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Abstract. In inverse synthetic aperture radar (ISAR) imaging of targets with complex motion,
the azimuth echoes have to be modeled as multicomponent cubic phase signals (CPSs) after
motion compensation. For the CPS model, the chirp rate and the quadratic chirp rate deteriorate
the ISAR image quality due to the Doppler frequency shift; thus, an effective parameter esti-
mation algorithm is required. This paper focuses on a parameter estimation algorithm for multi-
component CPSs based on the local polynomial ambiguity function (LPAF), which is simple and
can be easily implemented via the complex multiplication and fast Fourier transform. Compared
with the existing parameter estimation algorithm for CPS, the proposed algorithm can achieve a
better compromise between performance and computational complexity. Then, the high-quality
ISAR image can be obtained by the proposed LPAF-based ISAR imaging algorithm. The results
of the simulated data demonstrate the effectiveness of the proposed algorithm. © The Authors.
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1 Introduction

The inverse synthetic aperture radar (ISAR) imaging technique for moving targets has attracted
the attention of many radar researchers in the past three decades due to its significance in both
civil and military applications.1–6 Generally, in order to obtain a well-focused ISAR image, the
first procedure is to implement motion compensation, which includes range alignment (the trans-
lational and rotational migrations) and phase adjustment (the Doppler phase caused by the trans-
lation).6 Then the conventional range-Doppler (RD) algorithm can be used to generate a focused
ISAR image, which indicates that, during the coherent integration interval, the Doppler fre-
quency shift must remain constant. However, instances of targets that are usually uncooperative
and engaged in complicated maneuvers often occurs.7–14 In this case, the RD algorithm does not
work well for the time-varying characteristic of Doppler frequency. To deal with this problem,
many articles have developed different solution for different degree of maneuverability, and they
can fall into two categories: linear frequency modulation (LFM) signal model6–9 for targets with
smooth motion and cubic phase signal (CPS) model2,4,5,10–14 for targets with complex motion.
For the slow-maneuvering target, the assumption that the azimuth echo is characterized as LFM
signal is appropriate and practical, and has been demonstrated by Ref. 6 with experimental ship
data. Many representative algorithms based on LFM signal model have been proposed, such as
Radon Wigner transform,3 the modified Wigner-Ville distribution (WVD),6 the stretch keystone-
Wigner transform,7 the Lv’s distribution,8 and the fractional Fourier transform.9 For targets with
complex motion, in which rotational motion may cause higher-order phase terms, the traditional
LFM signal model is not appropriate. For a more reasonable and accurate approximation, many
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articles have characterized the azimuth echo in a range bin as multicomponent CPSs, which is
identified to be much more appropriate than the LFM model.10–14

With regard to the parameter estimation of CPS, numerous algorithms, including the cubic
phase function (CPF),15,16 the higher-order ambiguity function,17 the product generalized CPF
(PGCPF),18 the product high-order matched-phase transform,19 and the modified version of CPF
(MCPF),14 have been addressed, but all of them involve multilinear transformation and discrete
Fourier transform for the nonuniformly spaced signal sample, which result in extensive cross-
terms under multi-CPSs and undesirable computational complexity.10–14,18,19–23 In Ref. 20, the
parameter estimation algorithm based on the local polynomial Wigner distribution (LPWD) is
proposed and has been successfully applied to ISAR imaging.21,22 However, after compensating
the third-order term with the estimated parameter, the LPWD algorithm estimates the second-
order coefficient using CPF method, which does lead to the heavy computational burden due to
the Fourier transform with respect to the nonuniformly spaced data. In general, the performance
and computational cost are conflicting requirements, e.g., the modified discrete chirp Fourier
transform for CPS can obtain robust performance against noise and handle multi-CPSs, but
it requires a multidimensional search.

Inspired by the proposed LPWD in Refs. 21 and 22 and considering the tradeoff between the
computational cost and the performance of parameter estimation, an effective parameter estima-
tion algorithm for multi-CPSs is introduced based on the local polynomial ambiguity function
(LPAF) in this paper, which does not suffer from the considerable cross-term interference and
heavy computational burden due to its moderate order of nonlinearity, coherent integration via
fast Fourier transform (FFT). Then, the high-quality ISAR image can be achieved by the cor-
responding ISAR imaging algorithm based on LPAF.

This paper is organized as follows. ISAR imaging model with complex motion is given in
Sec. 2. In Sec. 3, the parameter estimation algorithm for CPS is proposed based on LPAF. In
Sec. 4, the performance of LPAF is discussed in detail, which mainly includes the computational
cost and the robustness in the presence of noise. The LPAF-based ISAR imaging algorithm is
presented in Sec. 5. Finally, the application of the LPAF-based ISAR imaging algorithm and
the conclusion are given in Secs. 6 and 7, respectively.

2 Inverse Synthetic Aperture Radar Imaging Model with Complex
Motion

ISAR imaging model on the imaging project plane is shown in Fig. 1, where the radar is sup-
posed to locate at the same plane with the target, and to orient along the X axis. Piðxi; yiÞ is the
location on the i’th point scatterer in the Cartesian coordinates with its origin at the geometric
center O of the target, and the i’th point scatterer can also be described as Piðri; θiÞ, where
xi ¼ ri cos θi, yi ¼ ri sin θi. Rt and θðtmÞ are the translational distance and rotational displace-
ment, respectively.

The instant distance RðtmÞ between the radar and the i’th point scatterer at the instant slow
time tm can be approximated as

Fig. 1 ISAR imaging model on the project plane.
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EQ-TARGET;temp:intralink-;e001;116;735

RðtmÞ ¼ fR2
t þ r2i þ 2Rtri cos½θðtmÞ þ θi�g1∕2

≈ Rt þ
r2i þ 2Rtri cos½θðtmÞ þ θi�

2Rt

≈ Rt þ ri cos θi cos θðtmÞ − ri sin θi sin θðtmÞ
¼ Rt þ xi cos θðtmÞ − yi sin θðtmÞ: (1)

For targets with complex motion, e.g., the highly maneuvering airplane and ship fluctuation
with oceanic waves, Rt and θðtmÞ are time-varying and can be expressed in Taylor series as
follows:

EQ-TARGET;temp:intralink-;e002;116;612Rt ¼ R0 þ vttm þ 1

2
att2m þ 1

6
κtt3m · · · ; (2)

EQ-TARGET;temp:intralink-;e003;116;570θðtmÞ ¼ αtm þ 1

2
βt2m þ 1

6
γt3m · · · ; (3)

where R0 is the initial distance of the geometric center to radar, and vt, at, and κt denote the radial
velocity, acceleration, and acceleration rate of the target corresponding to the radar, respectively.
Similarly, α, β, and γ denote rotational velocity, rotational acceleration, and rotational acceler-
ation rate, respectively. For the maneuverability of the target, we can give a third-order approxi-
mation of Rt and θðtmÞ, and cos θðtmÞ and sin θðtmÞ can be approximated as 1 and θðtmÞ,
respectively. Therefore, substituting Eqs. (2) and (3) into Eq. (1), we can obtain

EQ-TARGET;temp:intralink-;e004;116;462RðtmÞ ≈ R0 þ xi þ ðvt − yiαÞtm þ 1

2
ðat − yiβÞt2m þ 1

6
ðκt − yiγÞt3m: (4)

Assume the transmitted LFM signal takes the following form:

EQ-TARGET;temp:intralink-;e005;116;407stðt̂Þ ¼ rect

�
t̂
T

�
exp

�
j2π

�
fct̂þ

1

2
μt̂2

��
; (5)

where t̂, T, fc, and μ are the fast time, the pulsewidth, the carrier frequency, and the chirp rate
(CR), respectively. Then, the baseband echo signal of the scatterer Pi can be expressed as

EQ-TARGET;temp:intralink-;e006;116;338srðt̂; tmÞ ¼ σi rect

�
t̂ − 2RðtmÞ∕c

T

�
exp

�
j2π

�
−fc

2RðtmÞ
c

þ 1

2
μ

�
t̂ −

2RðtmÞ
c

�
2
��

; (6)

where σi denotes the amplitude of the i’th point scatterer.
After the pulse compression by using the matched filter (MF) Hðt̂Þ ¼ rectðt̂∕TÞ expðjπμt̂2Þ,

we have

EQ-TARGET;temp:intralink-;e007;116;256spcðt̂; tmÞ ¼ σiB sinc

�
B

�
t̂ −

2RðtmÞ
c

��
exp

�
−j

4π

λ
RðtmÞ

�
; (7)

where B is the bandwidth of the transmitted signal.
In Eq. (7), the complex motion will result in range migration and Doppler frequency shift.

The translational range migration has the same feature for all scatterers and has no contribution
for ISAR imaging. Hence, in this paper, the standard range alignment method24 and the phase
gradient autofocus method25 are utilized to eliminate the effect caused by translation, and
keystone transform to correct the rotational range migration. Here, we only concentrate on
the Doppler frequency shift caused by rotation.

Consequently, after the motion compensation (the range migration compensation and
the translational induced phase error correction), the azimuth echo of the i’th scatter in the
range-azimuth domain can be rewritten as
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spcðt̂; tmÞ¼ σiBsinc

�
B

�
t̂−

2ðRoþxiÞ
c

��
exp

�
j2π

��
2yiα
λ

�
tmþ1

2

�
2yiβ
λ

�
t2mþ1

6

�
2yiγ
λ

�
t3m

��
:

(8)

In realistic ISAR imaging applications, there will be multiple scatterers in a range bin simul-
taneously, which is more accurate and has been confirmed in many literatures. Thus, the azimuth
echo signals in a range bin can be rewritten as

EQ-TARGET;temp:intralink-;e009;116;646sðtmÞ ¼
XQ
i¼1

Ai exp

�
j2π

�
ϕi;1tm þ 1

2
ϕi;2t2m þ 1

6
ϕi;3t3m

��
; (9)

where Q is the total number of scatterers in a certain range bin, and Ai, ϕi;1 ¼ 2yiα∕λ,
ϕi;2 ¼ 2yiβ∕λ, and ϕi;3 ¼ 2yiγ∕λ denote the amplitude, centroid frequency (CF), CR, and quad-
ratic chirp rate (QCR) of the i’th point scatterer, respectively. We can see from Eq. (9) that it is
the CR and the QCR that induce the Doppler frequency shift and have to be estimated accurately
and then compensated for ISAR imaging.

3 Parameters Estimation for Cubic Phase Signal

3.1 Introduction of Local Polynomial Wigner Distribution

LPWD,20 a special kind of time-frequency distribution proposed by Stankovic, is widely used for
the parameters estimation of multi-CPSs. Then the ISAR imaging algorithm21,22 is also proposed
based on LPWD. LPWD is defined in Ref. 20 as follows:

EQ-TARGET;temp:intralink-;e010;116;432Wð~ω; tÞ ¼
Z þ∞

−∞
s

�
tþ τ

2

�
s�
�
t −

τ

2

�
exp½−j2πθð~ω; τÞ�dτ; (10)

where * and τ denote the complex conjugation and lag-time variable, respectively, and

EQ-TARGET;temp:intralink-;e011;116;376θð~ω; τÞ ¼ ω1τ þ ω2

τ2

2!
þ ω3

τ3

3!
þ : : : þ ωm

τm

m!
; (11)

where ~ω ¼ ðω1;ω2;ω3: : : ;ωmÞ is an m-dimensional variable space.
Thereby, the instantaneous frequency estimation of polynomial phase signal (PPS) can be

achieved with a significantly reduced distribution dimension.

3.2 Definition of Local Polynomial Ambiguity Function

Considering an analytic signal sðtÞ, the ambiguity function (AF) is defined as

EQ-TARGET;temp:intralink-;e012;116;248Aðτ;ωÞ ¼
Z þ∞

−∞
s

�
tþ τ

2

�
s�
�
tþ τ

2

�
expð−j2πωtÞdt: (12)

Borrowing the idea from the definitions of LPWD and AF, the LPAF is defined as follows:

EQ-TARGET;temp:intralink-;e013;116;190LPAFð~ω; τÞ ¼
Z þ∞

−∞
s

�
tþ τ

2

�
s�
�
t −

τ

2

�
exp½−j2πθð~ω; tÞ�dt: (13)

Similar to the definition of LPWD, we have

EQ-TARGET;temp:intralink-;e014;116;132θð~ω; tÞ ¼ ω1tþ ω2

t2

2!
þ ω3

t3

3!
þ : : : þ ωm

tm

m!
; (14)

where ~ω ¼ ðω1;ω2;ω3: : : ;ωmÞ is an m-dimensional variable space.
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Consider mono-CPS with the following form:

EQ-TARGET;temp:intralink-;e015;116;723sðtÞ ¼ A exp

�
j2π

�
ϕ1tþ

1

2
ϕ2t2 þ

1

6
ϕ3t3

��
; (15)

where A, ϕ1, ϕ2, and ϕ3 denote the amplitude, CF, CR, and QCR, respectively. LPAF for sðtÞ can
be expressed as

EQ-TARGET;temp:intralink-;e016;116;655LPAFðω1;ω2; τÞ ¼
Z þ∞

−∞
s

�
tþ τ

2

�
s�
�
t −

τ

2

�
exp

�
−j2π

�
ω1tþ ω2

t2

2

��
dt: (16)

Substituting Eq. (15) in Eq. (16), we obtain

EQ-TARGET;temp:intralink-;e017;116;596LPAFðω1;ω2;τÞ¼A2 exp½jΦðτÞ�
Z þ∞

−∞
exp½−j2πðω1−ϕ2τÞt�exp

�
−j2π

�
1

2
ω2−

1

2
ϕ3τ

�
t2
�
dt;

(17)

whereΦðτÞ ¼ 2πðϕ1τ þ ϕ3τ
3∕24Þ is independent of variable t. Similar to the LPWD in Ref. 21,

we choose the special lag-time instance τ ¼ τ0 to achieve the LPAF; then, Eq. (17) can be
simplified as

EQ-TARGET;temp:intralink-;e018;116;502LPAFðω1;ω2Þ ¼ D2

Z þ∞

−∞
exp½−j2πðω1 − ϕ2τ0Þt� exp

�
−j2π

�
1

2
ω2 −

1

2
ϕ3τ0

�
t2
�
dt; (18)

whereD is the relative amplitude. It is worthwhile noting that a sole peak appears in the ω1 − ω2

plane, that is, the chirp rate-quadratic chirp rate distribution (CRQCRD) of jLPAFðω1;ω2Þj gets
the maximum in the following case:

EQ-TARGET;temp:intralink-;e019;116;421

�
ω1 ¼ ϕ2τ0
ω2 ¼ ϕ3τ0

: (19)

From Eq. (19), it can be seen that the different lag-time instance τ0 indicates the different
zoom factor, which can enlarge the estimation ranges of CR and QCR to avoid the spectrum
aliasing and estimation error26 in some extreme ISAR imaging case, e.g., higher maneuverability.
On the other hand, the symmetric instantaneous self-correlation operation will shorten the effec-
tive signal in Eq. (16) when τ0 ≠ 0. Based on the recommendation from Ref. 27, the optimal
discrete lag is Nopt

τ0∕2
¼ ðN þ 1Þ∕2 H, where H is the PPS order. For convenience to analyze, we

choose τ0 ¼ 1 so that the values of CR and QCR can be read directly from CRQCRD.
Thereby, we can estimate the parameters ϕ2 and ϕ3 simultaneously by searching the position

of the maximum of jLPAFðω1;ω2Þj.

EQ-TARGET;temp:intralink-;e020;116;267ðϕ̂2; ϕ̂3Þ ¼ argmax
ω1;ω2

jLPAFðω1;ω2Þj: (20)

With the estimated parameters ðϕ̂2; ϕ̂3Þ and dechirp technique, the other parameters can be
estimated via FFT after compensating the high-order phase terms.

According to the aforementioned analyses on LPWD and LPAF for CPS, we know that LPAF
is similar to LPWD except for the definition of θð~ω;ΔÞ in Eqs. (11) and (14), where Δ ¼ τ for
LPWD and Δ ¼ t for LPAF. However, instead of the special time instance as t ¼ 0,21 LPAF can
choose the different lag-time instance τ0 to introduce a zoom factor adjusting the estimation
ranges of CR and QCR in Eq. (19). It must be emphasized that such a difference circumvents
the problems of LPWD including spectrum aliasing, error propagation, and computational
burden, which will be discussed in Sec. 4.
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3.3 Local Polynomial Ambiguity Function for Multicomponent Cubic Phase
Signals

In this section, the performance of LPAF for multi-CPSs is shown. As we know, correlation
operation will result in the cross-term effects among multi-CPSs, which determines whether
the proposed algorithm is suitable for multi-CPSs or not. For simplicity, we choose special
case as τ0 ¼ 1 and consider two-component CPSs in the following structure:

EQ-TARGET;temp:intralink-;e021;116;655

sðtÞ ¼ spðtÞ þ sqðtÞ
¼ Ap exp½j2πðϕp;1tþ ϕp;2t2 þ ϕp;3t3Þ� þ Aq exp½j2πðϕq;1tþ ϕq;2t2 þ ϕq;3t3Þ�: (21)

Substituting Eq. (21) in Eq. (16), we obtain the LPAF for sðtÞ in Eq. (21) as follows:
EQ-TARGET;temp:intralink-;e022;116;592

LPAFðω1;ω2Þ ¼ D2
p

Z þ∞

−∞
exp½−j2πðω1 − ϕp;2Þt� × exp

�
−j2π

�
1

2
ω2 −

1

2
ϕp;3

�
t2
�
dt

þD2
q

Z þ∞

−∞
exp½−j2πðω1 − ϕq;2Þt� × exp

�
−j2π

�
1

2
ω2 −

1

2
ϕq;3

�
t2
�
dt

þ LPAFpq;crossðω1;ω2Þ þ LPAFqp;crossðω1;ω2Þ: (22)

Note that we have two cross-terms LPAFpq;crossðω1;ω2Þ and LPAFqp;crossðω1;ω2Þ, and we
only take LPAFpq;crossðω1;ω2Þ as an example to analyze. Obviously, LPAFpq;crossðω1;ω2Þ is
with the form
EQ-TARGET;temp:intralink-;e023;116;465

LPAFpq;crossðω1;ω2Þ

¼Dpq;cross

Z þ∞

−∞
exp

�
−j2π

�
ω1− ðϕp;1−ϕq;1Þ−

1

2
ðϕp;2þϕq;2Þ−

1

8
ðϕp;3−ϕq;3Þ

�
t

�

× exp

�
−j2π

�
ω2−

1

2
ðϕp;2−ϕq;2Þ−

1

4
ðϕp;3þϕq;3Þ

�
t2
�

× exp

�
j2π

�
1

6
ðϕp;3−ϕq;3Þ

�
t3
�
dt; (23)

where Dpq;cross is irrelevant to the variable t.
As is obvious from Eq. (23), when ϕp;3 ≠ ϕq;3, the auto-terms can be detected correctly by

peak detection, and the phase coefficients can be estimated easily. Here, assume that the received
signal contains the same QCR, i.e., ϕp;3 ¼ ϕq;3. Then, LPAFpq;crossðω1;ω2Þ can be further
simplified as

EQ-TARGET;temp:intralink-;e024;116;285LPAFpq;crossðω1;ω2Þ ¼ Dpq;cross

Z þ∞

−∞
exp

�
−j2π

�
ω1 − ðϕp;1 − ϕq;1Þ −

1

2
ðϕp;2 þ ϕq;2Þ

�
t

�

× exp

�
−j2π

�
ω2 −

1

2
ðϕp;2 − ϕq;2Þ −

1

2
ðϕp;3Þ

�
t2
�
dt:

(24)

From Eq. (24), we can find that the spurious peak will be located at

EQ-TARGET;temp:intralink-;e025;116;185

�
ω1 ¼ ðϕp;1 − ϕq;1Þ þ 1

2
ðϕp;2 þ ϕq;2Þ

ω2 ¼ 1
2
ðϕp;2 − ϕq;2Þ þ 1

2
ðϕp;3Þ : (25)

It is worthwhile to mention that only when ϕp;3 ¼ ϕq;3, the LPAF for sðtÞ causes spurious
peak, which affects the detection and estimation for multi-CPSs. Fortunately, the phase
coefficients ϕjðj ¼ 0;1; 2: : : Þ are not only related to target rotational parameter (e.g., CF cor-
responding to the initial rotational velocity, CR corresponding to the rotational acceleration, and
QCR corresponding to the rotational acceleration rate), but also proximately proportional to the
cross-range coordinates. Thus, for different scatterers with different coordinates in a range bin,
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we have ϕp3 ≠ ϕq3ðp ≠ qÞ.14 Accordingly, the cross-terms of the LPAF induced by multi-CPSs
can be avoided effectively.

Example 1. Consider a mono-component CPS and two-component CPSs, respectively.
The sampling frequency and the effective length of signal are 256 Hz and 256, respectively.
The signal parameters are shown in Table 1.

The WVD of CPS-A1 is shown in Fig. 2(a), in which the curves appear due to QCR of CPS.
With the proposed parameter estimation algorithm, a sole peak appears in the CRQCRD in
Figs. 2(b) and 2(c), where CR and QCR can be obtained by peak detection. Moreover, we obtain
the CRQCRD of the two-component CPSs in Fig. 2(d). For easy visualization, the stereogram,
the right view (XZ plane), and the left view (XZ plane) of CRQCRD are depicted in Figs. 2(d)–
2(f), where two different peaks appear in CRQCRD. Therefore, the corresponding parameters of
each component can be easily estimated via searching the peaks and CLEAN technique,7,8

sequentially.

4 Performance of Local Polynomial Ambiguity Function

In this section, we will discuss the performance of LPAF, mainly including the computational
cost and the robustness in the presence of noise, which determine whether the proposed
algorithm can be utilized for the parameter estimation of multi-CPSs in realistic ISAR imaging
applications or not. In order to verify the advantages of the proposed estimation algorithm, other
two representative algorithms, MCPF and LPWD, are chosen as reference to compare with
the proposal.

Table 1 Parameters for CPS.

Ai ϕi ;1 ϕi ;2 ϕi ;3

i ¼ 1 1 40 Hz 30 Hz∕s −60 Hz∕s2

i ¼ 2 1.05 −30 Hz −80 Hz∕s 40 Hz∕s2

Fig. 2 Simulation results of example 1: (a) Wigner-Ville distribution of first CPS, (b) stereogram of
CRQCRD in first CPS, (c) contour of (b), (d) stereogram of CRQCRD in two CPSs, (e) XZ plane of
(d), and (f) YZ plane of (d).
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4.1 Analysis of the Computational Cost

For MCPF, the estimation procedures of the parameter ϕ3 require Oð3N2
tmÞ complex multiply

operations (CMs) for definition of multilinear function and OðN3
tmÞ operations for discrete

Fourier transform (DFT) along the nonuniformly spaced lag-time axis. For estimation of the
parameter ϕ2, the implementation procedures require OðN2

tmÞ operations for CPF and
OðN3

tmÞ operations for DFT due to the two-dimensional (2-D) kernel. Thus, the computational
complexity with MCPF is in the order of OðN3

tmÞ. According to Refs. 11 and 13, the nonuniform
fast Fourier transform (NUFFT)11,13 can be utilized to speed up the implementation of the Fourier
transform along the nonuniformly spaced lag-time axis. Unfortunately, the interpolation neces-
sary for NUFFT is not preferable in some realistic applications.

The LPAF algorithm, which can directly obtain CRQCRD, estimates CR and QCR with 2-D
maximizations and can reduce error propagation effect to some extent. According to the afore-
mentioned analyses and discussion on the modified discrete chirp-Fourier transform,28,29 which
retains capability of efficient FFT implementation, the implementation procedures of parameters
estimation based on LPAF include (1) the self-correlation operation in Eq. (16), after which the
signal has the form of the linear frequency modulated signal, (2) FFT operation after matching
the QCR ϕ3 in Eq. (18), and (3) the parameters estimation by peak detection technique. In this
paper, the searching range of the parameter ϕ3 is ½−ROUNDðFtm∕2Þ;ROUNDðFtm∕2Þ�, where
ROUNDð·Þ and Ftm denote the round-up operator and pulse repetition frequency (PRF), respec-
tively. The resolution of the parameter ϕ3 is PRF∕Ntm , whereNtm is the effective length of tm (the
same as the number of effective echoes); thus, the searching point of the parameter ϕ3 is exactly
Ntm in ISAR imaging. In conclusion, the computational complexity with this approach is about
in the order of OðN2

tm log2 NtmÞ.
For LPWD, the implementation procedures for the estimation of parameters ϕ1 and ϕ3 are

analogous to the LPAF algorithm. However, the parameter ϕ2 is estimated by the integrated form
of cubic phase function, which includes the defined bilinear function [OðN2

tmÞ] and Fourier trans-
form [OðN3

tmÞ] along the nonuniformly spaced lag-time axis. Therefore, the computational com-
plexity with the LPWD-based algorithm is also in the order of OðN3

tmÞ, which is obviously
greater than the LPAF algorithm.

It is obvious that, compared with MCPF and LPWD, the proposed algorithm is computa-
tionally more efficient than the other two algorithms since the latter involves nonuniformly
spaced data computation. Furthermore, as mentioned in Ref. 21, MCPF estimates phase coef-
ficients one by one via dechirp technique, which will reduce the estimation precision due to error
propagation. On the contrary, the LPAF algorithm can obtain CR and QCR simultaneously.
Table 2 gives the computational costs of the three algorithms.

4.2 Analysis of Performance in Noise

In order to further illustrate the practicability of the proposed parameter estimation algorithm, the
robustness of performance against noise, which is evaluated by input-output signal-to-noise ratio
(SNR)9 and mean square error (MSE),30,31 will be analyzed in this section.

Example 2. Consider a mono-CPS as shown in Eq. (15); the sampling frequency and the
effective length of signal are 256 Hz and 256, respectively. The signal parameters are set as fol-
lows: A ¼ 1, ϕ1 ¼ 40 Hz, ϕ2 ¼ 24 Hz∕s, ϕ3 ¼ 60 Hz∕s2. Hereon, the CPS is embedded in
complex white Gaussian noise, and the value of SNRin varies from −5 to 2 dB in steps of
1 dB, and 100 Monte Carlo simulations are performed for each SNRin value. Meanwhile, the
MSEs for the parameters ϕ2 and ϕ3 with the corresponding Cramer-Rao bounds (CRBs)30

are also obtained and shown in Figs. 3(b) and 3(c), respectively.

Table 2 Computational cost.

Computation cost LPWD MCPF LPAF

Number of CMs OðN3
tm
Þ OðN3

tm
Þ OðN2

tm
log2 Ntm Þ
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In Fig. 3(a), MF, LPWD, and MCPF are chosen to compare with the proposed LPAF. For
MCPF, its implementation is similar to PGCPF,18 which defines a multilinear function of fourth
order and estimates unknown parameters one by one with two one-dimensional maximizations.
Thus, the performance of MCPF closely matches that of MF until the input SNR falls below
0 dB, and the evidence for MCPF can be found in Ref. 10. For LPWD, its performance also
closely matches that of MF until the input SNR falls below 0 dB, and we can find the corre-
sponding evidence in Ref. 21. According to the analyses in Refs. 8 and 11, compared to the
self-correlation function [sðτ∕2Þs�ð−τ∕2Þ, for t ¼ 0] of LPWD, the self-correlation function
[sðtþ τ0∕2Þs�ðt − τ0∕2Þ, for τ ¼ τ0] of LPAF can reduce the influence of nonlinearity and
benefit the performance in the presence of noise. Thereby, the proposed LPAF can obtain robust
performance against noise and its threshold SNR is −3 dB. In addition, the MSEs for the
estimations ϕ2 and ϕ3 are plotted in Figs. 3(b) and 3(c) as a function of SNR, respectively.
Obviously, the MSEs of CR and QCR are close to the corresponding CRB when
SNRin ≥ −3 dB, which conforms to the result in Fig. 3(a).

5 Inverse Synthetic Aperture Radar Imaging Algorithm Based on
Local Polynomial Ambiguity Function

On the above analyses and confirmation, a new ISAR imaging algorithm for target with complex
motion is proposed based on LPAF. Detail implementation procedures are given as follows:

Step 1: Complete the range compression and motion compensation, and obtain data skðtmÞ of
the k’th (where 1 ≤ k ≤ K, and K is the total number of range bins) range bin.

Step 2: Substitute skðtmÞ in Eq. (16).
EQ-TARGET;temp:intralink-;e026;116;282

LPAFkðω1;ω2Þ ¼
XQ
i¼1

D2
i

Z þ∞

−∞
exp½−j2πðω1 − ϕi;2Þt� exp

�
−j2π

�
1

2
ω2 −

1

2
ϕi;3

�
t2
�
dt

þ LPAFkcrossðω1;ω2Þ þ LPAFknoiseðω1;ω2Þ; (26)

where LPAFkcrossðω1;ω2Þ and LPAFknoiseðω1;ω2Þ denote the cross-terms and noise,
respectively.

Step 3: Complete estimation of the parameters ϕi;2 and ϕi;3 of the i’th CPS by finding the loca-
tion of peak.

EQ-TARGET;temp:intralink-;e027;116;173ðϕ̂i;2 ¼ ω1; ϕ̂i;3 ¼ ω2Þ ¼ argmax
ω1;ω2

jLPAFkðω1;ω2Þj: (27)

Step 4: Dechirp skðtmÞ with the estimated parameters ϕi;2 and ϕi;3 to estimate ϕi;1 and Ai.

EQ-TARGET;temp:intralink-;e028;116;121

�
Âi ¼

G
N
; ϕ̂i;1 ¼ f

�
¼ argmax

G;f

����FFT
�
skðtmÞ × exp

�
−j2π

�
1

2
ϕ̂i;2t2m þ 1

6
ϕ̂i;3t3m

�������:
(28)

Fig. 3 Robustness of performance against noise: (a) input-output SNR, (b) MSE of CR estimation,
and (c) MSE of QCR estimation.
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Step 5: Subtract the estimated i’th CPS from the original signal skðtmÞ in frequency domain.

EQ-TARGET;temp:intralink-;e029;116;724

skðtmÞ ¼ IFFT

�
WINðϕ̂i;1Þ × FFT

�
skðtmÞ exp

�
−j2π

�
1

2
ϕ̂i;2t2m þ 1

6
ϕ̂i;3t3m

����

× exp

�
j2π

�
1

2
ϕ̂i;2t2m þ 1

6
ϕ̂i;3t3m

��
; (29)

where WINðϕ̂i;1Þ ¼
�
0; f − Δf∕2 < ϕ̂i;1 < f þ Δf∕2
1; otherwise

is a notch filter centred at the CF

ϕ̂i;1, and Δf is the corresponding bandwidth.
Step 6: Renew i ¼ iþ 1 and repeat steps 2 to 5 until the residual energy of the signal is less than

the threshold T.
Step 7: Renew k ¼ kþ 1 and repeat steps 1 to 6 until k ¼ K.

6 Inverse Synthetic Aperture Radar Imaging Results Based on
Local Polynomial Ambiguity Function

In this section, we will utilize the synthetic ship target and aircraft target with the model shown in
Figs. 4(a) and 6(a) to verify the proposed ISAR imaging algorithm successively. Motion param-
eters and corresponding radar parameters are listed in Tables 3 and 4, respectively.

6.1 Ship Target

Similar to Refs. 10 and 13, a fluctuating ship target modeled as a set of ideal scatterers is pro-
vided to demonstrate the effectiveness of the proposed algorithm in this paper. After pulse com-
pression and motion compensation, the received signal can be simplified as the 2-D reflectivity
function shown in Eq. (8). Figure 4(b) gives the conventional RD imaging results with FFT
operation along the azimuth slow time axis under the situation of SNRin ¼ −3 dB, which is

Fig. 4 (a) Ship target model, (b) result of the conventional RD algorithm, (c) result after the RD
algorithm, (d) result after the Doppler spread compensation with LPAF, (e) result after the Doppler
spread compensation with LPWD, and (f) result after the Doppler spread compensation with
MCPF.
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blurred severely by CR and QCR. In this section, we choose the special lag-time instance τ0 ¼ 1

to achieve the LPAF so that CR and QCR can be read directly.
To demonstrate the accuracy of the parameters estimation by the proposed LPAF, the data of

the 153rd range bin in Fig. 4(b) are extracted to analyze, and the corresponding CRs and QCRs
of these scatterers are estimated as shown in Table 5. Then, with the estimated CRs and QCRs,
we compensate the Doppler frequency shift and obtain Figs. 4(d)–4(f), where the ideal matched
results are also shown to make a comparison with each mentioned algorithm. Compared with the
results in Figs. 4(c), 4(e), and 4(f), the result obtained by LPAF in Fig. 4(d) is very close to the
ideal results, which demonstrate that the accuracy of the parameters estimation by the proposed
LPAF is high. Although some spurious peaks appear in Fig. 4(d), the same as in Table 5, the
LPAF is also better than other algorithms in the estimation accuracy and suppression on
cross-terms.

In addition, the comparison of the LPAF-based algorithm with the MCPF-based algorithm
and the LPWD-based algorithm for ISAR imaging is discussed. Generally, to quantitatively
evaluate the performance of the proposed algorithm, the MSEs of 2-D reconstructed coordinates
are defined asMSE ¼ kRest −Rk2, whereR andRest represent the original data and the recon-
structed data obtained by the proposed algorithm, that is, the corresponding relation between R

and Rest is determinate and known ahead of time. However, the number and the position of the
scatterers on target are usually unknown and cannot be obtained in advance. Entropy can be used

Table 4 Simulation parameters of aircraft.

Radar Aircraft target

Carrier frequency 10 GHz Target distance 40 km

Bandwidth 150 MHz Motions Translation Rotation

PRF 256 Hz Velocity 20 m∕s 0.03 rad∕s

Echo number 512 Acceleration 1 m∕s2 0.04 rad∕s2

Sample frequency 300 MHz Acceleration rate 2 m∕s3 0.08 rad∕s3

Table 5 Results of parameters estimation.

Signal parameters A1 A2 A3 A4 A5 A6 A7 A8
Spurious
peak

CR (Hz∕s) 60 40 20 0 −20 −40 −60 −80

Estimated CR (Hz∕s) 60 40 20 0 −20 −40 −61 −75 −54 −42

QCR (Hz∕s2) 120 80 40 0 −40 −80 −120 −160

Estimated QCR (Hz∕s2) 120 80 40 0 −38 −80 −124 −84 −38 82

Table 3 Simulation parameters of ship.

Radar Ship target

Carrier frequency 15 GHz Target distance 24 km

Bandwidth 200 MHz Motions Translation Rotation

Pulse repetition frequency (PRF) 256 Hz Velocity 30 m∕s 0.012 rad∕s

Effective echo 256 Acceleration 3 m∕s2 0.02 rad∕s2

Sample frequency 200 MHz Acceleration rate 2 m∕s3 0.04 rad∕s3
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to measure the smoothness of a distribution function. The smoother a distribution function, the
larger is its entropy.10,13 Owing to this property, we use the entropy of Eq. (30) as a criterion to
measure the quality of the image in Table 6. Better focus results in a sharper image and thus
smaller entropy. Meanwhile, simulation times of Fig. 5 (only including effective range bins) are
also listed to certify the high efficiency of LPAF-based ISAR imaging algorithm.

EQ-TARGET;temp:intralink-;e030;116;576E ¼
X
m

X
n

jIðm; nÞj2
S

In
S

jIðm; nÞj2 ; (30)

where S ¼ P
m

P
n jIðm; nÞj2.

From Fig. 5, we see that LPAF-based ISAR imaging algorithm has better suppression on
cross-terms compared with the LPWD-based ISAR imaging algorithm and MCPF-based
ISAR imaging algorithm. Evidently, most scatterers are relocated correctly in Fig. 5(a). Due
to the four order of nonlinearity of MCPF and error propagation effect of LPWD (the estimation
precision for CR is influenced by QCR), the spurious scatterers in Figs. 5(b) and 5(c) are
more than those in Fig. 5(a). Furthermore, the entropy of Fig. 5(a) is also smaller than
those of Figs. 5(b) and 5(c) in Table 6, which further shows that the LPAF-based ISAR imaging
algorithm can obtain a well-focused image.

6.2 Aircraft Target

In this section, the synthetic aircraft target as shown in Fig. 6(a), which consists of 141 scatterers,
is chosen to demonstrate the validity of the proposed ISAR imaging algorithm in this paper. We
know that the CR and QCR of the azimuth echo in ISAR imaging are determined by the target’s
size and the effective rotating vector. When the target’s size is a little larger or its maneuverability
is a little higher, we have to adjust the parameter estimation range to meet the practical require-
ments. Here, we choose the special instance τ0 ¼ 1∕2 to enlarge the parameter estimation ranges
and avoid spectrum aliasing and estimation error.

Obviously, the image obtained by the traditional RD algorithm is blurred severely in
Fig. 6(b). In order to confirm the validity of the proposed parameter estimation algorithm,
when all scatterers have been corrected into right slant range bins after motion compensation,
we extract the data of the 211st range bin to analyze in detail. Under the situation of
SNRin ¼ 4 dB, the WVD as shown in Fig. 6(c) is computed for the radar echo signal of

Table 6 Entropies and time of ISAR images in Fig. 5.

Fig. 5(a) Fig. 5(b) Fig. 5(c)

Entropies 3.4421 4.8379 4.2688

Simulation time (s) 1.2318 110.0910 202.9427

Fig. 5 Simulation results: (a) result of LPAF-based ISAR imaging algorithm, (b) result of LPWD-
based ISAR imaging algorithm, and (c) result of MCPF-based ISAR imaging algorithm.

Lv, Su, and Zheng: Inverse synthetic aperture radar imaging of targets with complex motion based. . .

Journal of Applied Remote Sensing 015019-12 Jan–Mar 2016 • Vol. 10(1)



the 211st range bin. It is not difficult to find that the Doppler frequency is time-varying and
nonlinear, which also demonstrates that the CPS model is very appropriate. Here we apply
the LPAF-based parameter estimation algorithm to the extracted data. In Figs. 6(d) and
6(e), two peaks appear and can be easily picked out. Then the corresponding CR and
QCR of two peaks can be correctly estimated via peak detection technique and CLEAN
technique.

With the parameter estimation algorithm, we can estimate ðϕp;2;ϕp;3Þ and ðϕq;2;ϕq;3Þ as
ð4 Hz∕s; 8 Hz∕s2Þ and ð−4 Hz∕s;−8 Hz∕s2Þ, respectively. After the Doppler spread compen-
sation with the estimated parameters, we obtain the results in Fig. 6(f) by performing FFT,
where the results of the conventional RD algorithm are also provided. Simulation shows
that signal energy cannot be focused efficiently for Doppler frequency shift induced by
CR and QCR. Consequently, the effective parameter estimation and compensation are
quite essential.

Generally speaking, the better the focused quality of image, the smaller is the
entropy.5,10,11,13,14 As before, the entropy is applied to measure the quality of the image.

Fig. 6 (a) Aircraft target model, (b) result of the conventional RD algorithm, (c) WVD of the
extracted data, (d) simulation result with the proposed algorithm, (e) zoomed-in plot of ellipse
area in (d), and (f) result after the Doppler spread compensation with LPAF.

Fig. 7 Simulation results: (a) result of LPAF-based ISAR imaging algorithm, (b) result of LPWD-
based ISAR imaging algorithm, and (c) result of MCPF-based ISAR imaging algorithm.
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Compared with the LPWD-based imaging algorithm and the MCPF-based imaging algorithm,
this proposed LPAF-based imaging algorithm can obtain robust performance against noise.
Therefore, most scatterers have been reconstructed correctly in Fig. 7(a) and spurious scat-
terers in Fig. 7(a) are fewer than those in Figs. 7(b) and 7(c). Also, the entropy of image
in Fig. 7(a) is smaller than those in other figures in Table 7, which indicates that the
image quality for the LPAF-based ISAR imaging algorithm is better than those for other
algorithms.

In order to further validate the effectiveness of the LPAF-based ISAR imaging algorithm for
targets with complex motion, we provide the results of the LPAF-based ISAR imaging algorithm
under a range of different SNRs in Fig. 8, where the scope of SNRin is from 2 to −8 dB with
an increment of −2 dB. It is worthwhile to mention that the less spurious scatterers appear in
Figs. 8(a)–8(c), and the entropies of Figs. 8(a)–8(c) are small than those of Figs. 8(d)–8(f) in
Table 8. Especially, the images in Figs. 8(e) and 8(f) are blurred severely by spurious scatterers.
Thus, we conclude that the proposed ISAR imaging algorithm fails when the input SNR falls
below −4 dB.

Table 7 Entropies of ISAR images in Fig. 7.

Fig. 7(a) Fig. 7(b) Fig. 7(c)

Entropies 5.6388 5.9089 5.8016

Fig. 8 Result of LPAF-based ISAR imaging algorithm under the situation of (a) SNRin ¼ 2 dB,
(b) SNRin ¼ 0 dB, (c) SNRin ¼ −2 dB, (d) SNRin ¼ −4 dB, (e) SNRin ¼ −6 dB, and
(f) SNRin ¼ −8 dB.

Table 8 Entropies of ISAR images in Fig. 8.

Fig. 8(a) Fig. 8(b) Fig. 8(c) Fig. 8(d) Fig. 8(e) Fig. 8(f)

Entropies 5.6527 5.7258 5.8516 6.5244 7.9125 8.9486
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7 Conclusion

For ISAR imaging of targets with complex motion, the azimuth echo in a range bin can be
modeled as multicomponent CPSs, which have been proved more appropriate than the LFM
model. This paper presents a new ISAR imaging algorithm for targets with complex motion
based on LPAF. LPAF can directly obtain CRQCRD only by FFT operation, where two param-
eters can be estimated simultaneously via peak detection. With the analyses and the simulations,
we demonstrate that the LPAF outperforms MCPF and LPWD for the parameter estimation of
CPS in the robustness of performance against noise, the computational cost, and the cross-term
suppression. Finally, the effectiveness of the proposed ISAR imaging algorithm is validated by
the experimental results of simulated data.
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