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1 Introduction

Stability of pulse generation from midinfrared (MIR) quantum-cascade lasers (QCLs)1,2 has been
an active field of research owing to the fact that stable MIR pulses are desired for free-space
communication, medical diagnosis, and environmental sensing applications,3 and QCLs are
important sources for such pulses. However, a full picture of stability analysis of QCLs is inevi-
tably complicated when compared to conventional lasers because of the unique combination of
ultrafast carrier scatterings and gain recovery,4–6 significant nonlinearities,7 and dispersion
effect8 in a QCL medium.

There have been several discussions on the stability of typical MIR QCLs both theoretically
and experimentally;9–12 however, none of these discussions specifically addresses the effect from
group-velocity dispersion (GVD). In Ref. 9, observations of the coherent Risken–Nummedal–
Graham–Haken (RNGH)-like13,14 multimode instability in QCLs have been reported. It is found
that the instability threshold is significantly lower than that of the original RNGH instability,
which is attributed to the saturable absorber effect in the lasing medium. Thereafter, more com-
prehensive theoretical and experimental investigations on the multimode operation regimes in
QCLs have been documented in Ref. 10. It is shown that the fast gain recovery of QCLs exhibits
two kinds of instabilities: one is associated with the spatial hole burning (SHB) effect and the
other is RNGH-like instability. The QCLs’ stability analysis is based on the linearization of the
Maxwell–Bloch formalism. The RNGH instability of QCLs exhibits two differences from that of
the conventional RNGH instability, namely, lower instability threshold and missing of the central
spike in the optical spectrum. According to the analysis reported in Ref. 10, the first difference is
owing to the presence of a saturable absorber effect in the QCL cavity and the second difference
is owing to the SHB effect.

The saturable absorber effect originates from the Kerr nonlinearity15 in QCLs, and it is also
called the transverse Kerr effect. Accompanying the saturable absorber effect, there is the longi-
tudinal Kerr effect, which induces self-phase-modulation (SPM) of lasers. A discussion of the
effect of SPM on the QCLs’ instability is reported in Ref. 11, where it is found that the SPM
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could significantly broaden the unstable domain of the RNGH instability but it only has a trivial
effect on the instability threshold. Moreover, the instability of the QCLs is viewed at a different
angle,12 where the instability mechanisms are decoupled into the amplitude and phase domains
based on the symmetry and antisymmetry of the propagating fields in the lasing cavity. The
amplitude instability is of the RNGH-type multimode instability and the phase instability
is of a single-mode nature. Both saturable absorber and SPM effects are accounted for in the
analysis. The saturable absorber effect could lower the threshold of both amplitude and phase
instabilities, while the SPM effect could broaden the frequency domain of both instabilities.

Similar to the Kerr nonlinearity, the GVD also originates from the intersubband transitions of
the QCLs and it is embedded in the same structure as that of the Kerr nonlinearity. However, so far,
its interaction with either saturable absorber or SPM has never been accounted for in the stability
analysis of a typical QCL structure. A measurement of GVD in the MIR QCLs has been reported
in Ref. 8. An ultrafast upconversion technique based on the sum-frequency generation was applied
to investigate the total GVD by measuring the wavelength-dependent pulse propagation delay.8

The measurement on a ∼5 μm QCL with an InGaAs/InAlAs active region shows an anomalous
GVDwith the coefficient of β2 ∼ −4.6 × 10−6 ps2∕μm.8 It is stated in Ref. 16 that the low GVD of
the QCLs tends to lock the longitudinal modes of the QCL designed for the MIR frequency comb.
The interaction between the GVD and the saturable absorber in the self-induced transparency (SIT)
modelocking of QCLs is discussed in Ref. 17, where analysis based on the pulse shape evolution
demonstrates that the stability limits for saturable gain and saturable loss with the presence of GVD
depends on the ratio of the SIT-induced gain and absorption to the linear loss.

In our current work, we focus our discussion on the effect of the GVD on the stability of
a typical MIR QCL without the mode-locking mechanism. The novelty of this paper is in the
inclusion of the GVD effect in the analysis of instability mechanisms of MIR QCLs. We par-
ticularly investigate the interaction between the GVD and the saturable absorber on the QCL
stability. At this point, we have not involved the SPM effect, as we are planning to take it in our
next work. These works are toward our goal of investigating the possibility of forming an optical
soliton in the QCLs for MIR pulse generation.

The rest of the paper is organized as follows. In Sec. 2, the linearization of nonlinear
Maxwell–Bloch equations with the GVD effect and the decoupling of amplitude and phase sta-
bility mechanisms is described. Section 3 presents the solution to quadratic eigenvalue problems
that result from the GVD effect in the amplitude and phase stability analysis. In Sec. 4, results are
presented and discussed. Conclusions are drawn in Sec. 5.

2 Linear Stability Analysis with Second-Order GVD

The dynamic behavior of QCLs is modeled based on the two-level Maxwell–Bloch formalism.
The QCL gain medium is assumed to be built with the Fabry–Perot cavity, thus, the SHB effect,
brought by the standing waves, are accounted in the model. Both the second-order GVD and
saturable absorber effects are included as well. We have the Maxwell–Bloch equations as

∂Eþ
∂t

¼ −
c
n
∂Eþ
∂z

−
c
n
Pþ −

c
2n

ðlo − γ̃jEj2ÞEþ − i
c
2n

β2
∂2Eþ
∂t2

; (1)

∂E−

∂t
¼ þ c

n
∂E−

∂z
−
c
n
P− −

c
2n

ðlo − γ̃jEj2ÞE− − i
c
2n

β2
∂2E−

∂t2
; (2)

∂Pþ
∂t

¼ −
1

2
ðDoEþ þD2E−Þ −

Pþ
T2

; (3)

∂P−

∂t
¼ −

1

2
ðDoE− þD�

2EþÞ −
P−

T2

; (4)

∂Do

∂t
¼ Dp −Do

T1

þ ðE�þPþ þ E�
−P− þ c:c:Þ; (5)
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∂D2

∂t
¼ ðE�þP− þ E−P�þ þ c:c:Þ − D2

Tg
; (6)

where E�, P�, Do, and D2 are the variables that govern the dynamics of lasing system, E and P
are the envelopes of the normalized electric field and polarization, respectively, subscript þð−Þ
represents the forward (backward) propagation of waves, Do is the normalized average popu-
lation inversion and D2 is the population inversion grating, which accounts for the SHB effect,8

Dp is the steady-state normalized population inversion proportional to the pumping factor p
(p ≥ 1), T1 and T2 are the longitudinal and transverse relaxation times, respectively, Tg is
the parameter that describes the strength of the SHB and it ranges from 0 (no SHB) to T1

(the strongest SHB), l0 is the linear cavity loss; γ̃ ¼ ℏ2γ∕μ2, where γ is the coefficient that
describes the strength of the saturable absorber and μ is the transition dipole moment, and
the parameter β2 is the GVD coefficient.

The linearization of the dynamic Eqs. (1)–(6) is achieved through the addition of
a small perturbation to the steady-state solution. Then, a set of equations with respect to the
perturbations are obtained as

∂δEþ
∂t

¼ c
n

�
−
∂δEþ
∂z

− δPþ −
1

2
ðl0 − 3γ̃jĒj2ÞδEþ − i

β2
2

∂2δEþ
∂t2

�
; (7)

∂δE−

∂t
¼ c

n

�
þ ∂δE−

∂z
− δP− −

1

2
ðl0 − 3γ̃jĒj2ÞδE− − i

β2
2

∂2δE−

∂t2

�
; (8)

∂δPþ
∂t

¼ −
1

2
½ĒðδD0 þ δD2Þ þ D̄0δEþ þ D̄2δE−� −

δPþ
T2

; (9)

∂δP−

∂t
¼ −

1

2
½ĒðδD0 þ δD�

2Þ þ D̄0δE− þ D̄2δEþ� −
δP−

T2

; (10)

∂δD0

∂t
¼ −

δD0

T1

þ P̄ðδEþ þ δE− þ c:c:Þ þ ĒðδPþ þ δP− þ c:c:Þ; (11)

∂δD2

∂t
¼ −

δD2

Tg
þ P̄ðδE�þ þ δE−Þ þ ĒðδP�þ þ δP−Þ: (12)

Without loss of generality, we assumed that all the variables are complex numbers except the
population inversion Do. The steady-state solution for Eqs. (1–6) is obtained as

Ē ¼ ρ̄E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0T2ð2T1 þ TgÞ − γ̃ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½γ̃ þ l0T2ð2T1 þ TgÞ�2 − 4l0pγ̃T2ð2T1 þ TgÞ

q
2T2ð2T1 þ TgÞγ̃

vuut
; (13)

P̄ ¼ ρ̄P ¼ −
1

2
l 00ρ̄E; (14)

D̄2 ¼ ρ̄2 ¼ −Tgρ̄
2
El

0
0; (15)

D̄0 ¼ ρ̄0 ¼
l 00
T2

− ρ̄2; (16)

where l 00 ¼ l0 − γ̃jĒj2.
In order to decouple the behaviors of these variables into amplitude and phase domains, we

adopt the polar expression for each variable, i.e., X ¼ ρejθ, where X is any of the variables in
Eqs. (1–6). Through some mathematical manipulations, the small perturbation is expressed in
the polar form as
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δXðz; tÞ ¼ ½δρðz; tÞ þ jρ̄ðzÞδθðz; tÞ�ejθ̄ðzÞ; (17)

where X̄ ¼ ρ̄ðzÞ is the steady-state solution. In detail, we take the following notations for the
polar expression of each variable

E� ¼ ρE� expðjθE�Þ; (18)

P� ¼ ρP� expðjθP�Þ; (19)

Do ¼ ρo; (20)

D2 ¼ ρ2 expðjθ2Þ: (21)

Bringing Eqs. (17) and (18–21) into the differential equations in Eqs. (7–12) of the pertur-
bations, the perturbations in amplitude and phase are decoupled into two equation sets as

∂δρFþ
∂t

¼ c
n

�
−
∂δρFþ
∂z

− δρPþ −
1

2
ðl0 − 3γ̃jF̄j2ÞδρFþ − i

β2
2

∂2δρFþ
∂t2

�
; (22)

∂δρF−
∂t

¼ c
n

�
∂δρF−
∂z

− δρP− −
1

2
ðl0 − 3γ̃jF̄j2ÞδρF− − i

β2
2

∂2δρF¼
∂t2

�
; (23)

∂δρPþ
∂t

¼ −
1

2
F̄ðδρ0 þ δρ2Þ −

1

2
ρ̄0δρ

Fþ −
1

2
ρ̄2δρ

F
− −

δρPþ
T2

; (24)

∂δρP−
∂t

¼ −
1

2
F̄ðδρ0 þ δρ2Þ −

1

2
ρ̄0δρ

F
− −

1

2
ρ̄2δρ

Fþ −
δρP−
T2

; (25)

∂δρ0
∂t

¼ 2F̄ðδρPþ þ δρP−Þ þ 2P̄ðδρFþ þ δρF−Þ −
δρ0
T1

; (26)

∂δρ2
∂t

¼ F̄ðδρPþ þ δρP−Þ þ P̄ðδρFþ þ δρF−Þ −
δρ2
Tg

(27)

and

∂δθFþ
∂t

¼ c
n

�
−
∂δθFþ
∂z

−
P̄
F̄
δθPþ −

1

2
ðl0 − 3γ̃jF̄j2ÞδθFþ

�
; (28)

∂δθF−
∂t

¼ c
n

�
∂δθF−
∂z

−
P̄
F̄
δθP− −

1

2
ðl0 − 3γ̃jF̄j2ÞδθF−

�
; (29)

∂δθPþ
∂t

¼ −
1

2

F̄
P̄
ðρ̄0δθFþ þ ρ̄2δθ

F
− þ ρ̄2δθ2Þ −

δθPþ
T2

; (30)

∂δθP−
∂t

¼ −
1

2

F̄
P̄
ðρ̄0δθF− þ ρ̄2δθ

Fþ − ρ̄2δθ2Þ −
δθP−
T2

; (31)

∂δθ2
∂t

¼ P̄ F̄
ρ̄2

ðδθF− þ δθP− − δθFþ − δθPþÞ −
δθ2
Tg

: (32)

Equations (22–27) describe the amplitude perturbations, while Eqs. (28–32) are phase per-
turbations. Owing to the symmetry and antisymmetry relationships between each pair of forward
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and backward propagating variables, such as ðρEþ; ρE−Þ, ðθEþ; θE−Þ, ðρPþ; ρP−Þ, and ðθPþ; θP−Þ, the num-
ber of equations involved in the stability analysis can be reduced. In the Fabry–Perot cavity
ð0; LÞ, the symmetry and antisymmetry relationships about the cavity center z ¼ L∕2 are
expressed as

XþðzÞ ¼ X−ðL − zÞ ðsymmetryÞ; (33)

XþðzÞ ¼ −X−ðL − zÞ ðantisymmetryÞ: (34)

From Eqs. (22–27) and (28–32), it can be found that the pairs ðρEþ; ρE−Þ and ðρPþ; ρP−Þ possess
symmetry about the cavity center and the pairs ðθEþ; θE−Þ and ðθPþ; θP−Þ possess antisymmetry
about the cavity center. Subsequently, those two sets of equations are reduced to Eqs. (35–
38) and (39–41), respectively,

∂δρEþ
∂t

¼ c
n

�
−
∂δρEþ
∂z

− δρPþ −
1

2
ðl0 − 3γ̃jĒj2ÞδρEþ − i

β2
2

∂2δρEþ
∂t2

�
; (35)

∂δρPþ
∂t

¼ −
1

2
Ēðδρ0 þ δρ2Þ −

1

2
ðρ̄o þ ρ̄2ÞδρEþ −

δρPþ
T2

; (36)

∂δρ0
∂t

¼ 4P̄ðδρEþÞ þ 4ĒðδρPþÞ −
δρ0
T1

; (37)

∂δρ2
∂t

¼ 2P̄ðδρEþÞ þ 2ĒðδρPþÞ −
δρ2
Tg

(38)

and

∂δθEþ
∂t

¼ c
n

�
−
∂δθEþ
∂z

−
P̄
Ē
δθPþ −

1

2
ðl0 − 3γ̃jĒj2ÞδθEþ

�
; (39)

∂δθPþ
∂t

¼ −
1

2

Ē
P̄
½ðρ̄0 − ρ̄2ÞδθEþ þ ρ̄2δθ2� −

δθPþ
T2

; (40)

∂δθ2
∂t

¼ P̄ Ē
ρ̄2

ð−2δθEþ − 2δθPþÞ −
δθ2
Tg

: (41)

The amplitude stability analysis is based on Eqs. (35–38), while phase stability analysis is
based on Eqs. (39–41). Both equation sets involve a second-order differential term that is
brought by the GVD effect, which results in the quadratic eigenvalue problem in the stability
analysis.

3 Stability Analysis Through the Quadratic Eigenvalue Problem

Dynamic behaviors of amplitude and phase are described by equation sets (35–38) and (39–41),
respectively. Examination of stability is conducted by solving the eigenvalues for each equation
set. In this case, we need to deal with the quadratic eigenvalue problem that results from the GVD
effect. We take equation set (35–38) for amplitude stability as the example to illustrate our sol-
ution procedure for the quadratic eigenvalue problem.

We consider transforming the second-order differential equation to a first-order differential
equation; thus, the quadratic eigenvalue problem will be degenerated to a linear eigenvalue
problem that we are familiar with. For equation set (35–38), by defining an additional variable,
½∂ðδρEþÞ�∕∂t, the second-order differential equation set (35–38) is linearized (or reduced to the
first-order differential equation) in the matrix form as
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∂
∂t

2
6666666664

∂ðδρEþÞ
∂t

δρEþ
δρPþ

δρo

δρ2

3
7777777775
¼

2
66666666664

2n
β2c

i 2i
β2
½ ∂∂z þ 1

2
ðl0 − 3γ̃jĒj2Þ�

2i
β2

0 0

1
0

0
0 0

0 − ρ̄oþρ̄2
2

− 1
T2

− Ē
2

− Ē
2

0 4P̄ 4Ē − 1
T1

0

0 2P̄ 2F̄ 0 − 1
Tg

3
77777777775

2
66666666666664

∂ðδρEþÞ
∂t

δρEþ

δρPþ

δρo

δρ2

3
77777777777775

: (42)

The stability of the dynamic equation set (35–38) is studied by finding the eigenvalues of the
matrix in Eq. (42). Assume that λ is any of the eigenvalues and with some mathematical manip-
ulations based on Eq. (42), we arrive at

dδρEþðzÞ
dz

¼ faðλÞδρEþðzÞ; (43)

where

faðλÞ ¼ −
β2
2
iλ2 −

n
c
λ −

1

2
ðlo − 3γ̄jĒj2Þ

þ ðρ̄o þ ρ̄2Þðλþ T¼1
1 Þðλþ T−1

g Þ þ 2Ē P̄ðλþ T¼1
1 Þ þ 4Ē P̄ðλþ T−1

g Þ
2½ðλþ T¼1

1 Þðλþ T−1
2 Þðλþ T−1

g Þ þ Ē2ðλþ T¼1
1 Þ þ 2Ē2ðλþ T−1

g Þ� : (44)

Thus, for field at the two boundaries of the cavity, there is

δρEþðLÞ ¼ δρEþð0ÞefaðλÞL: (45)

The value for faðλÞ can be figured out from the boundary conditions of the Fabry–Perot
cavity. As the mirror reflection at the two facets has been accounted for in the linear loss lo
in Eqs. (1) and (2), the boundary conditions become formally identical to those ideal
Fabry–Perot resonators with perfectly reflecting mirrors, i.e., ρEþð0Þ ¼ ρE−ð0Þ and ρEþðLÞ ¼
ρE−ðLÞ. Combining these boundary conditions with the symmetry relationship between the
forward and backward propagations stated in Eq. (33), we have ρEþð0Þ ¼ ρEþðLÞ, and then,

δρEþð0Þ ¼ δρEþðLÞ: (46)

After substituting Eq. (46) into Eq. (45), we get the transcendental equation for the entire
spectrum of eigenvalues λk as

faðλkÞ ¼ j
2πk
L

; (47)

where k is any integer number, i.e., k ¼ 0;�1;�2;�3; : : : .
The stability of dynamic behaviors in the amplitude described in Eq. (42) is characterized by

the eigenvalues λk. Each integer number k represents a transverse wave mode with an offset
frequency of Δf from the central frequency fo, and Δf ¼ ðc∕2nLÞk, where it implies that
the separation between the two adjacent wave modes is the round trip frequency along the cavity.
For each mode, if the maximum real part of all the eigenvalues (the parametric gain) is negative,
then the mode is stable; otherwise, the system is unstable when the parametric gain is positive or
the system is marginally stable with zero parametric gain.

We follow a similar procedure to analyze phase stability. To avoid redundancy, here, we only
present the major steps in the derivation procedure. The linearized dynamic equation for the
phase domain based on Eqs. (39–41) is
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∂
∂t

2
6664

∂δθEþ
∂t
δθEþ
δθEþ
δθ2

3
7775 ¼

2
66664

2n
β2c

i 2i
β2
½ ∂∂z þ 1

2
ðl0 − 3γ̃jĒj2Þ� 2P̄

β2Ē
0

1 0 0 0

0 ðρ̄2−ρ̄oÞĒ
2P̄

− 1
T2

− ρ̄2E
2P̄

0 − 2Ē P̄
ρ̄2

− 2Ē P̄
ρ̄2

− 1
Tg

3
77775

2
66666666664

∂δθEþ
∂t

δθEþ

δθEþ

δθ2

3
77777777775
: (48)

With any eigenvalue λ of the above matrix, we have the following relationship about the
phase angle of the electric field at the two boundaries of the cavity,

δθEþðLÞ ¼ δθEþð0ÞefpðλÞL; (49)

where

fpðλÞ ¼ −
β2
2
iλ2 −

n
c
λ −

1

2
ðlo − 3γjĒj2Þ − ðρ̄2 − ρ̄oÞðλþ T−1

g Þ þ 2Ē P̄

2½ðλþ T−1
2 Þðλþ T−1

g Þ − Ē2� : (50)

The above transcendental equation is solved by incorporating the boundary conditions of the
phase angle. The following relationship holds because of the reflection of the phase angle at each
of the boundaries and the antisymmetry between the forward and backward propagations of
phase angles

δθEþðLÞ ¼ −δθE−ðLÞ ¼ δθEþð0Þ: (51)

Thus, we have

fpðλkÞ ¼ j
2πk
L

k ¼ 0;�1;�2;�3; : : : : (52)

The full spectrum of eigenvalues λk for phase stability is solved based on Eq. (52) for each
mode identified by the integer k. The stability criteria are determined by the parametric gain as
explained previously.

4 Results and Discussion

We aim to investigate the amplitude and phase stabilities under the GVD and saturable absorber
effects. Our ultimate goal is to tailor these effects to design a QCL for MIR pulse generation, so
we vary the GVD and saturable absorber strength within a certain range by referring to the
parameters provided in the literature8,10 to examine the interaction between the GVD and
the saturable absorber. The saturable absorber strength γ of the QCL structure (wafer
No. 3251) emitting at 8.47 μm is between 1 ∼ 2 × 10−9 cm∕V2 when the active region
width is in the range of 3–7.5 μm.10 The saturable absorber strength is estimated based on
n2 ¼ 2 × 10−8 cm2∕W.10 We take this structure as our simulation prototype and set the variation
range of the saturable absorber strength γ to be 1 ∼ 4 × 10−9 cm∕V2. The waveguide structures
of the QCL in Refs. 8 and 10 (the waveguide structure of Ref. 10 is detailed in Ref. 18) are
similar. They are both grown by metal organic vapor-phase epitaxy (MOVPE) and made by
an InGaAs/InAlAs core and highly Fe-doped InP cladding layers. Thus, for our simulation,
we can adopt the GVD coefficient of the structure in Ref. 8 as the baseline of our GVD variation.
As reported in Ref. 8, the measurement of a ∼5 μm QCL with an InGaAs/InAlAs active region
shows an anomalous GVD coefficient β2 ∼ −4.6 × 10−6 ps2∕μm.8 We set the variation range of
the GVD coefficient β2 to be ð−10 ∼ −1Þ × 10−6 ps2∕μm. For other parameters, we follow the
parameters provided for the Fabry–Perot cavity in Ref. 10.

We studied the amplitude and phase instabilities with both the GVD and saturable absorber
existing in the cavity under various pumping strengths. Results are presented in Fig. 1 for ampli-
tude instability and in Fig. 2 for phase instability. We want to note that the line type and color
assignment shown in the insert of Fig. 1(a) also apply to all other figures. In each case, the
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Fig. 1 Amplitude stability with the existence of GVD and saturable absorber effects under different
pumping strengths p: (a) p ¼ 3, (b) p ¼ 4, (c) p ¼ 5, and (d) p ¼ 7.

Fig. 2 Phase instability with the existence of GVD and saturable absorber effects under different
pumping strengths p: (a) p ¼ 2, (b) p ¼ 3, (c) p ¼ 4, and (d) p ¼ 5.
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stability is demonstrated by the parametric gain versus detuning frequency. For reference, in each
figure, we also present the cases when the GVD or saturable absorber is absent, i.e., β2 ¼ 0 or
γ ¼ 0. In our simulation procedure, we found that the amplitude (or phase instability) responds
almost indifferently to the strength of the GVD when β2 has the range of ð−10 ∼ −1Þ×
10−6 ps2∕μm, which is a reasonable range for the QCLs (Refs. 8 and 17). Thus, we only
show the results with β2 ¼ β20 ¼ −5 × 10−6 ps2∕μm to represent the cases with the GVD effect.

The amplitude instability without the GVD effect exhibits as that of an RNGH-type insta-
bility. From Fig. 1, it can be found that, under each pumping level, the presence of the GVD
alters the influence of the saturable absorber on the amplitude instability. That is, an increase in
the saturable absorber strength can drive the amplitude to be more stable when the GVD is
present. Inversely, a stronger saturable absorber boosts the instability by lowering the instability
threshold when the GVD is absent.10,12 Thus, the lasing cavity with a stronger saturable absorber
effect is less affected by the presence of the GVD. The interaction between the GVD and the
saturable absorber on the amplitude instability is also affected by the pumping strength p.
Figure 1(a) tells that, under low pumping strength, the GVD tends to destabilize the amplitude
and flattens the parametric gain curve throughout all frequency modes. When the pumping
strength gets stronger, as shown in Figs. 1(b), 1(c), and 1(d), the effect of the GVD can be sup-
pressed by the saturable absorber effect. Hence, the instability without the GVD resembles that
of the instability with the GVD, especially for the frequency portion that is closely around the
central frequency. Apparently, to achieve such suppression, the weaker the saturable absorber is,
the higher is the pumping strength needed. This is because of the fact that the suppression is
related to the nonlinear portion of the loss γ̃jĒj2. We notice that, in Figs. 1(c) and 1(d), for the
case with the highest saturable absorber strength under study, the symmetry of the gain spectrum
about the central frequency is broken, which is mathematically caused by the emergence of an
imaginary part in the steady-state solution.

The phase instability is of a single-mode nature. The GVD has a lesser effect on the phase
instability than it does on amplitude instability, especially, the GVD effect is almost suppressed
at a higher pumping level. At a lower pumping level, the destabilization of the phase by the GVD
only happens at frequencies that are away from the central frequency.

5 Conclusions

We present an analysis procedure on the amplitude and phase instabilities of MIR QCLs with the
presence of GVD and saturable absorber effects in the lasing cavity. The significance of this
work is in accounting for the GVD effect, whose presence in MIR QCLs has been substantiated,
in the discussion of QCL instability mechanisms.

Stability analysis was performed through the linearization of dynamic equations based on the
Maxwell–Bloch formalism. Because of the second-order differential term brought by the GVD,
the quadratic eigenvalue problem results from the linearization and it is treated by a degeneration
technique. The instability mechanisms are decoupled into amplitude and phase domains through
the symmetry or antisymmetry propagation of fields along the cavity.

Simulation results show that the effect of the GVD on the stability of QCLs is largely de-
pendent on the saturable absorber and pumping strength. The GVD could significantly desta-
bilize the QCL pulse amplitude under a lower pumping level and weaker saturable absorber
strength. With the increase of pumping and saturable absorber strength, the GVD effect
could be suppressed. The GVD has only a slight effect on the phase instability, and the effect
decreases as the frequency approaches the central frequency. The results obtained from this
research will contribute to our further investigation on the topic of soliton dynamics of
QCLs for MIR pulse generation.
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