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Abstract. This article presents an analysis of the scattering measurements for an entire wheat
growth cycle by ground-based scatterometers at a frequency of 5.3 GHz. Since wheat ears are
related to wheat growth and yield, the radar backscatter of wheat was analyzed at two different
periods, i.e., with and without wheat ears. Simultaneously, parameters such as wheat and soil
characteristics as well as volume scattering and soil scattering were analyzed for the two periods
during the entire growth cycle. Wheat ears have been demonstrated to have a great influence on
radar backscatter; therefore, a modified version of water-cloud model used for retrieving biomass
should consider the effect of wheat ears. This work presents two retrieval models based on the
water-cloud model and adopts the advanced integral equation model to simulate the soil back-
scatter before the heading stage and the backscatter from the layer under wheat ears after the
heading stage. The research results showed that the biomass retrieved from the advanced syn-
thetic aperture radar (ASAR) images to agree well with the data measured in situ after setting the
modified water-cloud model for the growth stages with ears. Furthermore, it was concluded that
wheat ears should form an essential component of theoretical modeling as they influence the
final yield. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JRS.10.026008]
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1 Introduction

Microwave remote sensing has been a popular tool because of the distinct benefits such as
retrieval of vegetation information, penetrability, and availability in all weathers. Wheat, as
the second main crop in the world, is closely related to food security, economic development,
and societal stability. Consequently, analyzing the radar backscatter characteristics of wheat has
become an active research field in recent years.1,2 Further, backscatter modeling of wheat and
biomass retrieval from SAR images has also been attributed great attention by the researchers.3–6

Scatterometers have been used to measure and analyze vegetation scattering characteristic
because of their associated ease of use.7,8 Yihyun et al.9 analyzed the capacity of radar vegetation
indices for monitoring wheat growth cycles at P-, L-, and C-bands. Mattia et al.10 studied the
sensitivity of soil moisture and aboveground biomass on radar backscatter of C-band at copola-
rization. Mcnairn et al.11 assessed the usefulness of polarimetric radar data for monitoring wheat
growth and yield. Stiles et al.12 studied the wheat measurements and modeled backscatter of
wheat. He et al.13 modeled wheat radar backscatter by adapting Michigan microwave canopy
scattering model (MIMICS). Huang et al.14 modeled radar backscatter based on vector radiative
transfer theory focused on wheat ears. A greater number of satellites launched in recent years
have resulted in increased availability of valuable synthetic aperture radar (SAR) images that can
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help to extend the research efforts related to wheat growth monitoring.15,16 Juan et al.17 analyzed
the polarimetric characteristics and temporal variations of wheat in wheat growth stages using a
polarization decomposition method based on multitemporal Radarsat-2 images.

Based on the microwave scattering characteristics of wheat, both volume scattering and soil
scattering comprise a major part of the total backscatter. However, the backscatter from wheat
canopies is affected by many factors including: (1) the dielectric constant of wheat, as well its
moisture content; (2) the distribution of the scatter in terms of size and shape for the wheat
canopies; (3) the orientation distribution of the scatters in a canopy; (4) the roughness and dielec-
tric constant of the underlying soil surface. Consequently, various parameters of vegetation and
soil are studied by the researchers.18,19 Numerous studies based on the measurements made by
scatterometers and SAR images focusing on biomass have been conducted.20,21 Considering the
characteristics of wheat ears based on their different moisture contents and specific location, this
work aims to analyze the scattering characteristics of wheat at a frequency of 5.3 GHz. The
water-cloud model is a popular semiempirical model developed by Attema and Ulaby,22 and
has been successfully and widely used.23,24 However, the water-cloud model cannot be easily
applied for wheat ears, and it was thus modified by taking wheat ears into account to fit for the
stages with wheat ears. Wheat canopy and the underlying soil are two important parts in water-
cloud model, so the research simulated soil backscatter using the advanced integral equation
model25 (AIEM), which has proven better to simulate soil backscatter.26 The simulation results
from AIEM play an important role in the water-cloud model and the modified water-cloud
model. Moreover, the water-cloud model and the modified water-cloud model were applied
to retrieve wheat biomass from advanced synthetic aperture radar (ASAR) images for the
two different growth periods, i.e., with and without wheat ears. The retrieved biomass was com-
pared with the measured biomass for verifying the accuracy of the two retrieved models in
retrieving biomass information from the SAR images.

2 Study Area and Data Acquisition

The research and demonstration site for our study is located in Qianjin town, Qionglai, Chengdu,
Sichuan Province, China (north latitude 30°24 011 0 0 and east longitude 103°32 024 0 0; Fig. 1). The

Fig. 1 Experimental location and ground measurements.
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site is spread across 3 hectares and its topography is smooth with an elevation of 483 m. In this
area, wheat and rice are the main cereal crops.

The scattering measurements and ASAR data were obtained from a ground-based radar scat-
terometer and the Envisat, respectively. The ground-based scatterometer is a frequency-modu-
lated continuous-wave (FM-CW) full-polarization radar with a dual-antennae system, which can
maintain monostatic radar performances. In addition, the scatterometer can obtain backscattering
coefficients for incidence angles from 0 deg to 90 deg and azimuth angles from 0 deg to 360 deg.
A 12.5-m high hydraulic lift that can accommodate for far-field conditions during the measure-
ments provides the supporting platform for the scatterometer. The polarimetric calibration of the
scatterometer system is performed using the single-target calibration technique27 through the
measurement of the cross section of the conducting triangle reflector.

A sufficient number of independent samples to reduce the speckle noise and to increase the
accuracy of measurements using filtering methods were critical to the measurements. More than
36 independent samples were necessary to guarantee a 90% confidence level,1 and the indepen-
dent samples in the radar footprint area should have contained the same number of resolution
cells. Equation (1) was used to calculate the number of independent sample

EQ-TARGET;temp:intralink-;e001;116;544NS ≈ 2hβvBr tan θ∕ðc cos θÞ; (1)

where NS indicates the number of independent samples, h shows the height from the antenna to
the surface, βv indicates beam width, Br is the modulation band of the scatterometer, θ is the
incidence angle, and c is the speed of light.

The main technical parameters of the scatterometer along with the band details of the dual-
antennae at a frequency of 5.3 GHz are shown in Table 1.

For instance, at a height of 12.5 m and an incidence angle of 45 deg, the scatterometer at
5.3 GHz frequency contains about 12 resolution cells; therefore, the number of required inde-
pendent samples can be achieved by acquiring 20 nonoverlapping footprints. Assuming the cal-
ibration and statistical errors to be independent, the overall system error for the measurements
can be estimated as �1 dB.

The life cycle of wheat at the experimental site includes about 200 growth days from October
to May, and we carried out our scattering measurements during an entire wheat growth cycle
(Fig. 2). Growth stages are critical in the entire cycle of wheat growth; therefore, Feekes scale28

was used for selecting growth stages indicating different growth conditions after planting.
Various parameters obtained for the 20th day (tillering initiation, November 16), 45th day
(advanced tillering, December 10), 80th day (stem extension: jointing, January 15), 115th
day (stem extension: booting, February 19), 145th day (heading, March 22), 165th day (flower-
ing, April 12), and 190th day (ripening, May 8) are listed in Fig. 2. The backscattering coef-
ficients were measured twice in an acquisition after calibration, and average values were used to
guarantee robustness of data. Characteristics of the independent samples during the different
wheat growth stages were adequately considered while obtaining wheat parameters in all the
experiments. Data on fresh weight (total biomass and ear weight), structure (canopy length,
leaf length, and ears length), leaf area index (LAI), and stem density were collected. More

Table 1 Main technical parameters of the ground-based scatterometer.

Center frequency 5.3 GHz Dynamic range ≥45 dB

Bandwidth ≥ 0.6 GHz Pitch angle range 0 deg∼90 deg

Azimuth range 0 deg∼359 deg

Work system FM-CW Man–machine interface Computer

Operation range ≥100 m Manual switching polarization HH/VV/VH/HV

Transmitted power ≥50 mw Receiving antenna beam width 6 deg

Measurement accuracy 0.5 dB Transmitting antenna width 8 deg
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than 42 wheat samples were collected at each stage; the average values for the samples are shown
in Table 2. Soil roughness was measured using two parameters: root-mean-square (RMS) height:
2.12 cm and correlation length: 15.26 cm. Soil roughness was only measured once (November
15, 2008, tillering initiation) during the entire wheat growth cycle, because it is considered to
have little change during the entire growth cycle and could not be measured when wheat is high
enough to block the device for roughness measurements.29 Soil moisture was measured using the
gravimetric method and then converted to volume soil moisture. The last row in Fig. 2 shows the
collected data on destructive sampling and soil roughness. Destructive sampling is critical for
estimating biomass and retrieving detailed geometric characteristics of the various elements.
Based on ASAR spatial resolution, we chose eight experimental points in the research area
for measuring radar backscatter and ground parameters, which can be helpful to modify the

Fig. 2 Photographs of the ground measurements.

Table 2 Growth data for winter wheat planted on October 27.

Growth days

Length (cm) Biomass

Stem density LAI

Moisture (%)

Canopy leaf ears Total ears Soil leaf ear

20 8.2 3.2 0 0.21 0 123 0.22 36.2 78.3

45 15.6 14.1 0 0.42 0 221 0.51 26.7 74.5

80 31.8 22.7 0 1.11 0 246 1.42 42.2 84.3

115 68.6 24.3 0 3.61 0 265 3.67 27.1 73.5

145 75.3 25.8 5.2 4.35 0.25 297 3.92 30.5 82.5 77.4

165 82.9 23.2 9.8 5.41 1.36 347 4.91 27.6 62.3 71.6

190 75.4 21.2 14.3 4.14 1.21 342 3.98 38.4 12.5 29.2
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water-cloud model, verify the accuracy of the retrieved biomass, and ensure the usability of the
models.

The ASAR images were obtained from Envisat, when the environment satellite was trans-
mitted over the experimental site. The images (ascending, alternating polarization precision
image) were shot with a resolution of 12.5 × 12.5 m on December 10, 2008, and May 8,
2009 (Table 3).

The NEST (Next ESA SAR Toolbox) software was used for image processing. The process
included the following steps: radiometric correction, reprojection, speckle filtering, and coregis-
tration. The geographic coordinate reference system Lat/Lon WGS84 and cubic method were
chosen to reproject each SAR image. The ground control points were selected as 200 point, and
the root mean squared threshold of pixel accuracy was fixed at 0.6. The filter window size was set
at 9 × 9 for spectral filtering. The data were exported as Geo-tiff products. We adopted the sup-
port vector method for classifying the entire area. In Fig. 3, a river runs across from west to east,
and some buildings located in the town are visible. The smaller backscattering coefficients of
water bodies are indicated in dark blue color, and the bigger backscattering coefficients of build-
ings are shown as red spots. The wheat crops can be distinguished from the light blue to yel-
low color.

3 Analysis of the Wheat Backscatter Characteristics

Backscatter was analyzed at a frequency of 5.3 GHz (C-band) because this frequency is commonly
employed in microwave remote sensing fields. The ASAR images synchronous with the meas-
urement times were also made available. Since in, theory, the backscatter for cross-polarizations is
equivalent for the same target, data from both the cross-polarizations were averaged for each set of
measurements. Wheat ears are first visible at the heading stage, which affects not only the direct
radar backscatter from wheat canopy but also the return radar backscatter from soil after double
canopy attenuation.30 Therefore, our study separates the growth stage into before and after the
heading stage to analyze the electromagnetic response from wheat, particularly wheat ears.

The incidence angles were measured from 22 deg to 61 deg with an increment of 3 deg, and
the lower and the higher incidence angles were discarded because they would be affected by the

Table 3 ASAR images for the experimental site.

Date Operating mode Swath (θ deg), incident angle of the test site Polarization Orbit

Dec. 10, 2008 AP IS3(26.0 to 31.4),28.86 deg HH/VV 35,450

May 8, 2009 AP IS4(31.0 to 36.3), 33.88 deg HH/VV 37,726

Fig. 3 The extracted backscattering coefficients from the ASAR images of the experimental site:
(a) December 10 and (b) May 8.
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ground foundation of the machine and distant trees. The simulation results of the bare soil based
on AIEM were also added to compare the influence of wheat on radar backscatter.

3.1 Backscatter at HH, VV, VH Polarization at Different Periods

The backscattering coefficients at horizontal–horizontal (HH), vertical–vertical (VV), and ver-
tical–horizontal (VH) polarizations before and after the heading stage are shown in Fig. 4. The
left columns in Figs. 4(a), 4(c), and 4(e) show the data before the heading stage, and the right
columns in Figs. 4(b), 4(d), and 4(f) show the data after the heading stage. Results for HH, VV,
and VH polarizations are shown in the first, second, and third rows, respectively.

The normal tendency is for the backscattering coefficients to decrease with an increase in
incident angles, and the backscatter trend shifts from soil scattering to volume scattering with an
increase in wheat biomass. Moreover, the backscatter dominated by soil scattering drop faster
than that dominated by volume scattering based on the water-cloud model.1

A comparison between the backscatter values of HH, VV, and VH polarizations shows that
HH has the highest values because the vertical structure of wheat makes VV polarization of the
electromagnetic wave suffer more attenuation, while VH values are the smallest in each pho-
nological stage because of the secondary scattering of the stem surfaces.31

Figures 4(a) and 4(b) show the backscattering coefficients of wheat at HH polarization with
varying incidence angles during the entire growth cycle. Before the heading stage, when wheat

Fig. 4 Backscattering coefficients varying with incidence angles before the heading stage (left
column) and after the heading stage (right column): first row-HH, second row-VV, and third
row-VH; (a), (c), (e) before the heading stage and (b), (d), (f) after the heading stage.
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height is 8.2 cm on the 20th growth day, the total backscattering coefficients are very similar to
those of bare soil. The backscatter drops faster which shows that soil scattering contribution
dominates the total backscatter. The backscattering coefficients measured are bigger than
those simulated by AIEM, and the difference between the measured and simulated values
becomes zero at an incidence angle of 52 deg, which shows that wheat begins to affect back-
scatter; and high incidence angles reduce the influence of wheat on radar backscatter. The curves
show a rise at the incidence angle of 52 deg on the 80th and 115th days; the likely reason for this
rise is the soil scattering giving way to volume scattering. The soil moisture on the 80th day is the
highest (42.2%) during the entire wheat growth cycle, and therefore the backscattering coeffi-
cients reach the highest value. After the heading stage, the backscatter trends are flat. The soil
moisture and biomass are 27.1% and 3.61 kg∕m2, and 30.5% and 4.35 kg∕m2 on the 115th and
145th days, respectively. However, the backscattering coefficients on the 145th growth day are
smaller than those on the 115th growth day, which demonstrates that the wheat canopy contrib-
uted more to the backscatter attenuation. The soil moisture is 30.5% and 27.6% on the 145th and
165th days, respectively, and the values of biomass, LAI, and weight and length of wheat ears
increase by 1.06 kg∕m2, 0.99, 1.11 kg∕m2, and 4.6 cm, respectively. The backscattering coef-
ficients on the 165th day are larger than those on the 145th day, which shows that the backscatter
returned directly from the wheat canopy increases because volume scattering dominates the total
backscatter. As shown in Fig. 4, wheat ears play an important role in volume scattering. The
backscattering coefficients on the 190th day are the biggest, because wheat ears increase the
direct backscatter from the canopy with the highest fresh weight and length in the ripening
stage. Moreover, the decrease in wheat moisture reduces the attenuation effect and the soil mois-
ture contributes more to the total backscatter.

Figures 4(c) and 4(d) show the backscattering coefficients of wheat at VV polarization with
varying incidence angles during the entire growth cycle. The backscattering coefficients are
affected by the soil during the experiment before the heading stage, and the simulation results
obtained by AIEM are higher than those measured on the 20th day, which shows that the vertical
structure of wheat increases the attenuation at VV polarization. The backscattering coefficients
are smaller than the measurement on the 115th growth day with 27.1% soil moisture and
3.61 kg∕m2 biomass. This result shows that the higher biomass values increase the attenuation
effects and reduce the total backscatter. Wheat ears grow larger after the heading stage and con-
tribute more to the total backscatter. Because of the vertical structure of wheat, the difference in
backscattering coefficients at VV polarization between the 145th and 165th days are smaller than
that at HH polarization. The backscattering coefficients on the 145th day are smaller than those
on the 165th day for incidence angles more than 43 deg. In addition, wheat ears are 5.2 cm long
with 30.5% soil moisture on the 145th day and 9.8 cm long with 27.6% soil moisture on the
165th growth day, which shows that wheat ears increase the radar backscatter of VV polarization
at higher incidence angles.

Figures 4(e) and 4(f) show the backscattering coefficients of wheat at VH polarization with
varying incidence angles during the entire growth cycle. Before the heading stage, on the 20th
growth day, although wheat just appears in a large area, a certain impact from the wheat canopy
is still observed on the echo energy at VH polarization. Because VH polarization is formed by
soil and soil-wheat components,31 the backscatter is sensitive to soil scattering. The soil moisture
on the 80th day is 42.2%, which makes the backscatter curves different from other curves. After
the heading stage, the curves become flat, possibly because biomass attenuation, in particular the
influence of wheat ears on backscatter, reaches a saturation point. The soil moisture is 38.4% and
wheat biomass drops to 4.14 kg∕m2 on the 190th day, which shows that the wheat ears increase
the attenuation between wheat canopy and the underlying soil in the ripening stage. As wheat
ears may increase the backscatter at cross-polarization,14 longer wheat ears may also increase the
backscatter compared with the shorter ones.

3.2 Relationship Between Backscatter and Ground Parameters

In order to better analyze the relationship between backscattering coefficients and wheat param-
eters, the co-polarization ratio (HH/VV) was adopted. To discriminate the soil and crop proper-
ties of the scattering surface, polarization discrimination ratio (PDR) was also given as follows:32
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EQ-TARGET;temp:intralink-;e002;116;596PDR ¼ σVV − σHH
σVV þ σHH

; (2)

where σVV and σHH are the backscattering coefficients at VVand HH polarizations, respectively.
Table 4 compares the correlation coefficients of multipolarization at incidence angles of 29 deg
before the heading stage and 34 deg after the heading stage. The heading stage (145th day) is the
time node for discriminating the wheat growth stages with and without wheat ears. HH29, VV29,
VH29, HH/VV29, and PDR29 indicate the backscattering coefficients at polarization combina-
tion for incidence angles 29 deg at the stages without wheat ears, and HH34, VV34, VH34, HH/
VV34, and PDR34 indicate the backscattering coefficients at polarization combination for inci-
dence angles 34 deg at the stages with wheat ears.

As can be seen from Table 4, the correlation coefficient between biomass and PDR34 reaches
0.95, and the correlation coefficient between LAI and VV29 is 0.94. Moreover, VH 34 is more
sensitive to soil moisture. To develop a robust technique, an empirical model is not sufficient, the
correlation between backscatter and wheat parameters, which would be helpful to wheat mon-
itoring and modeling in remote sensing society, has been documented.

4 Adaptation of Water-Cloud Model

In the wheat growth stage, wheat canopy scattering and soil scattering constitute the main parts
of the total backscatter, and thus the water-cloud model was adapted by treating the canopy as
cloud and soil as water.22,23 However, wheat canopy is composed of different components before
and after the heading stage, and wheat ears make an important contribution to the total back-
scatter. Therefore, the water-cloud model may be divided into two different stages, which should
have different empirical coefficients based on the above analysis.

From Fig. 5(a), the soil under wheat is assumed to be a random rough surface and wheat may
be treated as a layer over soil; the total backscatter includes the response from wheat and soil.
The equation of water-cloud model is as follows:22

EQ-TARGET;temp:intralink-;e003;116;257σ0totalðθÞ ¼ σ0wheatðθÞ þ γ2σ0soilðθÞ; (3)

EQ-TARGET;temp:intralink-;e004;116;222σ0wheatðθÞ ¼ A cosðθÞ½1 − γ2ðθÞ�; (4)

EQ-TARGET;temp:intralink-;e005;116;193γ2ðθÞ ¼ exp½−2Bmwheat secðθÞ�; (5)

where σ0wheat and σ
0
soil are the backscattering coefficients for wheat and soil, respectively; γ

2 is the
two-way attenuation through the canopy; θ is the incidence angle; A and B are constant coef-
ficients dependent on canopy type and are determined by iterative optimization. From Fig. 5(b),
the layer under wheat ears is assumed to be a water layer, and the wheat ears are treated as the
cloud layer. AIEM can be used to simulate the backscatter of the “water layer,” and the total
backscatter could be obtained. For co-polarization, WBiomass can be input to connect biomass
with backscatter, and the retrieval model can be expressed as

Table 4 Correlation coefficients between backscatter and ground parameters.

Parameters HH29 VV29 VH29 HH/VV29 PDR29 HH34 VV34 VH 34 HH/VV34 PDR34

Growth stages Stages without wheat ears Stages with wheat ears

Biomass 0.67 0.94 −0.27 0.92 0.89 0.83 0.93 0.06 0.94 0.95

LAI 0.85 0.94 0.5 0.89 0.9 0.72 0.91 0.79 0.9 0.91

Soil moisture 0.54 0.52 0.77 0.54 0.57 0.58 0.47 0.83 0.58 0.52
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EQ-TARGET;temp:intralink-;e006;116;553

σ0HH ¼ AHHWBiomass cosðθÞ½1 − expð−2BHHWBiomass sec θÞ�
þ expð−2BHHWBiomass sec θÞσ0BHH;

σ0VV ¼ AVVWBiomass cosðθÞ½1 − expð−2BVVWBiomass sec θÞ�
þ expð−2BVVWBiomass sec θÞσ0BVV; (6)

whereWBiomass is the retrieval result of biomass. The constants A and B are empirical parameters
of the model, and the subscripts HH and VV represent polarizations. The equation shown above
is nonlinear beyond variance group, and an analytical solution is not available. Therefore, an
optimization method can be applied by a numerical solution. The expressions of input and output
are given as

EQ-TARGET;temp:intralink-;e007;116;418WBiomass ¼ fsolveðσ0HH; σ0VVÞ: (7)

The parameters σ0BHH and σ0BVV can be obtained by AIEM corresponding to the acquisition time
of the two ASAR images.

The main procedures aim to monitor and map wheat biomass (Fig. 6). Ground-based meas-
urement and space-borne ASAR images were synchronously collected. The ASAR images were
processed to perform classification and retrieve backscattering coefficients, while the ground
parameters were applied to build the modified water-cloud model and verify the final retrieval
results.

5 Results and Discussion

When the modified water-cloud models were applied to retrieve biomass, the backscattering
coefficients extracted from the ASAR images could output the biomass maps at the two acquis-
ition times. Figure 7 displays the spatial application based on the ASAR images for the two
separated periods. As can be seen from the color bar, the biomass maps show the values of
wheat biomass. The main values are distributed in the range of 0.1 to 0.4 kg∕m2 and 3.5 to
4.5 kg∕m2 for the two maps, respectively. The corresponding measured biomass values are
0.42 and 4.14 kg∕m2 on December 10 and May 8, respectively, which are the average values
for the eight pilot sites selected. The results are consistent with wheat biomass collected on
December 10 and May 8. Further, the correlation coefficient between backscatter and biomass
is suitable for retrieving biomass at the frequency of 5.3 GHz. Overall, the results demonstrate
good performance of the retrieved models based on the water-cloud model.

The retrieval values are smaller than the measured values (Fig. 8) and a possible reason is that
multiscattering backscatter was discarded in the water-cloud models and the modified water-
cloud model. Moreover, the dual-polarizations ASAR images were used to retrieve biomass,
as the lack of cross-polarization items would make the inversion results smaller.

Fig. 5 Mechanism of semiempirical model: (a) water-cloud model and (b) modified water-cloud
model.
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An F-test was used to verify the extraction accuracy.33,34 The average values of the measured
biomass are 0.42 and 4.14 kg∕m2, and of the retrieved biomass are 0.39 and 3.74 kg∕m2. Sm2 ¼
P ðXm − X̄mÞ2∕ðn − 1Þ and Sr2 ¼ P ðXr − XrÞ2∕ðn − 1Þ are calculated with the square of stan-
dard deviation equations Sm and Sr, respectively. According to the rule of F-test, F ¼ S2r ∕S2m is
1.46 on December 10 and F ¼ S2r ∕S2m is 2.56 on May 8.

Since we chose eight experiment points corresponding to the points of the ASAR images,
both the measured and retrieved biomass values have seven degrees of freedom. The level of
confidence was selected to be 95%; therefore, the critical value of F was 3.79. The F values are
1.26 on October 12, 2008, and 2.56 on August 5, 2009, in the research, which were lower than
the critical value 3.79, so the retrieved parameters were not significantly different from the mea-
sured values.

Fig. 7 Biomass retrieval results from ASAR images: (a) December 10 and (b) May 8.

Fig. 6 Main procedures of wheat biomass monitoring and mapping.

He et al.: Polarimetric analysis of radar backscatter from ground-based scatterometers. . .

Journal of Applied Remote Sensing 026008-10 Apr–Jun 2016 • Vol. 10(2)



6 Conclusions

This study systematically analyzed wheat scattering measurements at a frequency of 5.3 GHz
with multitemporal and multipolarization variations. To guarantee data robustness, independent
samples were considered during ground measurements. Focused on wheat ears, an important
component of wheat, the study divided the entire wheat growth cycle into stages with and with-
out wheat ears. The analysis of wheat characteristics was divided into two periods before and
after the heading stage for comparing the scattering characteristics without and with wheat ears.
Wheat ears proved to be critical in the direct backscatter from canopy and soil backscatter after
double attenuations from canopy. In accordance with the ASAR parameters, the incidence angles
of 29 deg and 34 deg were selected for the stages with and without wheat ears. For the stages
without wheat ears, VV29 had the highest correlation coefficients at 0.94 with biomass, while for
the stages with wheat ears, PDR34 had the highest correlation coefficients at 0.95 with biomass.
After analyzing the influence of wheat ears on radar backscatter for two separate growth periods
before and after the heading stage, the modified water-cloud model was presented for the stage
with the wheat ears, with the layer under wheat ears being assumed to be the water layer, and the
wheat ears being treated as the cloud layer. AIEM can be used to simulate the backscatter of the
“water layer,” and the total backscatter could be obtained. Upon the retrieval of biomass from the
ASAR images, the two models were applied to the wheat growth stages with and without wheat
ears. The biomass measured at eight experimental points and the ones retrieved corresponding to
eight points in the ASAR images were obtained and verified. Further, the F-test method was
applied to verify the research results, and a confidence level above 95% demonstrated that the
modified water-cloud model and the water-cloud model could be successfully used to retrieve
biomass for dual-polarization SAR data at two different wheat growth periods, i.e., with and
without ears.
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