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Abstract. A photovoltaic (PV) panel operating in partial shading condition results in lowering
its power efficiency. In a worst-case scenario, it can create a hotspot that can eventually cause a
fire hazard. To address this issue, bypass diodes are connected across a group of PV cells having
series-parallel (SP) configuration. Owing to the placement bypass diodes in the PV panel, it can
circumvent unshaded PV cells. Hence, topologies such as total cross-tied (TCT), bridge link
(BL), and honeycomb (HC) for PV panels are proposed besides SP to reduce the effect of partial
shading. Each configuration demonstrated advantages over SP topology. However, many of
these configurations lack a mechanism to isolate PV cells that are affected due to the hotspot.
Recently developed complementary metal oxide semiconductor (CMOS)-embedded PV panel
has been shown to offer many other benefits besides effectively dealing with shading conditions.
We are comparing the performance of CMOS-embedded PV panel under various partial shading
conditions with PV panel with fixed configuration topologies, such as SP, TCT, BL, and HC.
SPICE-based equivalent PV modeling technique is used in this research to compare the
maximum power generated in different topologies under changing partial shading conditions.
Results show that CMOS-embedded PV panels are more efficient in coping with partial shading
conditions compared to any other contemporary fixed topologies. © The Authors. Published by
SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JPE.10.042004]
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1 Introduction

Power is an undisputed lifeline in today’s high-tech world. Mass awareness drives have created
significant cognizance toward sustainable and green technologies in the past quarter-century
in response to the depletion of fossil fuels and volatility of energy prices. Photovoltaics (PV)-
based, sustainable, and green-technology-based power sources are in high demand due to their
ability to meet industrial, commercial, and residential demands. Government incentives available
to consumers for PV-based renewable energy systems have further fueled their acceptance.
Due to the consistently increasing popularity of PV-based energy, many advancements have
happened that enable improving its performance and reducing its cost. Recent advancements in
silicon processing have increased the efficiency of single-crystalline silicon-based PV cells by
28%.1 Also, many advanced maximum power point tracking algorithms are now available that
enable harvesting higher amounts of energy from a PV panel.2 Despite these improvements in
solar energy harvesting, PV modules still use series-parallel (SP)-based fixed topology. As a
result, a PV module remains vulnerable to such issues as partial shading,3,4 irradiance fluc-
tuation,5–8 mismatch,9–11 and faulty conditions,12–15 which are known to severely affect its power
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efficiency and performance. In response, most of the PV modules are equipped with a bypass
diode to minimize the effects of such issues.15–17

Besides the typical SP topology, topologies such as total cross-tied (TCT),18–20 bridge link
(BL),21 and honeycomb (HC)22 are being considered and analyzed in different partial shading
conditions.22–31 Performance of each topology varies under different shading patterns, and their
performance has proven to be better than the regular SP topology. However, each topology has
advantages and disadvantages under different conditions.18–31

A PV module embedded with complementary metal oxide semiconductor (CMOS) switches
has recently been proposed as an alternative to the SP-based PV module with bypass diode.32–39

Studies have shown that PV modules embedded with switches have better capability for dealing
with partial shading, mismatch issues, and faulty conditions.32,33,35,37 Additionally, such PV mod-
ules reconfigure in real-time (i.e., an number of PV cells connected in series × number of cells
connected in parallel change), which enables creating a power island.36 Among all switches,
CMOS-based switches are ideal for creating a reconfigurable PV module, since they can be easily
integrated with PV cells in a single die, i.e., monolithic CMOS-on-PV.36,39 However, unlike all
other contemporary topologies, the reconfigurable PV module requires a controller, a computing
device, and an algorithm for partial shading or fault detection. Therefore, a comparative study
between the reconfigurable PV modules with these newer topologies is required to better under-
stand the effectiveness of switches in alleviating the limitations in the PV module.

In this paper, we are presenting a comparative analysis between reconfigurable PV mod-
ules and traditional PV configurations, namely SP, TCT, BL, and HC, operating under differ-
ent shading patterns. Such a comparison between fixed topologies and reconfigurable PV
modules has not been done in any previous studies. Only fixed topologies are compared
among themselves in different partial shading conditions, as shown in Table 1. This research
effort is vital to weigh-in, adding complexity in a PV module for improving the performance
during partial shading conditions. In addition, through this paper, we build upon the previous
research conducted in this area40 and add to the existing body of knowledge by including a
bypass diode in our study, which was not included in previous studies. Having a bypass diode
in PV systems is an industry norm, and hence this analysis will help in understanding how
each configuration responds to various partial shading conditions. This research determines
the best alternative to SP topology-based PV module with bypass diode, to create a futuristic
smarter PV module. Simulation and performance analysis of the PV array is done using
SPICE,41 which was used to evaluate the performance of SP, TCT, BL, and HC in
Refs. 23–28 and 31. It is envisioned that this research will lay the foundation for future
research and help the PV industry excel.

2 Preliminary

2.1 Different Topologies in PV Modules

In this section, SP, BL, HC, and CMOS-embedded PV configurations are presented to explain
the difference in their internal connections. We also discussed the SPICE-based PV modeling
technique as it is used for comparison in this research.

Table 1 Comparison between the performances of fixed topology PV module in different shading
conditions.

Reference Series-parallel Total cross-tied Bridge link Honeycomb

18, 23, and 27 ✓ ✓ ✓ ✓

19, 20, and 28 ✓ ✓

21, 22, 24, 25, and 30 ✓ ✓ ✓

31 ✓ ✓
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2.1.1 Series and parallel

SP configuration is a traditionally used configuration, where each PV cell is connected in series
to increase the voltage. These series connected PV cells are then connected in parallel to increase
the current in the panel. Therefore, the output voltage of the PV module is proportional to the
number of PV cells in series connection, and the output current of the PV array is proportional
to the total number of parallelly connected series of PV cells. The fact that this configuration is
economical, easy to build, and requires no additional components has elevated it as an industry
standard.26 However, the average efficiency of power and decreasing current under unfavorable
circumstances have paved the way for inventing more efficient and cost-effective configurations.
An SP topology with four series connected in parallel wherein each series consists of eight PV
cells is shown in Fig. 1(a). We are assuming a bypass diode is connected across each PV cell
present in the PV module, as shown in Fig. 1(a).

2.1.2 Total cross-tied

The TCT topology is similar to the SP configuration. Each PV cell in a row of parallelly con-
nected PV cells is tied to the neighboring cells.29 This ensures that voltage across the PV cells
tied together remains the same. Hence, the total voltage across a PV panel in TCT topology is
equal to the summation of voltage across each cross-tied PV cell in the panel. The total number
of bypass diodes used in TCT topology is much less compared to SP topology owing to the
cross-tied connection between PV cells. Hence, due to its simplicity, similar to the SP topology,
TCT can also be used for the mass production of PV panels. A PV panel consisting of 32 PV
cells that are using TCT topology is shown in Fig. 1(b).

2.1.3 Bridge link

BL configuration is a type of cross-tied topology that is interconnected in a bridge-rectifier way.
In this configuration, two or more series of PV modules are connected in parallel with two

Fig. 1 Fixed configuration of PV module with 32 PV cells: (a) SP PV module integrated with
bypass diode connected across each PV cell in module (b) TCT, (c) HC, and (d) BL.
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parallel strings that create a tie between the series giving an appearance like a bridge.26 The
number of parallel connections between the series of PV modules is less than that of the
TCT configuration but more than that of the SP configuration.

The disadvantage of BL configuration to the SP configuration is that the structure of BL
configuration is complex to build, and a higher number of switching devices are required.
However, these drawbacks are overlooked as the performance of BL is comparatively higher
than that of the SP configuration under shaded conditions.14,26

2.1.4 Honeycomb

Just like the BL configuration, honeycomb (HC) configuration is a type of TCT configuration.
It is connected in a hexagonal pattern that replicates a honeycomb structure, and hence the name
“honeycomb” is used.29 The series connections between the PV modules is comparatively less
than that of the traditional SP configuration. This decrease in the series connection will help to
improve the mismatching power loss that usually occurs in the PV module. The interconnection
for the 32 PV cells-based PV panel using HC topology is shown in Fig. 1(d).

2.1.5 Photovoltaics embedded with CMOS switches

A typical reconfigurable PV module consists of three key components: reconfigurable PV mod-
ule, embedded computing system, and an algorithm. The block diagram of a complete system-
level reconfigurable PV module is shown in Fig. 2.

Reconfigurable PV module embedded with CMOS switches. Figure 3(a) shows a
PV panel where each PV cell is embedded with CMOS-based addressable programmable
switches (APS). The CMOS-based APS switches are shown in Fig. 3(b).

The total number of APS in a PV panel is one less than the total number of PV cells present in
the panel. Each APS switch will have its own 6-bit digital reference address. These APS switches
are connected to a common clock, data, and reset signals. The data packet that is sent serially
through the data signal is of 9 bits. The least significant 6 bits consist of a digital address,

Fig. 2 Block diagram of reconfigurable PV module controlled by an embedded computing system.
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whereas the 3 most significant bits are for turning-on or turning-off switches SW1, SW2, and
SW3, as shown in Fig. 3(b). The switch SW1 enables connecting a PV cell to the negative ter-
minal, and switch SW3 lets the PV cell connect to the positive terminal. The switch SW2 enables
connecting two PV cells in series. Compared to the switch-embedded PV module embedded
with switches presented in Refs. 32, 33, and 37, the CMOS-embedded PV module shown in
Fig. 3 is three times faster.38 The increased speed is a result of APS turning ON/OFF three
switches (SW1, SW2, and SW3) simultaneously compared to one serial line controlling only
one switch at a time.

Consider a CMOS-embedded PV panel consists of 32 PV cells. This will require 31 APS,
as shown in Fig. 3(a). Assuming the CMOS-embedded PV panel is in 4 × 8 configuration,
representing the number of PV cells in parallel × the number of PV cells in series. Consider
that the user wants to change the configuration from 4 × 8 to 4 × 7 configuration. For changing
the configuration, the APS switches required to be modified are identified by the user. Later,
the data packet for those APS switches is generated and sent serially through the data line.
Consider that each APS switch has the address shown in Fig. 3(a). Among the several ways of
changing, the configuring from 4 × 8 to 4 × 7 data packets in the following order must be sent
to the PV array.

Fig. 3 (a) PV module embedded with CMOS-based APS (b) 9-bit APS.
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i. Initially, a 9-bit data packet of “1000100010” is sent serially to the PV array.
ii. The 3-bit most significant bit, “100”, will turn off switch SW2 and SW3 for the APS with the

digital address of “0100010.”
iii. The switch SW1 in APS with a digital reference address of “0100010” will be turned on.

Since other APS have separate digital reference address; therefore, the received data packet
will not affect them.

Embedded computing system. The role of the embedded computing system is to mea-
sure the output power delivered to the load, process it, and then generate appropriate output
signals to change the configuration of the reconfigurable PV module. Depending on the discrep-
ancy between the measured power and computing power, the algorithm will generate data pack-
ets to change the configuration of the reconfigurable PV module. This data packet is then sent
through the serial data line to each APS switch in the reconfigurable PV module as shown in
Fig. 2. Besides that, the embedded computing system will also generate and send the reset and
clock signal to all APS switches present in the reconfigurable PV module. Over the years, many
different kinds of embedded systems are used, such as computers,32,33,37 field programmable gate
array,38,39 and Raspberry PI.42

Algorithm. The algorithm for a reconfigurable PV module is presented in Refs. 32, 33, and
37–39. The algorithms developed and implemented for the reconfigurable PV module adhere to
the following steps.

i. The embedded computing system will compute the expected power generated that is pre-
sented as PExpected in Fig. 4.

ii. The PExpected will be compared with the measured powered, PMeasured recorded by the
embedded computing system.

iii. If the PMeasured and PExpected are equal, there exists no shading condition. On the contrary,
if they are not equal that means shaded PV cells are present in the module as shown in Fig. 4.

iv. Once the presence of the shaded PV cells is detected then the goal of the algorithm is to
detect the exact location of the shaded PV cells in the panel. Various techniques for shaded
PV cell detection are presented in Refs. 32, 33, and 37–39. In Refs. 32 and 39, first row and
then column is scanned one after another to identify the location of shaded PV cells.

Fig. 4 Flowchart explaining the algorithm for shaded PV cells detection and mitigation.
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However, this technique is tedious and time consuming. Later, a dynamic programming-based
shaded PV cell detection was presented in Ref. 33. After identifying the location of the shaded
PV cells, the algorithm’s goal is to determine the optimal configuration of the PV module to
maximizing power generation.

2.2 Modeling of PV Cells and Module

For modeling the PV cells, two-diode-based equivalent circuit from Ref. 41 will be used, as
shown in Fig. 5. The parameter Iph shown in Fig. 5 is photon current. The photon current is
dependent on the area of the PV cell and solar irradiation. The photon current, Iph, across a
PV cell is computed by Eq. (1), where JSC is the short circuit current density in A∕cm2, and
APV is the area of the PV cells in cm2. The Id1 and Id2 are the diode current across the two diodes,
respectively. The diode current is computed using Eq. (3), where Is is the saturation current of
the diode (Table 2).

EQ-TARGET;temp:intralink-;e001;116;570Iph ¼ Jsc × APV ×
G

GSTC

; (1)

Fig. 5 Double diode-based equivalent PV cell modeling.

Table 2 Parameters for PV cell equivalent circuit model.

Symbol Description Value and units

VPV Output voltage across PV cell Voltage

IPV Output current from PV cell Amperes

VOV Open load voltage 0.55 V

IPh Photon current 2.17 A

RP Internal shunt resistor 1 × 10−3 Ω

RS Internal series resistor 100 kΩ

APV Area of PV cell 126.6 cm2

JSC Short-circuit current density 34.3 mA∕cm2

V T Thermal voltage 26 mV

A Diode ideality constant

IS Diode saturation current IS1 ¼ 1.27 nA and IS2 ¼ 127 nA

G Solar irradiation data 1000 W∕m2

GSC Shaded solar irradiation data 500 W∕m2
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EQ-TARGET;temp:intralink-;e002;116;723IPV ¼ Iph − Id1 − Id2 −
�
vPV þ iPV · RS

RP

�
; (2)

EQ-TARGET;temp:intralink-;e003;116;688Id ¼ IS

2
4e

�
VPV−IPV·RS

A·Vt

�
− 1

3
5: (3)

IPV in Fig. 5 is the current generated by the PV cells that can be calculated by Eq. (2).

3 Experimental Setup

The shading pattern used for the experiment is shown in Fig. 6. For comparing the performance
of each type of topology, we are considering a PV module consisting of 32 PV cells in 8 × 4

configuration. The PV cells arranged in each PV panel will be similar, except the topology by
which they are connected with each other is different.

Also, for simplicity, all the PV cells in the PV panel are assumed to be homogeneous, with no
mismatch between them. The solar irradiance of unshaded and shaded PV cells is equal to 1000
and 500 W∕m2, respectively. The current versus voltage (I–V) and power versus voltage (P–V)
characteristics of the PV module configured in various topologies (SP, TCT, BL, and HC) are
simulated using PSpice. During the I–V and P–V characteristics, the PV panel is assumed to be
operating at a constant temperature of 25°C. The I–V and P–V characteristics for PV panel in SP
topology with 32 PV cells for no shading and the shading pattern is presented in Fig. 7. This
characteristic is shown in Fig. 7, which is obtained by SPICE simulation using two-diode-based
equivalent circuit.41

Fig. 6 Shading pattern used for the experiment: (a) 10% of shaded PV cells, (b) 25% of shaded
PV cells, (c) 50% of shaded PV cells, and (d) 75% of shaded PV cells.
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The open-circuit output voltage of the PV panel, with 32 PV cells connected in 8 × 4,
is equal to 4.54 V. The short circuit current for the same configuration is equal to 17.4 A.

4 Results

Since the total power generated by the PV panel is essential in determining the power efficiency,
we evaluated the P–V characteristics for different topologies under 10%, 25%, 50%, and 75%
partial shading conditions. The CMOS-embedded reconfigurable PV module can change its
configuration by altering the number of PV cells in series and parallel. Therefore, unlike fixed
topologies, SP, TCT, BL, and HC, their performance is tested for the entire possible configu-
ration that gives out maximum power efficiency. The P–V characteristics of each case are shown
in Fig. 8. As shown in Figs. 8(a)–8(c) for 10%, 25%, and 50% shading conditions, the TCT
topology generates maximum power. However, for a 75% shading condition, maximum power
is obtained with BL topology, as presented in Fig. 8(d).

It is clear from P–V characteristics shown in Fig. 8 that, among all the topologies, CMOS-
embedded PV panel demonstrated a better capability of dealing with shading conditions. This is
evident from the peaks of the curves in all the configurations we tested and shown in Fig. 8.
It is apparent from Fig. 8 that CMOS-embedded PV panels generated maximum power when in
2 × 16 configuration. The maximum possible power generated by all the topologies for different
partial shading pattern is shown in Fig. 9. It is evident from all four partial shading conditions
that the most efficient way of dealing with partial shading is by reducing the total number of
PV cells connected in series, since the current driving capacity of a series connected PV cells is

Fig. 7 (a) I–V characteristics of SP PV panel with 32 PV cells; (b) P–V characteristics of SP PV
panel with 32 PV cells. The total number of PV cells in series is equal to 8, whereas the total
number of PV cells connected in parallel is equal to 4.
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determined by the least efficient PV cell in the row. The CMOS-embedded PV panels can
smartly reconfigure the PV panel in real-time and reduce the impact of power loss due to shaded
PV cells in series with unshaded PV cells.

Based on the results presented in Figs. 8 and 9, it can be concluded that a CMOS-embedded
PV panel can deal with partial shading conditions by reducing the total number of PV cells
connected in series. Therefore, every time a partial shading condition is detected, a reconfig-
urable PV panel will change to a configuration with a minimum number of PV cells in series.
However, this reduction of PV cells connected in series can diminish the effectiveness of the
reconfigurable PV array when the partial shading condition is changing in quick succession.

To address this concern, we measured the maximum power generated under 10%, 25%, 50%,
and 75% for all topologies. Later, Pmax is computed using Eq. (4) and is compared with the
power generated by CMOS-embedded PV panel for various configurations under different
partial shading conditions.

Fig. 8 The P–V characteristics of 32 PV cells-based PV panel for different shading patterns.
(a) 10% of shaded PV cells, (b) 25% shaded PV cells, (c) 50 % of shaded PV cells, and (d) 75%
of shaded PV cells.

Fig. 9 Maximum power generated under various partial shading conditions was simulated using
SPICE simulation. The reconfigurable PV panel is in 2 × 16 configurations, where 2 is the number
of PV cells in series and 16 is the total of PV cells in parallel.
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EQ-TARGET;temp:intralink-;e004;116;542Pmax ¼ max

�
PSP; PTCT; PBL; PHC

�
: (4)

In Fig. 10, Pmax is the maximum power generated among fixed topologies for four different
shading conditions. It is clear from Fig. 10 that a reconfigurable PV panel gives out many local
maxima points that are better than other fixed (SP, TCT, BL, and HC) topologies. Hence,
a reconfigurable PV panel is not required to reduce the total of PV cells connected in series
to the minimum for outperforming the fixed topology PV panel under partial shading condition.
From Fig. 10, for all four cases, the reconfigurable PV module generated maximum power
when it is in 2 × 16 configuration. The schematic arrangement of reconfigurable PV module in
2 × 16 for all four shading conditions is shown in Fig. 11.

Thus far, for all the cases, we assumed the MOSFET transistors to be resistorless. However,
that is not the case. These MOSFET transistors offer some resistance, which is called ON-
resistance. Mostly, the ON-resistance can be reduced by increasing the aspect ratio (width per

Fig. 10 Maximum power generated under various configuration (number of PV cells in series
X number of PV cells in parallel) for different shading patterns by CMOS-embedded reconfigur-
able PV panel. Pmax is the maximum power generated in fixed topology.

Fig. 11 The PV module embedded with CMOS-based APS switches is programmed to be in
2 × 16 configurations when (a) 10% of PV cells are shaded, (b) 25% of PV cells are shaded,
(c) 50% of PV cells are shaded, and (d) 75% of PV cells are shaded.
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length) of each MOSFET transistor. Still, the contact resistance of two-terminals of the MOSFET
transistor plays an essential role in determining its ON-resistance. Therefore, a realistic com-
parison between the reconfigurable PV module with other fixed topologies is shown in Fig. 12.
The ON-resistance of each MOSFET switch is equal to 11 mΩ.

In Fig. 12, it is seen that for all the four shading conditions, the reconfigurable PV module
performance is still better than that of the fixed topology. However, compared to Fig. 10, the
performance of the PV module in Fig. 12 is reduced due to the ON-resistance of the MOSFET
transistor. Hence, for the reconfigurable module to be effective during partial shading conditions,
the ON-resistance of the MOSFET transistors has to be minimal. The minimization of ON-
resistance in a reconfigurable PV module can be achieved by creating monolithic CMOS-on-PV,
as presented in Ref. 36. Besides offering lower resistance, a monolithic CMOS-on-PV module
offers many advantages that are discussed in Refs. 36 and 39.

5 Discussion and Future Works

The traditional power grid is moving toward a smart grid, where there will be two-way com-
munication between the customers and utility companies. This is envisioned to be achieved
through IoT and 5G technology.43 A smart grid will integrate renewable energy with the con-
ventional power grid. Since the CMOS-embedded PV panels are integrable with IoT and 5G
technologies, these have the qualities to eventually become part of smart grid systems. Also,
when such a reconfigurable PV panel is deployed citywide and statewide, the combined power
improvement by this smart panel will be quite significant. These reconfigurable PV panels can be
ideal for the location where the area of installation is limited. Since this CMOS-embedded PV
panel using the spatial and temporal tuning in the configuration can dynamically improve the
overall power efficiency under changing irradiation conditions. Moreover, due to its ability to
change the configuration according to the change in the solar irradiation. Hence, they are ideal to
be deployed in places that are near to the northern hemisphere. Also, the increase in power
production through CMOS-embedded PV systems will eventually reduce carbon emission and
other related issues. As a result, this research is a good fit with the National Climate Assessment
(NCA) report recommendations calling for researching adaptation and mitigation strategies to
counter climate change.44

One of the critical components of the CMOS-embedded PV module is the algorithm.32,33,37–39

The algorithm first detects the presence of partial shading conditions and then, based on the
presence of shaded PV cells, determines the configuration that minimizes the effects of partial
shading conditions.

Fig. 12 Maximum power generated by reconfigurable PV module under various configurations for
different shading conditions. The ON resistance of each MOSFET switches is equal to 11 mΩ.
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For making the reconfigurable PV panel much smarter, the algorithm used by them should be
sensitive enough to detect the presence of shaded PV cells in the panel. Also, the algorithm
should have finality in determining the total presence of unshaded PV cells. Moreover, the algo-
rithms should be fast enough to correctly determine the optimal configuration that can minimize
the inefficiency created while changing from one configuration to the other. Therefore, the role
of the algorithm is critical for the overall performance of CMOS-based smart PV systems;
else the improvement in performance due to the reconfigurability will not be realized. Hence,
more research work in improving the algorithm of the reconfigurable PV will make it even more
revolutionary in powering technologies of the future.

6 Conclusion

In this paper, the effectiveness of fixed topology and reconfigurable PV panel under partial shad-
ing condition is compared. For a fixed topology, an SP with bypass diode, TCT, BL, and HC are
used. For reconfigurable topology, a CMOS-embedded PV panel is used. The performance of
each topology is analyzed and compared using SPICE modeling for four different partial shading
conditions. Based on the P–V characteristics of each topology, the CMOS-embedded PV panels
outperform other fixed topology-based PV panels. Reconfigurable PV panels provide a smart
solution that can dynamically adjust to different configurations to outperform other fixed topol-
ogies in partial shading conditions.
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