as opposed to the case of the Cooper potential (of conventional BCS
and exciton-BEC mechanism). To understand the physical mechanism leading to large gaps and
bypass numerical instabilities, we studied in detail the gap equation in the cases of simplified
step-wise potentials, and offered an analytical method to obtain the critical temperature, which is
in qualitative agreement with the numerical results. Our results suggest record-breaking critical
temperatures in these systems. We stress, however, that the path toward achievement of exciton-
mediated superconductivity at high temperatures may be long and full of obstacles. Of the two
experimentally relevant systems that we have considered, one (coupled QWs) only shows the
BEC of excitons at very low temperatures (less than 1 K 38). Consequently, one cannot expect
high-temperature superconductivity in this system, although at low temperatures the supercon-
ducting gap may be very large. In microcavities, polariton BEC or polariton lasing have indeed
been demonstrated at room-temperature.17,18 However, embedding a high-quality n-doped QW
inside the cavity, the proper choice of the experimental geometry in order to minimize optical
absorption in the doped QW, and especially fabrication of quantum contacts for selective injec-
tion of carriers in the QW of interest, may pose technological difficulties. It is possible that
hybrid metal-semiconductor or semi-metal-semiconductor systems may appear more suitable
for the observation of the predicted effects. A conventional superconductor put in contact
with a semiconductor also seems promising. Collective quantum phenomena in Bose–Fermi
mixtures are extremely complicated and we foresee breakthroughs in their study in multi-
layer structures combining a Fermi gas of electrons and an exciton-BEC.
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