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Abstract. Accelerated depletion of fossil fuel, energy demands, and pollution force us to
choose renewable and eco-friendly energy resources. Solar cells are considered as an efficient
replacement for fossil fuel. In the family of solar cells, silicon-based solar cells and perovskite
solar cells (PSC) have displayed significant power conversion efficiency (PCE). Perovskites
have been investigated extensively over the past two decades, due to their advantageous proper-
ties, such as high absorption coefficient, efficient carrier mobility, long charge diffusion length,
and direct bandgap. These features make PSC a prospective candidate to replace silicon in solar
cells. By 2018, PSC achieved an encouraging PCE of 23.3%. However, low stability and toxicity
have retarded the commercialization of PSC. With the aim of assisting junior researchers,
we consider the latest achievements in this domain and review the field from a stability and
performance perspective. We emphasize recent developments and methodologies to overcome
drawbacks concerning stability and toxicity. © 2019 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JPE.9.021001]
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1 Introduction

The survival of the human species on Earth is a function of human health, proper climatic con-
ditions, and their affecting factors. Due to heavy energy demands, there has been an increase in
the consumption of fossil fuel, which has elevated the pollution levels leading to global warming.
Thus, the development of an alternate eco-friendly power source is vital to sustain the life on
Earth. The global requirement of power is estimated to grow exponentially every year. Solar cells
are considered as a promising way to meet these energy crises and reduce pollution.1 Since the
last few decades, a silicon-based solar cell acts as an ideal solution. The production of silicon-
based solar cells has increased by 10 times from 2005 to 2013. Silicon-based solar cells have
obstacles such as cost factor, complicated production procedure, and conversion efficiency far
less than the optimum value. Perovskites solar cells (PSC), which have various technical advan-
tages, are considered as a better replacement for silicon solar cells and have a high chance
for commercialization. To avail this opportunity, PSC and their associated factors have been
extensively investigated by researchers.

Currently, silicon-based solar cells have efficiencies over 15%. However, they have a high
energy pay-back time and CO2 emission rate.2 Cost of module, balance of systems,1 and oper-
ation management, though reducing, is reaching a stagnation value far below the optimum.
These drawbacks have generated demands for exploration of new material with high-perfor-
mance capability. The field of conversion of solar energy to electrical energy has experienced
a substantial boost due to development of perovskite-based solar cells. The reported high effi-
ciency of solid-state-sensitized thin film (solar cell based on perovskite CH3NH3PbI as light
harvester)3 has encouraged investigation in this domain. Figure 1 shows the increment in
research papers published in the last few years on perovskites. This increased research
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confirms that PSC has rapidly evolved as an answer to energy crises; presently (by 2018),
it can achieve an efficiency of 23.3% (Table 1).8,9,12,13,15–17 Further, the National Renewable
Energy Laboratory (NREL) graph shows the rapid pace of increment in efficiency achieved in
the last few years.18

Despite such aggressive progress, the contribution of solar cells, to meet the world’s elec-
tricity requirement is less than 1%.19 In solar cells, light-to-electricity conversion efficiency η is
defined as a product of open circuit current density (Jsc), open circuit voltage (Voc), and fill factor
(FF). Research is going on to achieve power conversion efficiency (PCE) up to Shockley–
Queisser limit, which is 33.5% for the single-junction solar cell.20 Theoretical limits as calculated
for a conventional PSC employing CH3NH3PbI3-xClx absorber (Eg ∼ 1.55 eV) are JscðSQ-limitÞ is
27.20 (mA∕cm2), VocðSQ-limitÞ is 1.28 V, FFðSQ-limitÞ is 90.2, and PCEðSQ-limitÞ is 31.4%.21

However, actual results concerning PCE are limited to 15.4%. It has also drawbacks such as lead
toxicity, low operational stability, and large-scale production issues. Recently, Christians et al.
achieved operational stability of >1000 h, by tailoring the interfaces of PSC.22 Although it is
a positive sign, perovskites have to accomplish the levelized cost of electricity for residential
use as 5.0 cents per kWh and achieve a stable lifespan of at least 20 years by 2030 to achieve
successful commercialization.23 Production of 1 kWh of energy from perovskites would incur

Fig. 1 Number of articles published per year on perovskites.4

Table 1 Development of various structure resulting in increase of efficiency.

Year Device structure PCE (%) Reference

2018 As certified by NREL 23.3 5

2017 FTO/TiO2/meso TiO2: perovskite composite/perovskite /PTAA/Au 22.1 6

2016 FTO/bl-TiO2/mp-TiO2/Csx(MA0.17FA0.83)(1-x)Pb(I0.83Br0.17)3/spiro-c 21.1 7

2015 FTO/bl-TiO2/mp-TiO2/(FAPbI3)1–x(MAPbBr3)x/PTAA/Au 20.1 8

2014 ITO-PEIE/Y-TiO2/CH3NH3PbI3–xClx/spiro-OMeTAD/Au 19.3 9

2013 ITO/np-ZnO/CH3NH3PbI3/spiro-OMeTAD/Ag 15.7 10

2013 FTO/graphene-TiO2/mp-Al2O3/CH3NH3PbI3-xClx/OMeTAD/Au 15.6 11

2013 FTO/bl-TiO2/mp-TiO2/ CH3NH3PbI3/spiro-OMeTAD/Au 15 12

2013 FTO/bl-TiO2/mp-Al2O3/CH3NH3PbI3-xClx/spiro-MeTAD/Ag 12.3 13

2012 FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/spiro-OMeTAD/Au 9 3

2011 FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/redox liquid electrolyte/Pt 6.5 14

2009 FTO/bl-TiO2/mp-TiO2/CH3NH3PbI3/redox liquid electrolyte/Pt 3.8 13
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a consumption of 64.77% embodied energy and 31.38% of incorporated materials. This
wastage of energy and materials assures that there is enormous room for improvement.24

Figure 2 shows the blue-dotted curve and a solid circle, which indicates the scope for perfor-
mance improvement.25 The following four conditions would enable a solar cell to maximize its
power output.

• Obey Maxwell–Boltzmann statistics and exhibit a mobility of charge carrier sufficiently
high reaching as high as a 10 cm2 V−1 s−1.26

• Radiative band-to-band recombination. Radiative efficiency from band-to-band transition
for PSC is higher than organic solar cells.26,27

• Internal conversion efficiency reaches 100%.
• Photon recycling effect occurs in the cell.27–31

CH3NH3PbX3 (where X denotes I and Br) with a band gap of 1.5 to 2.3 eV,32 close to opti-
mum gap, shows the best performance in PSC. The success of hybrid PSC is due to the properties
of organic and inorganic components in it. Organic elements render stability for perovskites and
facilitate self-assembly, whereas inorganic component produces extended meshwork by
covalence and ionic interactions. This hybrid combination and their interactions allow precise
crystalline structure formation. Efficient carrier mobility, (multi) ferroics,33,34 high absorption
coefficient (5.7 × 104 cm−1 at 600 nm), long charge diffusion length,35–38 low nonradiative
Auger recombination,39 and direct band gap properties define good performance and efficiency
of perovskite. In addition, Perovskite materials show a strong PL with a narrow full width at half
maximum.40,41

CaTiO3 is the original perovskite mineral, which was discovered and named after Russian
mineralogist Lev Perovski. In 1978, Dieter Weber was the first to show hybrid perovskites. They
initially explored lead halide and later tin, bromide, and iodide. Incidentally, they did not incor-
porate any improvements as they considered it as another semiconductor. Perovskites started
their journey as light absorbers in dye-sensitized solar cells (DSSC). O’Regan and Grätzel
reported fabricating DSSC by use of a nanoscopic titanium dioxide (TiO2) particle layer achiev-
ing PCE of 7.1%.42 PCE of a different PSC structure ranges from 17% to 20.1% (9.3% for single
junction,43 20.1% for regular structure, 19% for planar heterojunction, 21.6% for mesoporous,
17% for planar heterojunction, and 18% for inverted planar heterojunction). New metal halide
perovskite films were fabricated by a single step method utilizing a molar ratio of 1.05 between
PbI2/formamidinium Iodine, providing efficiency of 20.8%.44 These films are used in light-
emitting diodes,45,46 solution-processed photodetectors,47–49 and lasers.50 Transition metal oxide
perovskites, such as LaVO3 (mott insulators) displays an indirect band gap of 1.08 eV. The
d–d transitions and p-d transitions ensure adequate absorption and utilization in solar cells.51

Heterostructures, such as LaVO3 grown on SrTiO3 with a direct band gap of 1.1 eV, are also

Fig. 2 Performance trends of recently reported PSCs (shown by open circles). Shaded region
shows a detailed balance limits (with only radiative recombination) for FF and efficiency. Red
dot with error bar shows a detailed balance limit in presence of Auger recombination. Error
bars correspond to an order of magnitude change in Auger recombination coefficient. Blue dotted
curve and the solid circle indicate possible performance improvement. Reprinted with permission
from Ref. 25. © 2015, AIP Publishing.
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investigated for higher PCE solar cells.52 Doped perovskite solar cell (PSC) gained importance,
especially with hetrovalaent elements. Their energy states can be tuned and reported to achieve
PCE of 15.6% (0.956 sun, AM 1.5).53 Roldan-Carmona et al.54 fabricated semitransparent thin
PSC films that maintained near to device transparency of 30% and PCE above 6%.

2 Structure

First perovskite material CaTiO3, with a general formula AMX3, is called perovskite. All per-
ovskites are not solar perovskite structured compounds. Figure 3 shows an ideal structure of
perovskite. The “A” cation represents methylammonium cations (CH3NH3

þ), M represents
heavy metal cation, and “X” is a halogen—chlorine, bromine, iodine, or combination of three.56

The schematic structure of an ideal perovskite is shown in Fig. 4.55 CH3NH3PbI3 has a distorted
three-dimensional (3-D) structure that crystallizes in the tetragonal I4/mcm space group.

Lead methylammonium iodide perovskites can have three crystalline phases, which are tem-
perature-dependent, namely orthorhombic, tetragonal, and cubic. An extensive investigation is
on for control of metal halide hybrid structure from 3-D to two-dimensional (2-D),57,58 one-
dimensional (1-D),59 and 0D with quantum confinement. Figures 5 and 6 show the XRD pattern
and FESEM morphological image of conventional CH3NH3PbI3 perovskite film, respectively,
against different thermal annealing temperature ranging from 80°C, to 140°C.60 XRD pattern
confirms the presence of perovskite with peaks at 2θ values of 14.2 deg (110), 28.5 deg (220),
and 31.8 deg (310). The peak at 12.7 represents PbI2 phase. Unlike CH3NH3PbI3, which has
a distorted tetragonal crystal, CH3NH3PbBr3 has a cubic perovskite structure phase of Pm3m
space group at room temperature, along with variation in their energy levels as shown in Fig. 7.61

Fig. 3 General perovskite structure. Reprinted with permission from Ref. 55. © 2010 by the Royal
Society of Chemistry.

Fig. 4 Crystal structure of iodide perovskite CH3NH3PbI3, consisting of three ions: methylammo-
nium (MA), lead, and iodine.
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Fig. 5 XRD diffractograms of CH3NH3PbI3 perovskite film after different thermal annealing
temperatures. Reprinted with permission from Ref. 60. © 2015 by Elsevier.

Fig. 6 FESEMmorphological image of perovskite film. (a) Thermal annealing to 80°C. (b) Thermal
annealing to 100°C. (c) Thermal annealing to 120°C. (d) Thermal annealing to 140°C. Reprinted
with permission from Ref. 60. © 2015 by Elsevier.
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In addition, research for fabricating hybrid PSC with various organic cations and metal halide
anions is on.

New structures such as double perovskites (A2B
IBIIIX6), replace Pb2þ with nontoxic triva-

lent/monovalent metals, are reported to yield high efficiency.62 The family of PSC constitutes
structures such as dye-sensitized cells, mesoporous structure, planar (p-i-n and n-i-p) structure,
HTL and ETL free cells, flexible cells, and tandem cells. The prominent structures of solar cells
are as follows.

2.1 Mesoporous Structured Solar Cell

Mesoporous structured solar cell (MSSC) is a third-generation device with low fabrication cost.
TiO2 is the most common mesoporous layer in them. Though TiO2 nanoparticles are the most
commonly used in the mesoporous layer, success reports are available while employing TiO2

nanosheets,63 nanorods, and nanofibers. MSSC consists of a single-phase triple-conducting
oxide (TCO), blocking layer, mesoporous TiO2 or Al2O3 scaffold, perovskite absorber, hole
transport layer (HTL), and a metal electrode in its construction (Fig. 8).64 Usually, MSSC fab-
rication done by a two-step deposition method. The processing temperature is in the range of
150°C. However, highly efficient MSSC devices have a high sintering temperature of 500°C.65

During high-temperature sintering, the mesoporous layer allows rapid extraction of photo-
induced electrons, which shorten the electron transport length. This shortening of length
makes MSSC an efficient light harvester. However, they suffer from the various disadvantage
of having low open-circuit voltage (Voc) and lower light absorbance at wavelengths greater than
700 nm. Mesoporous Al2O3, which acts as an insulator, is found to be more stable than TiO2,
under continuous illumination. TiO2 introduces nonstoichiometry defects, such as titanium inter-
stitials and oxygen vacancies, which causes trap sites.66 Encapsulation of layers can prevent
moisture ingress and degradation. Etgar et al.63 recently reported that spin-casting a methyl-
ammonium lead iodide (CH3NH3PbI3) solution on a 400-nm thick TiO2 nanosheet would
form a mesoscopic ðCH3NH3PbI3Þ∕TiO2 heterojunction. Evaporating a gold film on top of

Fig. 7 (a) Distorted tetragonal crystal structures of MAPbI3 at room temperature. (b) Cubic
perovskite structure of MAPbBr3. Red: polyhederon ½PbX6∕2� − ðX ¼ I;BrÞ; green sphere:
CH3NH3ð¼ MAÞ. (c) Conduction band minimum and valence band maximum of MAPbI3,
MAPbBr3, and TiO2 are represented in eV. (d) Device configuration of the hybrid heterojunction
solar cell consisting of FTO/(bl-TiO2)/TiO2/MAPbX3 bilayer nanocomposites/PTAA/Au layer.
(e) FESEM images, in cross sectional view, displaying different layers in the real device.
Reprinted with permission from Ref. 61. © 2013 by the American Chemical Society.
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CH3NH3PbI3 creates a back contact. It provided PCE of 5.5%, short circuit photocurrent
Jsc ¼ 16.1 mA∕cm2, and open-circuit photovoltage Voc ¼ 0.631 V under Am 1.5 solar light of
1000 W∕m.63

2.2 Planar Structure

Film structure has a simple construction as it does not have a mesoporous scaffold or electronic
layer in it, facilitating ease in fabrication. Figure 9 shows the architecture of n-i-p and p-i-n
variants with different location of the charge transport layer, which is their primary
difference.67 A simple planar junction designed between perovskite and HTM layer, without
scaffolding, corresponds to a simple planar thin-film cell. The major problem in the fabrication
of this structure is to avoid contact between HTM and blocking layer. Vapor deposition and dual-
source vapor method excel in achieving this required feature. Docampo et al.68 applied NiOx and
VOx in planar heterojunction solar cells with CH3NH3PbI3-xClx as photoactive material.
However, these NiOx and VOx interlayers resulted in low photovoltaic performance due to
poor coverage on the substrate by perovskite film.68 Alternatively, UV treatment was reported
to enhance surface wetting properties with increased PCE by 7% on these materials. HCl
improves crystallization and coverage of PbI2 in thin film, which subsequently improves the
morphology achieving a PCE of 14.8% for perovskite thin film.69 Planar heterojunction addi-
tionally assists in evaluating and testing of the new materials and their effect, for solar cell fab-
rication. SnO2 was also experimented to replace TiO2 as electron-selective contact. SnO2 was

Fig. 8 Schematic illustrating of mesoporous PSCs. The mesoporous oxide can be an electron
transporting semiconductors, such as TiO2, ZnO, or an insulating layer, such as Al2O3 or
ZrO2 (MSSC). Reprinted with permission from Ref. 64. © 2012 by the American Association
for the Advancement of Science.

Fig. 9 Schematic representation of two different configurations used PSC. (a) Standard architec-
ture n-i-p and (b) inverted architecture p-i-n. Reprinted with permission from Ref. 67. © 2017 by
Elsevier.
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spin coated and sintered at a much lower temperature of 200°C than TiO2. Its fabrication
included the solvent vapor annealing, which crystallizes the residual PbI2 and adds it at the
interface of SnO2∕CH3NH3PbI3. PSC devices based on SnO2 displayed high stability of holding
the PCE of 13% till 700 h.70

2.3 HTL/ETL Free Cells

The fundamental task of any photovoltaic device is to create charge carriers, i.e., holes and elec-
trons on the absorption of light energy. Further separating them at respective heterojunction and
making them available at their respective electrodes. This separation depends on energy offsets
versus exciton binding energy. It defines the formation of two primary interfaces, perovskite/
electron transport layer (ETL) interface and perovskite/HTL interface. The architecture of a few
PSCs does not have HTL or ETL layers. As these are not mandatory layers, numerous research-
ers have developed PSC without HTL71,72 or ETL with good PCE. Perovskite layer has Au
deposited over it while fabricating the HTL-free PSC. In this, perovskite layer conducts the
duty of absorber and hole conductor by forming a heterojunction with ETL. Aharon et al.71

have reported a two-step deposition method to fabricate highly optimized HTL-free PSC
with a PCE of 10.85%, FF of 68%, and Voc of 0.84 V. Their performance is strongly dependent

Fig. 10 (a) Structure of hole conductor free TiO2 − CH3NH3PbI3 perovskite-based solar cells.
Arrow indicates the depletion region observed at TiO2 − CH3NH3PbI3 junction. Reprinted with per-
mission from Ref. 71. Copyright (2014) Royal Society of Chemistry. (b) Energy level diagram that
shows charge separation process. The position of energy levels is taken from Ref. 63. © 2012
American Chemical Society.

Fig. 11 Structure of PSC: (a) HTL-free PSC and (b) ETL-free PSC.
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on the width of the depletion layer formed by TiO2-CH3NH3PbI3. Depletion layer supports
charge separation and restricts back reaction from TiO2 to CH3NH3PbI3. The width of the
depletion layer is evaluated using Mott Schottky analysis.73 Figure 10 shows a schematic dia-
gram of HTL-free PSC with their energy levels.71 Figure 11(b) shows ETL-free PSC in-which an
insulator (Al2O3) replaces TiO2 scaffold,64 which proves that perovskite material could effec-
tively transport electrons without an ETL. Production cost for HTL-less cells is high, leading to
an increase in device cost. Further, the presence of the HTL layer complicates the mechanism
followed for extraction.

2.4 Tandem Cells

Tandem cells consist of two formats, i.e., four-terminal and two-terminal devices. Figure 12
shows the arrangement of four-terminal tandem device, which has two-terminal devices/
cells. They are either mechanically stacked or monolithically integrated through tunneling junc-
tion. Baillie and his coworkers74 with copper indium gallium selenide, Asadpour et al.75 with a
highly efficient a-Si:H/c-Si heterojunction bottom cell and Mailoa et al. using the c-Si bottom
cell on perovskite/silicon multijunction solar cell have obtained PCE of 30%, 13.4%, and 13.7%,
respectively. Due to the limitation of band gap mismatch and current matching constraints,
a traditional tandem cell of Si and perovskites could only achieve PCE of 24% and 20%, respec-
tively. Top cell absorbs high energy photons and bottom cell harness the remaining low-level
energy photons. MAPbI3 makes an excellent top layer in c-Si solar cells. Hydrogenated indium
oxide, having high mobility, is used as a rear electrode to fabricate semitransparent PSCs.76

Fabrication of two-terminal tandem solar cells with perovskite as the top layer and kesterite
copper zinc tin sulfide (CZTS) as bottom cells was reported to attain a PCE of only 4.6%.
This reduction is primarily due to semitransparency of the top aluminum electrode, resulting
in transmission loss.77 Thus, the highly efficient and transparent top layer is a very critical factor.
Further, they should be immune to thermal instability and hygroscopicity. Numerous transparent
electrodes used here are ultrathin metal such as Au,78 graphene,79 carbon nanotubes,80 and Ag
nanowires.19 However, efficiency achieved was below 10%, and their contacts featured strong
absorption in near-infrared (NIR). PSC that are individually efficient underperformed when used
as tandem cells, due to sensitivity to a thickness of perovskite layer. Thus, bifacial tandem cell

Fig. 12 Architecture of a four-terminal PSC.
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was fabricated, which utilizes scattered light back from the ground (Fig. 13) to achieve a PCE of
∼33%.75 Further, they are immune to variations in perovskites layer thickness.

3 Fabrication

Fabrication is a prominent factor in PSC. Fabrication factors such as time, solvent mixtures,
doping, and humidity have a marked effect on crystallization of perovskites.81 Further processing
routes and solvents selected induce intermediate phases and influence device performance with
film quality.81 Synthesis and analysis protocol for large-scale production and laboratory analysis
are different. Most of the PSC that achieved high efficiency in the lab, on small devices, does not
possess commercialization advantage. Large-scale production of PSC should be cost-effective,
good stability, and maintain high performance. Figure 14 shows a one-step and two-step spin
coating method. The perovskites precursor solution is thoroughly stirred and dropped on to the
substrate and accelerated for evaporation of the solvent.83 In the second step, crystalline perov-
skites are achieved, after thermal annealing the sample, by removing the residual solvent.
CH3NH3PbI3 or CH3NH3PbI3−xClx when fabricated by spin coating led to the formation of
scattered nanodots3 and extremely thin layer.64 General drawbacks such as poor quality film,
small grain sizes, and dense pinholes can be controlled to a limited extent by additive
engineering84,85 to obtain required grain sizes. This process has achieved a maximum PCE
of 19.19%. Another major drawback of spin coating is the formation of nonuniform thickness

Fig. 13 (a) Operational bifacial tandem solar panel, utilizing direct illumination of sunlight and
a fraction of light that scatters from the ground onto back of the panel. (b) Traditional tandem
structure and (c) a bifacial tandem structure. Reprinted with permission from Ref. 75. © 2015,
AIP Publishing.
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of the film from center to edges. Two-step coating provides full coverage of PbI2 with cube-like
structure.82

Two-step spin-coated deposition method, as a valid mode for fabrication of PSC, was
reported in 2013. It involves step-by-step spin coating of PbI2 solution and solution of meth-
ylammonium iodide (MAI) on the substrate. Whole set up is thermally annealed at 100°C driving
the interdiffusion of precursors. Single step method produces uncontrolled precipitation of per-
ovskite, resulting in large morphological variations, which hampers the prospects for practical
applications. Thus, in performance sequential deposition process,12 PbX2 solution is first spin-
coated on top of the substrate and then is dipped into a solution of MAI. The performance gets
varied according to different soaking time, from 5 s to 2 h. The optimum soaking period was
found to be 15 min, which resulted in enhancement of current density and voltage of the device
from 10.1 mA∕cm2 and 933 mV (5 s) to 15.1 mA∕cm2 and 1036 mV (15 min),86 respectively.
This method can perform successfully for nanostructured devices with planar heterojunction
structured PSC.

The sequential vapor deposition process is very similar to the two-step spin coating method
except that this method uses vapor deposition, which yields layered multistack thin films over
large areas.17 MAI and PbI2 were vapor deposited on a substrate as layers before thermal
annealing. Yang and his coworkers used vapor-assisted solution process (VASP), also called
a blended deposition method, to produce MAPbI3 films as shown in Fig. 15.87 A solution
of PbI2 in N;N-dimethylformamide was deposited on the substrate by spin coat method.
Later, PbI2-coated substrate is annealed in MAI vapor at 150°C in a nitrogen atmosphere for
the desired time to yield perovskite films. Though spin-coating techniques offer good thin
film uniformity for lab-scale experiments, its drawbacks are concerning wastage of solution dur-
ing coating, unsuitable for large-scale production, and low material transfer efficiency. However,
vacuum and solution processes are two primary methods to fabricate perovskite films starting
with inorganic and organic counterparts of PSC. Solution process results in the rough film sur-
face. Vacuum process requires high energy for creation of vacuum conditions, and the flaky
nature of MAI powder makes synthesis less controllable. VASP resulted in enhanced control-
lability of film quality. VASP method takes advantage of the characteristics of the hybrid nature
of perovskite materials, particularly the low sublimation temperature of organic halides and fast
reaction rate between inorganic and organic species. Full surface coverage, 100% precursor
transformation, uniform grain structure, and print size up to 2 μm are highlights of perovskite
film derived from this approach. It is free of pinhole defects and yields an efficiency of 15.4%.17

Snaith and his coworkers synthesized PSC using dual-source vacuum deposition method. In this
process, MAI and PbCl2 were preheated to 120°C and 325°C, respectively, and evaporated
together using separate sources, to attain superior uniformity in films.17 Vapor-based deposition

Fig. 14 One-step and two-step spin-coating procedures for CH3NH3PbI3 formation82 used in
accordance with the Creative Commons Attribution (CC BY) license.
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processes have few issues in comparison to solution-based deposition processes, such as an
increase in manufacturing cost and capability to achieve increased efficiencies.88,89

Analysis showed that large crystal would have a noticeable effect on PCE, leading to the
development of hot-casting technique. This method guarantees large output and ultrafast
production.90 In this, precursor (iodide) is maintained at 70°C and is immediately transferred
to spin coater as drops in less than 5 s. Rotating for 30 s assists in cooling and quenching
it fast, results in a uniform film with large grain size. Figure 16 shows a schematic diagram
of the hot casting process and displays the proportional relation between temperature and
large grain formation. Figure 16(d) shows a comparative chart of grain size and processing tem-
perature for the hot-casting method and conventional annealing method.91 The comparison con-
firms that the evaporation rate defines the formation of larger crystals. In 2015, Vak’s group have
fabricated a fully printed planar-heterojunction PSC by slot-die coating.92,93

Large-scale perovskites production for roll-to-roll fabrication consisted of various methods,
such as slot-die coating, knife coating, spray coating, screen printing, gravure printing, flexo-
graphic printing, and inkjet printing.94 Slot-die is a premetered coating process, in which mass
flow determines the thickness of the film. Metered solution feed controls the formation of a
uniform thickness of film stripes. In addition, transferring the complete solution to the substrate
would lead to zero loss of solvent. This process involves two steps. The first step consists of
heating the substrate at 70°C, which results in dense and glassy PbI2.

12,94 The second approach
replicates the quenching mechanism to avoid large crystals. It consists of high-pressure nitrogen
flow allowing layers to dry faster. Spray coating and doctor blading are few methods that are
advantageous when integrated with the roll-to-roll process. The genesis of spray coating is from
polymer solar cell fabrication.95 It is combined with ultrasonic spray to enable large-scale pro-
duction in room temperature. PSC achieved a PCE of 13% with 0.065 cm2 active area on glass
substrates96 by this method. Spray coating is reported to be a favorable method for fabricating
tandem structural devices and mixed cation halide perovskites for achieving enhanced perfor-
mance and stability.97 It utilizes minimum solid concentration for large-scale production but has

Fig. 15 (a) Schematic Illustration of perovskite film formation through VASP, (b) cross-sectional
SEM image, (c) current density–voltage (J–V) characteristics of the solar cell based on the
as-prepared perovskite films under AM 1.5G illumination, and cross-sectional SEM image of
the device (inset). Reprinted with permission from Ref. 87. © 2013 by the American Chemical
Society.
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a disadvantage of excessive restrictions on boiling points of solvents used. Inkjet process is
programmable production process but has limitations induced due to ink properties.98

Doctor blading method has an advantage of slower evaporation time, cost-efficient, higher
coverage area, better crystal quality, nil solution waste, and favorable for ambient temperature
processing.99 It is reported to be highly compatible with the roll-to-roll production process for
optoelectronic device fabrication.92,100,101 By applying blade coating for preparation of
CH3NH3PbI3-xClx perovskite films, under ambient conditions, yields large crystalline domains,
high quality, and moisture/air-resistant films. Slower evaporation time leads to better quality
crystals and higher coverage. For perovskites, the formation of large crystalline domains is
encouraged by a relatively slow solvent drying process, on the uniformly wet film formed
by solution blading.102,103

4 Stability

Stability and degradation though have different meaning; they together define the issues and
parameters, which affect existence, availability, and commercialization of PSC. Stability of
PSC is our concern, as they degrade significantly after a few hundred hours of usage. Even after
the necessary coating, they can sustain only 80% of initial efficiency after 500 h. Performance
and efficiency of PSCs decrease, as degradation increases with time. Evaluation of stability is as
per standard of International Electrotechnical Commission damp heat test (at 85°C, 85% relative
humidity). Stable devices can maintain its performance with less than 10% reduction of PCE
after 1000 h of exposure.104,105 Hybrid PSCs are still struggling to reach this goal. Significant

Fig. 16 (a) Hot-casting method and (b) optical micrographs of grain formation as a function of
substrate temperature with casting solution maintained at 70°C. (c) Large area grain formation
using casting solvents with high boiling points. (d) Comparison of grain size as a function of
processing temperature obtained for the hot-casting and conventional postannealing. Reprinted
with permission from Ref. 91. © 2015 by the American Association for the Advancement of
Science.
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factors affecting stability are sensitivity to moisture, ultraviolet exposure, thermal stress, and so
forth. (Fig. 17).106,107 In addition, a prominent hurdle for commercialization of PSC is toxicity
and safety issues due to lead usage.108 Optimum fabrication method for large-scale production of
PSC is still under research. Material instability can be regulated utilizing cross-linking additives
and compositional engineering.109 The best example is adding a combination of PbðCH3CO2Þ2
3H2O and PbCl2 in precursors,110 additionally using cation cascade, including Cs and Rb
cations.7,111 Associated layers of PSC induce instability into PSC. Monitoring of deterioration
by different performance parameters, such as Jsc, Voc, FF, and η, describe its stability status.
Fabrication processes, light absorption, charge separation, charge carriers transport mechanisms
of different layers influence performance parameters. Table 2 shows various methodologies
undertaken to increase the stability factor. Unlike organic solar cells, the decay behavior of
Voc in hybrid PSC, CH3NH3PbI3, follows three steps. These three steps are a fast partial
decay within 10 to 100 μs, followed by an extremely slow decay between 1 and 100 ms,
and then a final rapid decay on the 10-s timescale.130 Initial decay is continuous until
70% and holds at that sector for a hybrid PSC, whereas an organic solar cell decays very
fast, within 1 s.

Half-life is the time required to reach half of the initial absorbance in set conditions. It deter-
mines the strength of decomposition, mainly due to RH. For RH of 98%, 80%, 50%, and 20%,
the half-life of MAPbI3-based PSC films are estimated to be 4, 34, 1000, and 10,000 h, respec-
tively. The half-life is found to be independent of film depth confirming that moisture diffuses
into the bottom of the PSC layer along the grain boundaries.131 Methodology for evaluating
stability is also an essential factor. Researchers at Aalto University have found that only a frac-
tion of stability tests done on perovskite-based solar cells and DSSCs meet proper require-
ments.132 The team analyzed 261 aging tests, conducted on solar cells, and saw significant
shortcomings in the procedure of reporting test results and testing methodology. These defects
emphasized the importance of standardization of testing methodology. Presently, tests are

Fig. 17 Factors affecting stability of PSC.
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conducted only on one cell and in dark region only.132 Many reports state that samples that are
stable in humid conditions were found to be unstable in UV light.132 Only 15 tests conducted
outdoors and three with cells connected, leading to erroneous results; checks need to be under-
taken in real-world conditions in groups of several cells to bring in standardization.132 The same
team has developed a new method, which saves time, effort, and could assess deterioration to the
smallest range. PSC solar films, when they get heated, they turn from black to lead iodide color,
which is yellow, displaying degradation. This degradation does not happen in its bulk form, due
to the catalytic activity of moisture and reduced surface area as compared to films.132 PSC can be
protected from moisture to a certain extent using PMMA [poly(methylmethacrylate)]. It also
helps in nucleation and formation of smooth and fine films.133 The next section discusses various
direct and indirect factors that affect stability.

4.1 Structure

Materials and structure are also essential factors that decides the stability of PSC. The meso-
porous structure formed by TiO2-, Al2O3-, or ZrO-coated substrates, exhibited the pore-filling
problem, low stability, and degraded performance.17,64 Alteration of precursor influences the loss
of organic material in PSC. This mass loss was reported to be 16%, 12%, and 5%, between
temperatures of 250°C and 400°C134 in three steps. Under sunlight and device operating temper-
ature (∼327°K), CH3NH3PbI3 undergoes a phase transition from tetragonal to cubic. A disor-
dered character is shown by methylammonium ions during the cubic–tetragonal transition,
whereas PbX6 octahedron displays a displacive character.135,136 Various combinations of halo-
gens, especially of Pb and Br, induce change and transformation in the crystal structure of
CH3NH3PbðI1−xBrxÞ. As x changes from 0 to 0.13, crystal structure transforms from tetragonal
to cubic form with a change in the band gap. Empherical representation by quadratic equation
EgðxÞ ¼ 1.57þ 0.39xþ 0.33x2 describes the dependence of band gap on x.61 The low value of
bowing parameter, 0.33, in the equation confirms high miscibility137,138 of MAPbI3 and
MAPbBr3. This low value shows that MAPbðI1-xBrxÞ3 would constitute the entire composition
of the compound and enables convenient band gap tailoring. For subservient Br fraction
(x < 2.0), PCE remained unchanged with improved stability factor when tested for 20 days
at 55% RH. Diminished cross-section and transformation from tetragonal to cubic stage, due
to higher Br content, has led to enhanced stability.

New materials such as CH3NH3SnI3 can resolve lead toxicity problems. Whole fabrication
was conducted in N2 environment as it decolorizes if exposed to the room environment. This
decolorization is primarily due to oxidation of Sn2þ ions, which lead to the formation of oxides
of Sn and residual perovskites material. Sn-based PSC shows an enhanced PCE of more than 6%
and has a short diffusion length. It restricts the fabrication of devices with planar architecture. A
combination of Sn with other halides, namely CH3NH3SnðI3-xBrxÞ was developed to achieve
PCE of 6%.139 Schoonman has explained the degradation in the absence of moisture.140 Crystal
structure of 3-D perovskites incorporating corner-sharing PbI6 octahedra is broken into 1-D dou-
ble chains consisting of two adjacent octahedral (MAPbI3· H2O, monohydrate form) and sub-
sequently into 0D isolated octahedral (MA4PbI6· 2H2O, dihydrate form) by intercalation of
H2O½4�. Structural degradation occurs due to ionization-simulated degradation; it happens
when the hole of halide member, which the inner layers produce, migrates and reacts with neg-
ative iodine on the surface. The reports confirm that doping improves crystallization. GeO2

doping, in planar PSC forming PEDOT∶PSS-GeO2 composite films, displayed active sites for
crystal nucleus during annealing.141 Doping has an overwhelming influence on performance,
due to various reasons. Primarily it is due to undesired band bending at ETL and HTL interfaces
with perovskites, increase in Auger recombination, and traps/defects. For higher PCE, the Fermi
level in perovskite should not be above (below) Fermi level of ETL (HTL) in equilibrium.25

4.2 Materials of PSC

Perovskite materials exhibit features such as direct band gap, high optical extinction coefficients
(104 to 105 cm−1) in the NIR-visible region, and high carrier mobility (μ ∼ 1 to 10 cm2 V−1 s−1)
making it a prospective member for light harvesting. A high optical extinction coefficient of
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perovskite makes it a good absorption of light, at low mesoporous film thickness. Tuning the
band gap of perovskite materials is achieved by modifying the chemical composition of
perovskite61 or by alloying different perovskites.142 In addition to other properties, perovskite
materials also exhibit ambipolar charge transport property (can be n- or p-type), which conducts
electrons and holes through them, due to small effective mass of both electrons.36,143–145 High
dielectric constant leads to effective charge screening. By bandgap engineering through modi-
fication of the chemical composition of PSC, such as CH3NH3PbI1-xBrx, the entire spectrum is
utilized.146 Enhancement in PCE happens due to reduction in binding energy. The same was
confirmed by incorporating core-shell Au2SiO2 in PSC and achieved PCE of 11.4%,
Jsc ¼ 16.91 mA∕cm2).146 On addition of PbI2, Sn halide perovskite exhibits photovoltaic prop-
erties. It attained a maximum photon to current conversion of 4.18% with 1060-nm-thick Sn
layer, with a redshift at Sn thickness of 260 nm.142 Variation in prominent layers and adaptation
of methodology can increase stability and PCE. Addition of 5% by volume of water into MAI
solution of isopropyl alcohol assists in preferential crystallization in (110) plane, achieving a
large grain size of ∼600 nm. This method achieved a PCE of 12.42%.147

4.2.1 Electron conducting material layer

A layer that supports electron transport and aids in avoiding hole-electron recombination is
called ECM. LUMO level should be lower than the conduction band of perovskites to achieve
high electron transfer, and for perfect hole blocking HOMO, should be below perovskites. Thus,
normal ETM in CH3NH3PbI3 perovskites will have LUMO of −3.9 eV and HOMO of −5.4 eV.
TiO2 is the most established and favorite ECM layer. It is highly photocatalytic in the UV regime
and thus is a prime member in inducing instability due to UV exposure.148 It provides a high
surface area to perovskites loading and can exist with all nanostructures of 1-D, 2-D, and 3-D
variants. Compact-TiO2 results in lower PCE; however, ethanolamine (EA)-based solvent treat-
ment of compact-TiO2 would enhance the transport feature along with its defects. EA and ionic
liquid molecules (ILMs) are spin coated on compact-TiO2 modifying surface morphology of a
planar perovskites.149 Various other useful solvents that reduce defects of metal oxide and energy
barrier mismatch are conjugated polyelectrolyte,150 ILMs,151 a self-assembled monolayer,152,153

polar solvents, or alcohol/water-soluble-conjugated polymers.154,155 TiO2 is unsuitable on flex-
ible substrates and large-scale production due to high sintering temperature.64 ZnO, organic
materials such as [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), and ICBA (indene
C60 bis adduct), as well as carbon nanoforms and polymers, are an equivalent replacement
of TiO2 with good performance data.156,157 Nanostructured ZnO in PSC can be fabricated at
a low temperature (<150°C), making it viable for photovoltaic devices.10 It has good electron
mobility along with energy alignment. However, ZnO nanostructured, quadruple the rate of deg-
radation due to deprotonation reaction of the organic part in perovskite.158 PCE of 17.2% and
enhancement of 23.2% compared to a nonadditive solution was observed by addition of non-
halogen additives such as acetate (CH3COO

−, Ac-) salts (NH4Ac, NaAc) in CH3NH3I

solution.159 Modification of ZnO layer using ILMs, such as 1-benzyl-3-methylimidazolium chlo-
ride (benmim-Cl),151 elevates performance. Further, TiO2 is doped with various metals to over-
come drawbacks. SnO2 was experimented to replace TiO2 as ECM material to achieve a high
PCE of 13%.70 In few devices, the TiO2 layer is between Al anode and fullerene C60 for ensuring
proper electronic contacts. Further research has led to the formation of valence bands of lower
binding energies, with Fermi levels, within the band gap, by inserting a C60 monolayer between
perovskite and TiO2 contacts.160 The ability of C60 to accept electrons results in high PCE, of
6.7%, along with enhancement of Voc and Jsc. Planar devices using C60 as ETM and NiO as
HTM achieved a PCE of 9.6%. For polymer ETM, solubility is a major issue. Thus, polymer
ETM deposition will affect performance and perovskites layer. In addition to C60, other ETM
example consists of higher fullerene-like C70, PC71BM. Fullerene C60 and its derivative have
increased PCE from 7.3% to 14.9% due to reduced trap density and lower degree of symmetry.
However, due to nonequivalent double bonds, it leads to regioisomeric mixtures, which are dif-
ficult to separate -TiO2 nanocomposites, as ETM, achieved PCE of 15.6%. Graphene quantum
dots, due to their confinement in 3-D modify the band gap. Thus, incorporating these between
TiO2 and perovskites achieved PCE of 10.2% with a Voc of 0.94 V and Jsc of 1.71 mA∕cm2.
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4.2.2 Hole conducting material layer

The primary function of HTM is to extract charges selectively from perovskite and its interface.
The basic advantage of this HCM is its ability to penetrate in mesoporous layer easily. However,
it induces degradation in PSC film.161 Classification of HCM consists of small molecules, poly-
mers, and inorganics. Small molecule HCM such as spiro-OMeTAD is a favorite for mesoporous
and planar structured PSC. Electrolytes have an inbuilt problem of low ionic conductivity. HTM
is less conductive than perovskite material (∼10−3 S cm−1), leading to the requirement of thick
HTM layer. High thickness is necessary to avoid pinholes and leakage, but in devices, it would
lead to high series resistance and imbalance between series and shunt resistance. Thus, spiro-
OMeTAD as solid-state HCM is introduced to nullify these limitations. However, multiplex
synthetic approach and purification are the hindrances for its commercialization. Doping with
lithiumbisimide (trifluoromethanesulfonyl) salt (LiTFSI), 4-tert-butylpyridine (TBP) and cobalt
complex162 assists in improving its conductivity. Due to absorption, device instability increases
and oxidized form of spiro-OMeTAD starts acting as a filter in the visible region at 520 nm.163

Spiro-OMeTAD shows an immediate initial decrease of 20% and, further, it declines steadily.
New materials nicknamed EH44 are replacing spiro-OMeTAD, as it repels water and does not
contain lithium.164 PEDOT:PSS is another proven organic HTL for planar structured devices.
There is energy level misalignment between PEDOT: PSS and VB (5.0 eV) of MAPbI3
(5.46 eV), which results in lower Voc (0.80 V). A higher work function of HTL would lead
to strong recombination at the grain boundary, very low PCE, and affect the Voc of the device.
Doping and addition of additives were used to remove the misalignment and increase efficiency.
Improved HTL doping ratio of 4:1 in volume for PEDOT∶PSS-GeO2 has achieved PCE of
15.15%, JSC of 21.55 mA∕cm2, Voc of 0.96 V, and FF of 0.74 under 100 mW∕cm2 AM
1.5 illumination.141 MoO2 nanoparticles/toluene solution an inorganic hole transporting material
for planar CH3NH3PbI3 PSCs is reported to exhibit stable efficiency of 14.8% under illumination
of 1 Sun (100 mW∕cm2).165 Numerous reports conclude NiO as a good candidate for HTM in
PSC device fabrication. It was able to achieve PCE of 16.40% with high Voc (1.04 V) and FF
(0.72) with negligible current-voltage hysteresis.166 The conjunction of mesoporous TiO2 film
and a hole conducting polymer led to the formation of PSC having 123% PCE under 1.5 Am.158

CuSCN as HTM, along with a buffer layer of thin mesoporous alumina (Al2O3) and an added
coat of insulating polymethyl methacrylate on PSC, was utilized to achieve PCE of 13.3%.
In addition, it displayed stability by retaining the efficiency of 77% after 1000 h at 85°C in
air.161 Utilization of bifunctional polymer nanocomposites as HTLs ½CH3NH3PbIð3-xÞClx� for
light harvesting is also recently investigated with positive results. A gold (Au) nanoparticle
assists in attaining a fourfold enhancement of electrical conductivity and carrier mobility.
Scattering effects of doped nanoparticles have led to a 25% improvement in PCE along
with amplification of the photon absorption on the photoactive layer.167

4.2.3 Blocking layer

Efficient lead halide PSCs use hole-blocking layers to help collection of photogenerated elec-
trons and to achieve high open-circuit voltages. Deactivation of reactions at the surface of TiO2

enhances stability, which is due to the blocking effect of this layer. Spiro-OMeTAD as HTL and
TBP as additives to HTL would develop a reduction of perovskites film absorption. Introduction
of montmorillonite layer between the perovskite and spiro-OMeTAD layers, as buffer, provides
the solution for reduction in film absorption.168 Experiments showed that nonencapsulated devi-
ces had higher stability than encapsulated devices because oxygen would remove the surface
states and ensuring better stability.66 Thus, oxygen is necessary for these devices. When Al2O3

replaces n-type TiO2, as an insulating layer in MSSC, devices achieve stability of 1000 h.169

Performance enhancement occurs when a hole-blocking layer is formed by Mg-doped TiO2,
with a PCE of 12.28%; high FF and Voc (1.08 V). This enhancement is due to the enlargement
of the gap between valence band and conduction band for better optical transmission
properties.170 Ke et al. have fabricated PSC without blocking layers, by growing perovskite
directly in fluorine-doped tin oxide-coated.171 Solution method and ultraviolet–ozone treat-
ment can form layers. Its planar architecture consists of Au/hole-transporting material/
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CH3NH3PbI3-xClx/substrate. It achieved a PCE of 14% and Voc of 1.06 V, which is at par with
conventional PSC. This success is due to ultraviolet–ozone treatment and involvement of Cl in
synthesis. These results confirm that TiO2 is not an ultimate interfacial material for achieving
high-performance PSCs.171

4.2.4 Electrode

Electrode design for large-scale production is still a challenge. The electrode should ensure good
catalytic activity, electron conduction, and high proton diffusion rates. A single-phase TCO is
reported to have enhanced proton and charge transport capability for perovskites.141 Ag and Au
are the favorite elements.172,173 However, due to the cost factor, Ag is a better alternative than
Au.146 However, PSC with Ag as electrode has extremely low stability. Exposure of element to
humidity (RH ∼ 50%) led to the formation of Agl, which deteriorates PCE. Agl transforms the
electrode from a reflective metal to yellow color, which is highly influenced by the HTL layer.
Antireflection coatings for front side of the transparent glass and plastic substrates are being
explored extensively.174–177 Nanophotonic front and rear electrodes for improved light transmit-
tance in the solar cell is desirable for long wavelengths range operation in tandem device PSC.
Successful nanopatterns are being replicated into transparent substrates for large-scale applica-
tions at low cost.178 Long-term performance is a function of thermal stability of perovskite other
layers in a photovoltaic device. Inorganic blocking layer and scaffold layer display appreciable
stability compared to organic material in devices.

4.3 Hysteresis

Around 2014, scientists observed hysteretic current–voltage behavior of PSC.179,180 Hysteresis,
which is a specific property, is formed likely due to slow transient effects, leading to an over or
underestimation of solar cell efficiency. J–V hysteresis property of PSC is a function of dielectric
response of perovskite material, mobile ions,181 and trap-state discharging.179 The shape of mea-
sured current–voltage (IV) curves and efficiency are function of scan direction, light source,
delay in measurement time, and voltage bias conditions before measurement. It was established
by various modeling and experimentation that hysteresis is weak when surface recombination is
low and diffusion length is long.182 Improved crystallinity, better fabrication process, and
improved contacts are going to continue to improve hysteresis. HTMs influence hysteresis
and J–V curve. Cu-based, CZTS HTM express less hysteresis than with spiro-MeOTAD
HTM.183 J–V hysteretic behavior of CuI-based devices with an efficiency of 7.5% is better
than spiro-OMeTAD devices. Faster polarization relaxation was observed using EIS and
OCVD for CuI-based devices.184 Recently, in addition to normal-type of hysteresis, an inverted
hysteresis that exhibits an opposite behavior to the normal is also reported.185,186 The inverted
hysteresis is due to interfacial charge extraction barriers formed by ionic defect accumulation and
space charge build-up.187 The inverted hysteresis is noted to be a function of bias range and
sweep rate. Different bias scanning conditions lead to a varying ionic movement at the interface
of the ETH or HTL/perovskite, which assists in the tuning of these hysteresis.186

Deposition of fullerene layers onto perovskites, which assists in the elimination of photo-
current hysteresis, is reported.188 Methodology and accuracy for evaluating performance char-
acteristics of PSCs are crucial. Hysteresis influences the evaluation of performance parameters
such as I–V curves and Pmax. Measurement conditions such as sweep direction, start voltage, end
voltage, hold time, and sweep time have an overwhelming effect.189 Inverted devices (p-i-n struc-
tured) are reported to have less hysteresis.182 Figure 18 shows that normalized time-dependent
Jsc of the regular film has degraded to a higher rate than inverted structured PSC.190 Though
moving of electron contact to the rear side is a possible explanation, detailed reasoning requires
further investigation. Incorporation of a [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)
interlayer and high-quality perovskite absorber fabricated by thermal evaporation–spin coating
method produces a hysteresis-free planar perovskites.76

Ions accumulate at the ion-blocking interface. The “p” and “n” doping induce ion migration
at ion-blocking interface. These doping will screen the applied voltage and alter charge collec-
tion capability, resulting in hysteresis. In addition, ion migration is responsible for unusual
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behaviors in perovskites materials such as photo-induced phase separation,191 photoinduced
giant dielectric constant,192 and absence of transistor behavior at room temperature.193

In high efficient PSC cells, ion migration does not cause hysteresis.182 Ion migration within
crystal structure,194 which is also a major contributing factor for hysteresis, has a profound effect
on device stability.195 Experimental proof and test results show that ions migrate along the grain
boundaries.196

4.4 Moisture

Moisture acts as a catalyst, and its presence tends to induce hydrolysis107 in PSC, thereby con-
verting PSC back to precursors, which is irreversible. Experiments to evaluate the stability of
PSC against moisture were conducted in inert and other carrier gases to ascertain degradation
exclusively due to moisture.12 When exposed to moisture, perovskite structure tends to hydro-
lyze, undergoing irreversible degradation and decomposing back into precursors. Highly hygro-
scopic CH3NH3X converts to CHðNH2Þ2X salts and PbX2, with X = halide.197 Heat, electric
field, and ultraviolet exposure198 accelerate this process. Figure 19 shows the mechanism of
degradation:

Fig. 19 Proposed decomposition pathway of CH3NH3PbI3 in the presence of a water molecule.197

Fig. 18 I–V hysteresis and time-dependent photocurrent. (a) Scan direction-dependent I–V curves
of the cp-TiO2∕MAPbI3∕spiro-MeOTAD (normal) structure and (b) the PEDOT∶PSS∕MAPbI3∕
PCBM (inverted) structure. (c) Normalized time-dependent Jsc of normal and inverted structures.
Open-circuit condition under one sun illumination wasmaintained before measuring Jsc. Reprinted
with permission from Ref. 190. © 2015 by the American Chemical Society.
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EQ-TARGET;temp:intralink-;sec4.4;116;735

CH3NH3PbI3 ↔
In presence of moisture

CH3NH3IðaqÞ þ PbI2 ðsÞ;
CH3NH3I3ðaqÞ ↔ CH3NH2ðaqÞ þ HI ðaqÞ;
4HIðaqÞ þ O2 ↔ 2I2ðsÞ þ 2H2O;

2HIðaqÞ↔hvH2 ↑ þI2ðsÞ:

Stability of PSC, due to moisture, requires evaluation in three modes. One is purely because
of moisture, the second is under the influence of moisture along with light, and finally the third
mode is a combination of moisture along with light and oxygen. Degradation of perovskites is
reported to follow the mechanism of Grotthuss.199 In this, one water molecule reacts with per-
ovskite material and degrades to HI and CH3NH2. Further, HI reacts with O2 to form water,
to initiate more deterioration. After exposing perovskite film CH3NH3PbI3 to 80% RH for
2.5 h, the possibility of intermediate crystalline phase such as a hydrated compound
ðCH3NH3Þ4:PbI6:H2O exists. Grazing incidence x-ray diffraction (GIXRD) confirms the forma-
tion of intermediate phase. XRD pattern shows strong peaks of hydrate at 8.42 deg and
10.46 deg, which confirm the existence of intermediate phase. Exposure of solar cell to RH
of 0% to 50% has led to very little degradation. However, under 90% RH, it showed
a rapid decrease in PV performance efficiency from 12% to less than 1% in just 3 days.
Third day values are Jsc ¼ 3.1 mA cm−2, Voc ¼ 0.637, and FF ¼ 0.36, η ¼ 0.7.200 Increase
in RH level beyond 55% resulted in a drastic increase in degradation rate. In addition to general
characterization, a powerful method such as photothermal deflection spectroscopy evaluates the
changes in absorption after exposing perovskites to moisture.201 In Fig. 20, CH3NH3PbI3 shows
absorption edge as ∼1.57 eV, which shifts to 2.3 eV on exposure to moisture, this correspon-
dence to PbI2 formation, and decomposition of CH3NH3PbI3. Figure 21 shows PCE versus het-
erojunction solar cells variation based on MAPbðI1-xBrxÞ3(x ¼ 0, 0.06, 0.20, 0.29) as per time,
stored without encapsulation at room temperature with RH ranging from 35% to 55%.202 It also
shows variation in UV–vis spectra as per moisture content and variation in the morphology.
CH3NH3PbBr3-based perovskites are less sensitive to moisture than PbIX-based Perovskites.
However, the absorption capacity of pure CH3NH3PbI3 is not comparable to that of
CH3NH3PbBr3.

55,203 The first line of defense against the moisture is the top charge-transporting
layer of the device. Resistance to moisture can be increased by inherently strengthening the bond
between cation and metal halide.200 Few other approaches are inclusion of thin blocking layer
between perovskites and HTL, such as Al2O3,

169,204 moisture-blocking hole transporters,205 and
hydrophobic carbon electrodes.2,116,206–209 Incorporation of 2-D PSC with large aromatic phenyl
ethylammonium (PEA) cations could achieve average PCE of 5.5% with excellent stability
against moisture. After exposure of these 2-D PSCs for more than 90 h at 72� 2% RH,
they were stable and maintained 50% PCE of initial value.210 Incorporating polyethylenimine

Fig. 20 PDS spectra of CH3NH3PbI3 films before (initial state) and after exposure to a relative
humidity of 30% to 40% for varied time period. Reprinted with permission from Ref. 201. © 2013
by the American Chemical Society
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cations in 2-D PSC helps in attaining better film quality and resistance to moisture degradation
with PCE of 8.77%.211 In addition, near-single-crystalline-type thin films are fabricated, which
have, preferential out-of-plane alignment of crystallographic planes, good charge transport, and
moisture resistance.117 Thus, 2-D PSC has better moisture resistance capability than the 3-D
PSC.212,213

Solution-processed MAPbI3 was immune to changes when exposed to O2. The decompo-
sition on exposure to moisture or ambient air is due to H2O.

202 However, very low quantity H2O

acts as an n-dopant forMAPbI3, affecting the energy level. Proposed decomposition ofMAPbI3
eventually releases NH3 and HI as volatile species, leaving PbI2 and making decomposition
reaction irreversible. Reports confirm that moisture coupled with light directly led to decom-
position of MAPbI3 to PbI2, which was an irreversible reaction. Residuals such as PbI2 and
I2 are formed easily under sunlight, instead of reversible hydrate in the dark, when MAPbI3
exposed to an environment of 18 h at 60% RH.107 Though the analysis of stability in dark is
a basic test, stability research under illumination is essential for evaluation of working efficiency
and degradation factor. Unlike degradation in the dark, exposure to moisture in light leads to
irreversible decomposition of MAPbI3 to PbI2.

4.5 Light Spectrum (UV and Visible)

Mostly laboratory experiments are conducted under controlled light source such as LED.
However, actual utilization involves sunlight with UV element, which accelerates degradation

Fig. 21 Effect of moisture: (a) in situ absorbance measurements of CH3NH3PbI3 exposed to 98%
relative humidity. Measurements were taken at 15 min intervals, (b) normalized absorbance
measurements (taken at 410 nm) for CH3NH3PbI3 films exposed to different relative humidity,
(c) SEM images of uncoated CH3NH3PbI3, CH3NH3PbI3∕spiro-OMeTAD, CH3NH3PbI3∕PTAA,
and CH3NH3PbI3∕P3HT films after exposure to 98% RH for 24 h. (d) Powder x-ray diffraction
patterns for a sample of CH3NH3PbI3 powder. Reprinted with permission from Ref. 202.
© 2015 by the American Chemical Society. (e) PCE versus heterojunction variation on
MAPbð1-xBrx Þ3(x ¼ 0, 0.06, 0.20, 0.29) with time stored in air at room temperature without encap-
sulation. Reprinted with permission from Ref. 61. © 2013 by the American Chemical Society.
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pattern. The TiO2 element in PSC, which is photocatalytic in the UV regime, assists
degradation.148 To further surprise, as shown in Fig. 22, degradation is higher in encapsulated
devices than the unencapsulated devices for a conventional device.

This phenomenon is due to electrons injected into TiO2 are entrapped in deep-lying unoc-
cupied sites.148 However, encapsulation along with UV-filter can enable attaining better results.
Degradation is directly proportional to efficiency and follows a pattern of reduction in Jsc.
A TiO2-free mesoporous structured solar cell is comparatively less degradable than MSSC
with TiO2, which is confirmed by transient absorption spectroscopy. MSSC has a property
of degradation being high at maximum power and rather low at open circuit condition.
However, for practical applications installation of a UV filter on PSC overcomes the degradation
process. Degradation is attributed to the instability problem214 and the catalytic role of metal
oxide when exposed to the UV spectrum. A general degradation mechanism for UV exposure
is shown in Fig. 23. On exposure to UV light, photogenerated holes that are generated by absorp-
tion of energy react with the oxygen radicals adsorbed at surface oxygen vacancies. Molecular
oxygen is absorbed from these sites, leading to a formation of unoccupied deep surface traps
sites and a free electron per site. These electrons will recombine with the excess of holes in
doped-hole transporter. On photoexcitation of sensitizer, electrons can follow in two ways.
In the first route, they get injected into conduction band by which they get deeply trapped
and in other they directly enter into the deep surface traps. These deeply trapped electrons
are not mobile and recombine readily with holes on hole transporter.148 The primary bottleneck
that exists is transporting the charge. In quantum dots, polydispersity strongly affects transport.
In quantum dot film, if few dots are of different sizes, then trap states manifest within the
bandgap and lead to recombination. Similar is the case with 1-D carbon nanotubes. Three
schemes are formulated to nullify the effects of UV. First being the reduction of trap sites
or pacifying it and second is to undertake measures to avoid UV light reaching ETL (especially
TiO2). Finally, the third scheme is to replace TiO2 scaffold with another material or make it TiO2

free, which has been explored by Leijtens at el.148 The efficiency of PSC device reduces to almost
0% after 12 h of exposure in a nonencapsulated format. However, with the introduction of Sb2S3
buffer layer in PSC, efficiency increased to ∼65% of its initial value. This increase is due to
the Sb2S3 blocking layer, which blocks the UV-induced photocatalysis in TiO2, by providing
a form of passivation. In addition, this extra layer assists in maintaining the crystalline
structure of CH3NH3PbI3.

215 A methodology such as usage of the downshifting molecule such
as N-(2-(6-chloros-tetrazin-3-yloxy)ethyl)-naphthalimide (NITZ) with a strategy to suppress UV

Fig. 22 Light soaking tests of regular PSCs under A.M. 1.5 G 1 Sun light intensity (with and without
UV filters). Reproduced with permission from Ref. 148. © 2013 by Springer Nature.
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from the source is also explored, for UV protection in PSC.216 They have a specialty to get
excited in the UV spectrum and to emit into the visible spectrum, allowing UV photons utility.

4.6 Thermal Stability

Variation in efficiency and increase in temperature will result in amplification of deformities.
These anomalies are due to deterioration in perovskites materials and behavior of HTM.
It is understood that when the heat of the device ingresses into cell materials, mechanical stress
of the materials at interfaces increases, thereby decreasing the lifetime of the PSC device.
Accelerated aging test results showed that PbI2 deteriorates much faster than PbBr2, approxi-
mately after 60 min. High stability of Br is due to shorter and stronger bonds of Pb-Br compared
to Pb-I.217 Heating of CH3NH3PbI3-xClx in N2 environment at 90°C not only leads to the
formation of 3-D perovskites structure but also results in a high rate of degradation at 100°C.218

Hybrid perovskite assists in maintaining stability, as inorganic part of hybrid perovskites
increases thermal stability and its organic part increases the stability of device. Comparison
of formaldinium lead trihalide ðHCðNH2Þ2PbI3Þ and CH3NH3PbI3-based device reveals that
the former is more stable as it deteriorates only after 290°C than the later, which decomposes
at 230°C.219 In PSC, deterioration rate due to temperature increases in the presence of moisture.
Reports reveal that at 85°C time of decomposition is 283, 208, and 133 min when RH is 12%,
57%, and 85%, respectively.220 Period of exposure is also an influential factor for evaluation
and characterization by hard x-ray photoelectron spectroscopy instead of conventional XRD,
because assessment is done on chemical content regardless of crystallinity of the sample.
Mechanism of degradation is as follows:

EQ-TARGET;temp:intralink-;sec4.6;116;171CH3NH3PbI3- → PbI2 þ CH3NH2 ↑ þHI ↑ :

Films are made independent of parameters such as moisture and oxygen by subjecting it to
ultrahigh vacuum heating chamber, to evaluate effects purely due to temperature.221 I/Pb and
N/Pb ratios define the characterization of films for degradation. Reduction of these ratios indi-
cates degradation of perovskites into PbI2, as shown in Fig. 24. Variation in temperature induces
a different degree of degradation in various layers of PSC. For example, perovskites made of
scaffolded ZnO are found to be more stable than TiO2.

222,223

Fig. 23 Proposed mechanism for UV-induced degradation Reprinted with permission from
Ref. 148. © 2013 by Springer Nature.
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To understand degradation on perovskites purely due to thermal effects, semifabricated PSC,
without HTL, ETL, and the top electrode are tested.106 These semifinished planar structures
undergo exposure to inert, O2, and ambient conditions for 24 h. Surprisingly, degradation in
the form of delamination happens in an ambient environment rather than in O2. GIXRD and
surface photovoltage measurements assisted in characterization and revealed that at temperature
above 140°C and 160°C perovskite materials decomposed into PbI2 in vacuum.224 Up to 150°C,
an increase in the Braggs peak with enhancement of perovskite film occurs. From 150°C to 200°
C, these peaks reduced due to PbI2 formation and further heating to 330°C lead to complete
decomposition into Pb.225 Empirical studies revealed that thermal annealing conducted for pro-
duction of perovskite materials induces slight PbI2 production, causing drop in efficiency. Heat
treatment of layers such as ZnO before deposition lead to an increase in efficiency and thermal
stability, due to reduction in deportation of methylammonium at the interface.223 Thermal sta-
bility is a highly potent factor that affects different layers especially the HTM. Initiation of crys-
tallization and formation of large crystals causing morphological hole traps affecting charge
transportation and effecting PCE was reported for PSC with spiro-OMeTAD as HTM.218

This crystalline process gets aggravated by additives or doping done in the layer to increase
charge due to the hygroscopic nature of dopants.226 To achieve better stability, many new
HTM materials were explored, such as PTAA and 5,10,15-trihexyl-3,8,13-tris(4-methoxy-
phenyl)-10,15-dihydro-5H-diindolo[3,2-a:3′,2′-c] carbazole (KR131).227 Introduction of bulky
aromatic PEA cations was reported to produce thermally stable 2-D PSC, which maintained 65%
of its initial PSC after exposure to 100°C for 70 h.210 In addition, multidimensional 3-D/2-D
perovskites with an intermediate dimension between them led to the formation of thermally
stable PSC, due to reduced defect density.228

4.7 Fabrication and Preparation

Fabrication is a vital factor for sustaining stability in PSC. It primarily constitutes two elements
such as the synthesis method used and the substrate precursor. Synthesis temperature and time
strongly influence the morphology, stability, and performance of PSC. In one-step deposition
process, perovskite solution is dispensed on the substrate while turning at a fixed velocity.
Though excess perovskite is spun off, perovskites crystallize on evaporation of the solvent.

Fig. 24 I/Pb ratio (red circle) and N/Pb (black diamond) ratio plotted versus different temperatures.
Reprinted with permission from Ref. 221. © 2015 by the American Chemical Society.
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Uncontrolled precipitation yields nonuniform large- and small-size crystals, resulting in poor
performance and solar cell efficiency. Adhikari et al. have proposed the usage of an antisolvent
method for better crystal formation and growth. It involves annealing conditions and defines
charge transport capability, as measured by nanoscale Kelvin probe force microscopy
(KPFM).229 Annealing temperature effect on CH3NH3PbI3 is analyzed from 80°C to 140°C
as shown in Fig. 5. The peak of PbI2 at 12.7°C, in XRD, increases proportionally as per the
annealing temperature. The annealing time is optimized to achieve correct crystal size, charge
transport layer such as HTL formed CZTS nanoparticles (CZTS-30).230 Thermal annealing of
CH3NH3PbBr3 films at 90°C, for short duration such as ≤10 min, would lead to increased crys-
tallinity, eliminating residual solvent and achieving complete conversion of the precursor to crys-
tal, in comparison to longer annealing time.231 Greater annealing time would initiate sublimation,
so accurate monitoring of time is essential. For TiO2 films, photonic curing technique is more
effective than high-temperature annealing (∼500°C), as it creates more conductive films.96

Photonic curing is also called pulse-thermal processing, which utilizes high-intensity plasma
arc lamp. It delivers a peak sintering power up to 20;000 W∕cm2 for milliseconds and produces
rapidly annealed thin films without damaging underlying plastic substrates. PEDOT:PSS-based
PSC grown at room temperature without annealing was reported to exhibit a PCE of 14.27%.232

They have high crystallinity when subjected to 40% RH at room temperature.232

4.8 Device Encapsulation

Air sensitivity of PSC elements, in conjunction with moisture sensitivity of perovskite absorbers,
emphasizes the requirement of encapsulation of high level to attain a stable outdoor lifetime of
over 25 years.3,64,61 Without encapsulation, highly efficient devices were reported to degrade
rapidly, showed 80% degradation when subjected to ambient temperature.233 Usually, a thin
glass coverslip is used to cover device, which is further sealed using a UV curable epoxy
resin.148,169,234 Ramos et al.235 reported that single step high-temperature encapsulation
(>150°C) resulted in delamination of active and metallization layers in devices. A two-step
encapsulation approach minimizes the defect due to mechanical and thermal stress. The first
step in a pre-encapsulation process consists of making electrical contact and later embedding
it in a polymer matrix to ensure mechanical stability. The next step involves laminating the pre-
encapsulated device using low temperature, to retain good photovoltaic characteristics of PSC.
During the process and after, samples are monitored electrically (J–V curves). There are two
types of configuration for encapsulation. Han et al. have compared these two types,168 in
first method, UV curable epoxy resin used to fill the area between silver contact and plain
glass cover.131,236–238 The other configuration has an electrode, which has a top glass cover
with a gap in between. Water absorbent, desiccant material was made to fill this gap, thus absorb-
ing moisture that had penetrated through epoxy resin sealant.168 For 2-D PSC films, encapsu-
lation becomes very critical. Therefore, plastic barrier films are used. It is available in two
formats, namely partial and complete. They laminate commercial encapsulate adhesive on to
films at 100°C. This type of encapsulation could only retard the ingress of moisture penetration
and can maintain the operational performance of PSC steady for more than 1 year.131,236,239–241

Conductive tapes made of commercial carbon assist in achieving a dual purpose such as terminal
contact with perovskite and encapsulation. Encapsulated devices are leak tested with helium gas
to assure moisture penetration. Investigations reveal that incorporation of impermeable barrier
layers can be a long-term remedy to eliminate the ingress of moisture and oxygen.

5 Recombination

PSC (for MAPbI3) has achieved laboratory PCE of 20.1% and an open-circuit voltage (Voc) of
1.1 V, which is below theoretical Voc limit of 1.32 V.242 Loss of 200 mV is due to nonradiative
recombination, which manifests itself at low external quantum yield (⪅0.01%) for electrolumi-
nescence, corresponding to Voc.

242,243 KPFM results of a single step and sequentially deposited
films show that increase in potential barrier suppresses back recombination between electrons in
TiO2 and holes in perovskite.244 A blocking layer is very crucial in a conventional PSC for
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PbI2 to inhibit charge-interception/recombination. Conversion of PbI2 to MAPbI3 occurs at
solution interface of TiO2∕PbI2 interface.86

6 Lead and Other Toxicity

Lead composition245 leading to toxicity108 and bioaccumulation in ecosystems246 hamper the
commercialization of organic-inorganic lead halide-based PSC. A PSC with CH3NH3PbI3 as
absorber material would contain about one-third lead by weight. On exposure to rainwater,
perovskite will completely dissolve in water leaving behind PbI2.

75

Evaluations show that a PSC panel releases only 70 ppm of lead. This concentration is
moderately low in comparison to the standards for low levels of contamination.247 Though it is
undesirable and not catastrophic, there is no accepted safe threshold for lead exposure.

In additional, other elements such as iodine248,249 and methylamine250 also have a high degree
of toxicity.MAPbI3 nanoparticles get airborne and affect the respiratory system, mix with fluids
of the body, and reach brain and nerves.251 Daniele et al. have reported the formation of PSC
without lead using transition materials such as Cu. They developed ðCH3NH3Þ2CuClxBr4−x
series and confirmed green photoluminescence due to Cu+ ions formation. Mixing of
halides MA2CuClxBr4−x and chlorine with it will ensure appreciable stability, as it highly
deliquescent.252 Impedance spectroscopy was used to evaluate performance. Strong anisotropy
and low absorption coefficient hamper these cells. The exact material combination decides the
thickness of films and light harvesting requirement with limited diffusion length. Tin (Sn)253–257

is also considered an apt replacement of Pb as it belongs to group 14 metal, with four electrons in
its outer shell. However, due to the bigger size of metal in group 14, it induces instability of
2+ oxidation state.139 Theoretical investigations reveal that I-5p orbitals of I3− groups influence
band-edge reconstruction. This leads to new conduction–band minimum at Brillouim zone,
which facilitated the formation of lead-free perovskites.258 Lead-free perovskites films such
as CH3NH3SnX3 (X ¼ I, Br, Cl) is synthesized by vapor-assisted solution processing253,259

and hot injection method.255 Halide double perovskites utilize interplay between two metal
ions to achieve this goal.260,261 Replacing Pb2þ sites with a combination of trivalent Bi3þ

and monovalent Agþ cations has led to the formation of 3-D double perovskites.262,263

7 Stability Comparison of 2-D and 3-D PSC

A comparative study shows 2-D PSC is more stable, up to 1400 h than 3-D PSC, when tested
under the light source of AM 1.51 without any UV filters.117 They retain about 80% of their
original value, whereas 3-D PSC has a dramatic loss in efficiency. Thus, 2-D perovskites showed
superior stability and water resistance.117,264,265 Quasi-2-D (n-butylammonium)2(MA)2Pb3I10
has an efficiency of 12% with a drop in performance only after 2250 h.117 Grancini and cowork-
ers have integrated 2-D/3-D perovskite to combine advantages of both. Their interface has
a combined benefit of excellent stability, excellent charge transport of 2-D perovskites, and
absorption quality of 3-D perovskites.266 The ability to collect ions to assemble into a stable
3-D perovskite structure is predicted by the Goldschmidt tolerance factor, “t.” It is a stability
indicator of a perovskite crystal, which describes the compatibility of ions with other materials in
PSC. An ideal Goldschmidt tolerance factor should be below or equal to 1; for guanidinium,
it is 1.03. For a perfect cubic perovskite structure t ¼ 1. However, practically, one can expect
ions to form a cubic 3-D structure if 0.9 ≤ t ≤ 1. However, when 0.7 ≤ t ≤ 0.9, it enables the
formation of lower symmetry structures, such as tetragonal, rhombohedral, hexagonal, and
orthorhombic.267 Recent research at EPFL has reported enlarging the stability of methylammo-
nium lead iodide perovskites, by introducing large organic cation. A promising member such as
guanidinium (CH6N3+) is an example of a large organic cation group. It enhances the material’s
overall thermal and environmental stability for 3-D perovskites. Figure 25 shows the SEM image
of 3-D PSC achieved efficiency over 19% (19.2� 0.4%) and sustaining its performance for
1000 h under continuous light illumination.268 Chen et al.269 have reported to achieve exceptional
PCE for 2-D format using simple solution process and to achieve a vertical alignment of 2-D
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perovskite layers to electrodes. Figure 26 shows the vertical orientation of (101) planes and (202)
planes parallel to the substrate.269

8 Outlook

PSCs are an excellent and advantageous replacement for silicon solar cells. Positive features
such as excellent absorption coefficient, ability to tune bandgap, ability to form flexible
solar cells, compatibility with the solar spectrum, and good charge mobility make it a good
performance solar cell. The hybrid feature of PSC, utilizing the advantages of organic and inor-
ganic components in it, has enabled it to achieve efficiency at par with silicon solar cell and
beyond. Perovskites absorber materials coupled with silicon solar cells, in a tandem cell format,
could obtain a PCE above 30%. Replacing PSC with better HTM and innovative materials would
enhance the PCE. Various combinations and materials are first tested in N2 environment in the
encapsulated form before further investigation and exploration. Major hindrances in its commer-
cialization are its stability factor and toxicity. Our survey of the literature assures that continuous
progress and development is going on to resolve these hindrances. In addition to the energy-
related application, perovskites have an enhanced implication in numerous other domains such
as flexible optoelectronics, supercapacitors, rechargeable batteries, and other hybrid systems that
couple with photovoltaic cells. The futuristic application is to paste PSC films on buildings and
skyscrapers enabling them to produce power and become self-sufficient. Testing methodology

Fig. 26 Illustration of an orthorhombic (101) vertically oriented 2-D perovskite structure, with (202)
planes parallel to substrate. Reprinted with permission from Ref. 269. © 2018 by Springer Nature.

Fig. 25 Cross-sectional SEM image of a typical mixed MA:guanidinium PSC containing 14% of
guanidinium. Device architecture: glass∕FTO∕c-TiO2∕ mp-TiO2/perovskite/spiro-OMeTAD/Au.
Reprinted with permission from Ref. 268. © 2017 by Springer Nature.
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process is also wholly restructured to reduce research time on combinations, which cannot be
commercialized. Recently, a new fast and low threshold photography method has been devel-
oped by Aalto University in Finland to detect even a slight disintegration in a perovskite
structure. This method provides more reliable results than optical measurement devices and
is less complicated with fewer labor requirements than conventional x-ray crystallography.
Encapsulation methodology is also revamped to handle moisture ingress issues. As this adds
to the cost of manufacturing, researchers have recently reported the fabrication of air-stable
PSC in 2-D format. To date, PSC has achieved a high PCE of 23.3%. Development of innovative
materials for perovskites and their combination with PSC to tailor a new increased PCE along
with applications in other domains is still yet to be unlocked.
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