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Abstract. In this work, the issue of robust waveform optimization is addressed in the presence of
clutter to improve the worst-case estimation accuracy for collocated multiple-input multiple-
output (MIMO) radar. Robust design is necessary due to the fact that waveform design may
be sensitive to uncertainties in the initial parameter estimates. Following the min–max approach,
the robust waveform covariance matrix design is formulated here on the basis of Cramér–Rao
Bound to ease this sensitivity systematically for improving the worst-case accuracy. To tackle the
resultant complicated and nonlinear problem, a new diagonal loading (DL)-based iterative
approach is developed, in which the inner optimization problem can first be decomposed to
some independent subproblems by using the Hadamard’s inequality, and then these subproblems
can be reformulated into convex issues by using DL method, as well as the outer optimization
problem can also be relaxed to a convex issue by translating the nonlinear function into a linear
one, and, hence, both of them can be solved very effectively. An optimal solution to the original
problem can be obtained via the least-squares fitting of the solution acquired by the iterative
approach. Numerical simulations show the efficiency of the proposed method. © The Authors.
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1 Introduction

Inspired by the achievement in multiple-input multiple-output (MIMO) communication,1 the
MIMO concept was introduced into the radar field, which has then rapidly drawn more and
more attention.2–28 Compared with phased array, MIMO radar has the capability of transmitting
arbitrary waveforms, which is regarded as waveform diversity.2 In terms of the spacing between
its antennas, MIMO radar can be classified into two categories shown as (1) widely separated
antennas (e.g., 3) and (2) colocated (e.g., 2). The former employs the widely spaced transmit and
receive elements along with diverse transmitted waveforms to view the different aspects of the
target thereby improving the target detection performance. In contrast, the latter employs the
close-spaced elements in transmit and receive arrays to obtain the identical target radar cross
sections observed from all transmit/receive paths, which can increase the spatial resolution
for MIMO radar by exploiting the waveform diversity. Extensive researches have illustrated
that, by designing the transmitted waveforms elaborately, MIMO radar can significantly outper-
form its phased radar counterpart such as improved spatial resolution, parameter identifiability,4,5

and more flexible design of the transmitting beampattern.6–23

As a consequence, waveform design becomes one of the particularly critical issues in MIMO
radar, which has received vibrant attentions recently.6–23 According to the objects needed to

*Address all correspondence to: Rongyan Guo, E-mail: guorongyanyan@163.com

Journal of Applied Remote Sensing 035005-1 Jul–Sep 2016 • Vol. 10(3)

http://dx.doi.org/10.1117/1.JRS.10.035005
http://dx.doi.org/10.1117/1.JRS.10.035005
http://dx.doi.org/10.1117/1.JRS.10.035005
http://dx.doi.org/10.1117/1.JRS.10.035005
http://dx.doi.org/10.1117/1.JRS.10.035005
mailto:guorongyanyan@163.com
mailto:guorongyanyan@163.com


be optimized, the existing design methods can be classified as the following two categories:
(1) only the transmitter to be designed6–14 and (2) the transmitter and receiver to be designed
jointly.15–23

Specific issues that have been considered in first category include the transmit beam
pattern design and radar ambiguity function design. In Refs. 6 and 7, the waveform covariance
matrix (WCM) was designed to attain a desired beam pattern, while the constant modulus signal
design is considered in Refs. 8–10.Meanwhile, the spatial-range-Dopper domain characteristics
of the transmitted waveforms were considered jointly in Ref. 11 to improve the radar perfor-
mance. In Ref. 12, the transmitted waveforms are designed to acquire the improvement in the
detection probability for MIMO space–time adaptive processing (STAP) with perfect target and
clutter prior knowledge. However, these parameters must be estimated with error in application.
Therefore, the robust waveform optimization forMIMO–STAPwith imperfect space–time array
steering vector prior knowledge is considered for improving the worst-case (i.e., the point at
which the worst value can be obtained over the convex uncertainty set) detection probability
in Ref. 13. Besides, focusing on improving the worst-case estimation accuracy in the absence of
clutter, a robust waveform design is proposed in Ref. 14.

Some works have been done in the second category approaches to investigate the waveform
design problem by jointly optimizing the radar transmitter and receiver. In Ref. 15, the transmit
waveforms were optimized for multiple point targets based on several design criteria, e.g., min-
imizing the trace of the Cramér–Rao Bound (CRB) matrix. The output signal-to-interference-
plus-noise ratio (SINR) was maximized in Ref. 16 to acquire the better MIMO radar detection
probability in case of extended target by exploiting a gradient-based method. Unfortunately, the
method proposed in Ref. 16 cannot guarantee nondecreasing SINR in each step. For the purpose
of guarantee convergence, Ref. 17 proposed a new iterative method. The mutual information
between the echo and the target radar signatures was employed to design the transmit
waveform.18–20 In Ref. 21, MIMO waveform was devised by minimizing the estimation
error of the minimum mean-squared error (MMSE) estimators for uncorrelated and correlated
targets. The joint design of the transmit WCM and receive weights is considered for improving
the parameter estimation performance in Refs. 22 and 23.

Based on CRB, Li et al.15 have studied the waveform design issue for narrowband MIMO
radar to acquire the better estimation accuracy, while Wang et al.22 have addressed the issue of
joint design of the transmitting waveforms and biased estimator in the presence of clutter for the
case of known characteristics of targets of interest on the basis of constrained CRB. Obviously,
solving the design issues in these literatures must rely on the specification of parameters, e.g.,
angle of arrival, angle of departure, and reflection coefficients. However, the acquired knowledge
of these parameters may be inaccurate due to the fact that they have to be estimated in practice,
thus there exists uncertainty as to them. Consequently, the resultant estimation accuracy may be
sensitive to these uncertainties in parameters, which has been depicted by numerical examples in
Refs. 15 and 22.

The considerations mentioned above raises the problem of robust MIMO radar waveform
design in the presence of prior uncertainty as to the target characteristics, which has been inves-
tigated in Ref. 27 in the absence of clutter, and studied in Ref. 28 in the presence of clutter.
However, it is well-known that the received data are inevitably contaminated by the clutter
in many applications (see, e.g., Refs. 8 and 9), and this problem was tackled in Ref. 28
based on the assumption proposed in Ref. 22 that is reasonable only under some certain con-
ditions (see Ref. 22 for more details). Focusing on these issues, partially on the basis of our
previous works,28 following the min–max approach, the problem of robust WCM optimization
in the context of clutter is considered in this paper aiming to systematically ease the sensitivity of
parameter estimation performance to the uncertainty in the initial parameter estimates by includ-
ing the parameter estimation error model into the design issue, which is based on minimizing the
trace of the worst-case CRB matrix. With constraints about the transmitted waveforms and
uncertainties in the initial estimates, the formulated robust design problem is an NP-hard
issue.29 To tackle this problem, a diagonal loading (DL)-based30 iterative approach is developed
to design the WCM for improving the worst-case estimation accuracy, in which the inner opti-
mization problem can first be decomposed to some independent subproblems by using the
Hadamard’s inequality,31 then these subproblems can be reformulated into convex issues by
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using DL method, as well as the outer optimization problem also can be relaxed to a convex issue
by translating the nonlinear function into a linear one, and, hence, both of them can be solved
very effectively by using the CVX toolbox that is MATLAB-based modeling system for convex
optimization.32 In what following, an optimal solution to the original issue can be obtained via
the least-squares (LS) fitting of the solution acquired by the iterative algorithm.

This paper is organized as follows. First, Sec. 2 presents the system model and illustrates the
WCM design issue including the convex uncertainty set of parameter estimation errors. Section 3
proposes a DL-based iteration approach and constructs an optimal solution of the original issue.
Section 4 shows the efficiency of the proposed approach via numerical simulations. Finally,
conclusions are summarized in Sec. 5.

Notation: Vectors and matrices are indicated by boldface lowercase and uppercase letters,
respectively. Transpose, complex conjugate, and conjugate transpose are, respectively, denoted
by f·gT, f·g�, and f·gH . Ref·g and Imf·g represent the real and image part of a complex-valued
argument, respectively. Denote Ef·g as the expectation operator, ⊗ as the Kronecker product,
* as the Khatri–Rao product, ⊙ as the Hadamard product, I as the identity matrix, kAkF as
the Frobenius norm of A, diagfag as the diagonal matrix formed via its arguments, and
trf·g as the trace of a square matrix. Given f∶Rn → Rk, ∂f

∂θ indicates the k × n matrix with
ij’th element being ∂f i∕∂θj. M⪯N indicates N −M is positive semidefinite.

2 Problem Statement

Consider a colocated narrow band MIMO radar equipped with Mt transmit and Mr receive
elements with arbitrarily spaced distance, where the i’th transmit element emits the discrete-
time baseband signal ϕi ∈ CL×1, i ¼ 1;2; : : : ;Mt with L denoting the number of snapshots.
Collecting all the transmitting discrete-time baseband signals, the transmitted waveform matrix
can be denoted by Φ ¼ ½ϕ1;ϕ2; : : : ;ϕMt

�T. If the propagation is nondispersive and the
clutter returns in the target range bin can be modeled as a superimposition of a number of
independent clutter patches,33 the data collected by the receive array can be written as (see,
e.g., Refs. 20–22)

EQ-TARGET;temp:intralink-;e001;116;375Y ¼
XK
k¼1

βkaðθkÞbTðθkÞΦþHcΦþW; (1)

in which, fβkgKk¼1 denotes these target amplitudes and fθkgKk¼1 stands for K location parameters
of targets of interest, both of which must be estimated from the received data Y ∈ CMr×L.
aðθkÞ ¼ ½ej2πf0τ1ðθkÞ; ej2πf0τ2ðθkÞ; : : : ; ej2πf0τMr ðθkÞ�T and bðθkÞ ¼ ½ej2πf0 τ̃1ðθkÞ; ej2πf0 τ̃2ðθkÞ; : : : ;
ej2πf0 τ̃Mt ðθkÞ�T are, respectively, the receive and transmit array steering vectors of the target at
θk, f0 is the operation frequency, τmðθkÞ indicates the time needed by echo from the target
at θk to the m’th receive element, and ~τnðθkÞ is the time need by the waveform emitted via
the n’th transmit element to the target. The term HcΦ is the clutter received by MIMO

radar, Hc ¼
PNC

i¼1 ρðθiÞacðθiÞbTc ðθiÞ indicates the clutter transfer function, NC (NC ≫ MtMr)
is the number of clutter patches in the iso-range ring, ρðθiÞ denotes the amplitude of the
i’th clutter patch, acðθiÞ and bcðθiÞ are the receive and transmit array steering vectors of the
clutter patch at θi, respectively. W is the jammer plus noise, similar to that illustrated in
Ref. 15, the columns of which is assumed to be a zero-mean independent and identically dis-
tributed (i.i.d.) circularly symmetric complex Gaussian (CSCG) random vectors with unknown
covariance P.

Based on the MIMO radar model shown in Eq. (1), the CRB of θ ¼ ½θ1; θ2; : : : ; θK�T and
fβkgKk¼1 can be written as (see Ref. 22 for the detail of the derivation)

EQ-TARGET;temp:intralink-;e002;116;125

C ¼ 1

2

2
64

ReðF11Þ ReðF12Þ −ImðF12Þ
ReTðF12Þ ReðF22Þ −ImðF22Þ
−ImTðF12Þ −ImTðF22Þ ReðF22Þ

3
75
−1

; (2)
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where

EQ-TARGET;temp:intralink-;e003;116;723½F11�ij ¼ β�i βj _h
H
i f½Iþ ðRΦ ⊗ P−1ÞRHc

�−1ðRΦ ⊗ P−1Þg _hj (3)

and

EQ-TARGET;temp:intralink-;e004;116;682½F12�ij ¼ β�i _h
H
i f½Iþ ðRΦ ⊗ P−1ÞRHc

�−1ðRΦ ⊗ P−1Þghj; (4)

EQ-TARGET;temp:intralink-;e005;116;653½F22�ij ¼ hHi f½Iþ ðRΦ ⊗ P−1ÞRHc
�−1ðRΦ ⊗ P−1Þghj; (5)

in which RΦ ¼ Φ�ΦT , hk ¼ bðθkÞ ⊗ aðθkÞ, _hk ¼ ∂½bðθkÞ⊗aðθkÞ�
∂θk

, k ¼ 1;2; : : : ; K, and

RHc
¼ E½vecðHcÞvecHðHcÞ� ¼ BcΞBH

c ⪰ 0 (see, e.g., Ref. 12 for more details), in which,
Bc ¼ ½b1; b2; : : : ; bNC

�, bi ¼ bcðθiÞ ⊗ acðθiÞ; i ¼ 1;2; : : : ; NC, Ξ ¼ diagfσ21; σ22; : : : ; σ2NC
g, and

σ2i ¼ E½ρðθiÞρ�ðθiÞ�.
Observing Eqs. (2)–(5), it is noted that the CRB is a function with respect to (w.r.t.) θ,

fβkgKk¼1, Hc, and W. In practice, the knowledge of these parameters may be inaccurate due
to the fact that they must be estimated with errors. Therefore, the designed waveforms on
the basis of the CRB exploiting a certain estimate may provide a rather low accuracy in
case of another reasonable one (see the numerical results in Refs. 15 and 22).

In this work, similar to the model developed in Refs. 34–36, it can be assumed that the
derivation of the k’th target channel matrix is modeled as follows:

EQ-TARGET;temp:intralink-;e006;116;484h̃k ¼ hk þ δk; (6)

where h̃k and hk indicate, respectively, the actual and corresponding presumed the k’th
target channel vector, and δk is the error of h̃k, which lies in the uncertainty set U1 ¼
fδkjkδkkF ≤ ζk; k ¼ 1;2; : : : ; Kg, and

EQ-TARGET;temp:intralink-;e007;116;416

_̃hk ¼ _hk þ _δk; (7)

in which _̃hk and _hk stand for, respectively, the actual and corresponding presumed deriva-
tion of hk, and _δk is the error of _̃hk, which lies in the uncertainty set U2 ¼
f_δkjk_δkkF ≤ σk; k ¼ 1;2; : : : ; Kg.

Remark: The uncertainty of h̃k can be determined via many methods shown in Ref. 36. Due
to the fact that _̃hk relies on the configuration of MIMO radar, once the system geometry is fixed,
similar to that of h̃k, the bound of U2 can also be obtained. Consequently, the bounds ζk and σk
can be regarded as a prior knowledge. Moreover, it has to be pointed out that ζk should satisfy
ζk < kh̃kkF and σk < k _̃hkkF, i.e., the bound of the uncertainties of δk and _δk cannot be too large.
Otherwise, h̃k and

_̃hk may be zero and then the robust design studied here will make no sense.
Moreover, similar to the discussion in Ref. 36, the specification of ζk and σk will affect the
performance of the proposed method, which should be illustrated via numerical examples
in Sec. 4.

Based on the discussion above, the improvement of the worst-case estimation accuracy can
be implemented by minimizing the worst-case CRB over all parameter estimates lying in U1 and
U2 with the transmitted power constraint trðRΦÞ ¼ LP, where P stands for the transmitted power.
By minimizing the trace of the worst-case CRB matrix, this issue can be illustrated as

EQ-TARGET;temp:intralink-;e008;116;183min
RΦ

max
fδkgKk¼1

;f_δkgKk¼1

trðCÞ s:t: δk ∈ U1; _δk ∈ U2 trðRΦÞ ¼ LP RΦ ⪰ 0; (8)

with constraints about the transmitted waveforms and uncertainties in the initial estimates, the
formulated robust design problem in Eq. (8) is an NP-hard issue.29 It is not easy to find a method,
e.g., the convex optimization approach,29 to acquire a satisfactory solution with accepted com-
putation cost.
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3 Diagonal Loading-Based Iterative Method

To tackle the NP-hard problem shown in Eq. (8), a new DL-based iterative method is developed
in this section. To proceed, we first consider the inner maximization problem. To simplify this
issue, we present the following lemma:31

Lemma 1 (Hadamard’s Inequality). Assume M be an N × N positive semidefinite
Hermitian matrix, then the following inequality

EQ-TARGET;temp:intralink-;e009;116;656trðM−1Þ ≥
XN
i¼1

1

mii
(9)

holds, where the equality is achieved if and only if M is diagonal.

With Lemma 1, the inner optimization in Eq. (8) can be simplified as

EQ-TARGET;temp:intralink-;e010;116;577 max
fδkgKk¼1

;f_δkgKk¼1

XK
k¼1

1

½2ReðFÞ�kk
s:t: δk ∈ U1; _δk ∈ U2. (10)

With Eqs. (2)–(5), Eq. (10) can be reformulated as

EQ-TARGET;temp:intralink-;e011;116;515

max
fδkgKk¼1

;f_δkgKk¼1

XK
k¼1

×
1

β�k
_̃h
H
k f½IþðRΦ⊗P−1ÞRHc

�−1ðRΦ⊗P−1Þg _̃hkβkþ h̃Hk f½IþðRΦ⊗P−1ÞRHc
�−1ðRΦ⊗P−1Þgh̃k

s:t: δk∈U1; _δk∈U2 (11)

omitting the operator Ref·g due to every term in the summation is a real number.
Equation (11) shows that the denominator of the k’th term in the summation only relies on δk

and _δk. As a consequence, the problem Eq. (11) can be regarded as maximization of every term
in the summation subject to the corresponding constraint, i.e., it can be written as K independent
problems shown as

EQ-TARGET;temp:intralink-;e012;116;355

max
fδkgKk¼1

;f_δkgKk¼1

×
1

β�k
_̃h
H
k f½IþðRΦ⊗P−1ÞRHc

�−1ðRΦ⊗P−1Þg _̃hkβkþ h̃Hk f½IþðRΦ⊗P−1ÞRHc
�−1ðRΦ⊗P−1Þgh̃k

s:t: k_δkkF≤σk;kδkkF≤ζk k¼1;2;:::;K: (12)

As P ≻ 0;RΦ ⪰ 0;RHc
⪰ 0, then ðRΦ ⊗ P−1ÞRHc

is indefinite matrix,31 thus Eq. (12) is not
easy to be solved. To tackle it, the DL approach30 is employed to RΦ such that

EQ-TARGET;temp:intralink-;e013;116;238R̃Φ ¼ RΦ þ εI ≻ 0; (13)

where ε ≪ λmaxðRΦÞ is the loading factor and λmaxð·Þ indicates the largest eigenvalue of a matrix.
In the following, we choose ε ¼ λmaxðRSÞ∕1000 by numerical simulations. By replacing RΦ in
Eq. (2) with R̃Φ, we can obtain ½Iþ ðR̃Φ ⊗ P−1ÞRHc

�−1ðR̃Φ ⊗ P−1Þ ≻ 0.

It is evident that β�k
_̃h
H
k f½Iþ ðR̃Φ ⊗ P−1ÞRHc

�−1ðR̃Φ ⊗ P−1Þ� _̃hkβk is convex w.r.t. _δk, and
h̃Hk f½Iþ ðR̃Φ ⊗ P−1ÞRHc

�−1ðR̃Φ ⊗ P−1Þgh̃k w.r.t. δk.29 Consequently, Eq. (12) can be regarded

as minimization of this term w.r.t. _δk and δk can be expressed as
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EQ-TARGET;temp:intralink-;e014;116;735

min
_δk;δk

β�k
_̃h
H
k f½IþðR̃Φ⊗P−1ÞRHc

�−1ðR̃Φ⊗P−1Þg _̃hkβkþ h̃Hk f½IþðR̃Φ⊗P−1ÞRHc
�−1ðR̃Φ⊗P−1Þgh̃k

s:t:k_δkkF≤σk;kδkkF≤ζk: (14)

Similar to that of Eq. (11), it can be observed that each term in the summation only

depends on δk or _δk and the uncertainty in fδkgKk¼1 and f_δkgKk¼1 is independent of each other.
Following that, the problem above can be illustrated as the following two separate optimization
issues:

EQ-TARGET;temp:intralink-;e015;116;632min
_δk

β�k
_̃h
H
k f½Iþ ðR̃Φ ⊗ P−1ÞRHc

�−1ðR̃Φ ⊗ P−1Þg _̃hkβk s:t: k_δkkF ≤ σk (15)

and

EQ-TARGET;temp:intralink-;e016;116;577min
δk

h̃Hk f½Iþ ðR̃Φ ⊗ P−1ÞRHc
�−1ðR̃Φ ⊗ P−1Þgh̃k s:t: kδkkF ≤ ζk: (16)

The two issues above can be, respectively, equivalently rewritten as

EQ-TARGET;temp:intralink-;e017;116;532min
_δk;t

t s:t: β�k
_̃h
H
k f½Iþ ðR̃Φ ⊗ P−1ÞRHc

�−1ðR̃Φ ⊗ P−1Þg _̃hkβk ≤ t _δHk _δk ≤ σ2k (17)

and

EQ-TARGET;temp:intralink-;e018;116;476min
δk;t

t s:t: h̃Hk fðIþ ðR̃Φ ⊗ P−1ÞRHc
�−1ðR̃Φ ⊗ P−1Þgh̃k ≤ t δHk δk ≤ ζ2k; (18)

where t is an auxiliary variable.
The problems Eqs. (17) and (18) can be reformulated into semidefinite programming (SDP)

issues according to the following lemma:31

Lemma 2 (Schur’s Complement). Assume Z is a Hermitian matrix, which can be parti-

tioned as Z ¼
�
Z11 ZH

12

Z21 Z22

�
, then Z ⪰ 0 if and only if Z22 ≻ 0 and Z11 − ZH

12Z
−1
22Z21 ⪰ 0.

With Lemma 2, the solutions to Eqs. (15) and (16) can be acquired, respectively, by the
following SDPs:

EQ-TARGET;temp:intralink-;e019;116;338min
t;_δk

t s:t:

�
σ2k

_δHk
_δk I

�
⪰ 0

�
t β�k

_̃h
H
k

βk
_̃hk R̃−1

Φ ⊗ Pþ RHc

�
⪰ 0 (19)

and

EQ-TARGET;temp:intralink-;e020;116;275min
t;δk

t s:t:

�
ζ2k δHk
δk I

�
⪰ 0

�
t h̃Hk
h̃k R̃−1

Φ ⊗ Pþ RHc

�
⪰ 0: (20)

Substituting f_δkgKk¼1 and fδkgKk¼1 obtained from Eqs. (19) and (20) into Eq. (8), we now
consider the outer optimization problem.

With Eq. (13), the following proposition can recast the nonlinear objectivew.r.t.RΦ in Eq. (8)
as a linear issue and reformulate the constraints into a linear matrix inequality (LMI) form, the
proof of which can be found in the Appendix.

Proposition. Exploiting some matrix operations, the constraints in Eq. (8) can be
reshaped as

EQ-TARGET;temp:intralink-;e021;116;150αI⪯D⪯βI; (21)

where

EQ-TARGET;temp:intralink-;e022;116;111D ¼ ½Iþ ðR̃Φ ⊗ P−1ÞRHc
�−1ðR̃Φ ⊗ P−1Þ (22)

and α, β are shown in Eqs. (41) and (42), respectively.
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With Lemma 2 as well as the proposition above, similar to the inner optimization problem,
the outer optimization issue in Eq. (8) is equivalent to an SDP

EQ-TARGET;temp:intralink-;e023;116;711min
X;D

trðXÞ s:t: αI⪯D⪯βI
�
X I
I F

�
⪰ 0; (23)

where the matrix X is an auxiliary variable.
After obtaining the optimum D, RΦ can be obtained via the LS fitting of it, which can be

expressed as

EQ-TARGET;temp:intralink-;e024;116;631RΦ ¼ argmin
RΦ

kðD−1 − RHc
Þ−1 − R̃Φ ⊗ P−1kF s:t: trðRΦÞ ¼ LP RΦ ⪰ 0; (24)

with the Schur’s Complement theorem, similar to the discussion above, Eq. (24) is equivalent to
an SDP
EQ-TARGET;temp:intralink-;e025;116;568

min
RΦ;t

t

s:t:

�
t vecH½ðD−1 − RHc

Þ−1 − R̃Φ ⊗ P−1�
vec½ðD−1 − RHc

Þ−1 − R̃Φ ⊗ P−1� I

�
⪰ 0

trðRΦÞ ¼ LP

RΦ ⪰ 0: (25)

By solving the inner and outer optimization issue, according to Algorithm 3 given in Ref. 17,
a DL-based iterative approach can be proposed to minimize the worst-case CRB, which is
illustrated as follows.

Algorithm. Given the uncertainty sets, i.e., U1 and U2, and the initial value of RΦ (uncorre-
lated waveforms can be considered as this initial value in the following numerical examples),
then the WCM and the parameter estimation error can be obtained by the following steps.

1. Compute Eqs. (19) and (20) to obtain _δk, δk.
2. Compute Eq. (23) to obtain D.
3. Repeat steps 1 and 2 until the worst-case CRB improvement becomes insignificant,

the criterion kCðiÞ − Cði−1Þk ≤ 10−9 is exploited in the following numerical examples,
where i is the iteration number.

Following that, an optimal WCM, i.e., RΦ, can be obtained by solving Eq. (25).
The solutions to Eqs. (19), (20), (24), and (25) can be acquired very effectively by the CVX

optimization toolbox in Ref. 32. It is noted that only the WCM is obtained in this paper. In order
to generate the ultimate waveforms based on the optimized WCM, some practical constraints
about the transmitted waveforms, e.g., the peak-to-average power ratio, finite-alphabet sets, and
so on, should be taken into account (see Ref. 25 and the cited references for more details).

4 Numerical Simulations

In the following, several numerical simulations are given to demonstrate the benefits of the pro-
posed method, compared to the nonrobust method proposed in Ref. 22, the robust MMSE-based
method developed in Ref. 21, and uncorrelated waveforms, which can be illustrated from the
following perspectives: the improvement of the worst-case parameter estimation performance,

the robustness of the three methods, and the effect of the bound of uncertainties of ~hk and
_̃hk on

the worst-case CRB.
A linear MIMO radar antenna array of Mt ¼ 3 transmit elements and Mr ¼ 3 receive

elements is exploited in the following numerical simulations with various configurations:
half-wavelength spacing between adjacent elements in both transmitter and receiver, denoted
by MIMO radar 1, and one-and-half-wavelength spacing between adjacent elements of trans-
mitter and half-wavelength spacing in receiver, denoted by MIMO radar 2. It is assumed that
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NC ¼ 10;000 clutter patches are uniformly distributed and homogeneous within the considered
range bin and the clutter-to-noise ratio is 30 dB. Due to the limited number of receive element,
we assume only one jammer at −5 deg with jammer-to-noise ratio being 60 dB, and a unit
amplitude for the target of interest at θ ¼ 20 deg. Besides, we set the number of snapshots
L ¼ 256.

From the discussion in Sec. 2, it can be seen that the calculation of CRB must exploit the
initial location parameter estimate. These parameter estimates can be obtained by using various
methods proposed in Ref. 26. Moreover, for the convenience of comparison, we need to calculate
the CRB of the robust MMSE-based method. Similar to the derivation of that in Ref. 22,
based on the model shown in Ref. 21, the elements of Fisher information matrix for the robust
MMSE-based method can be represented as follows:
EQ-TARGET;temp:intralink-;e026;116;604

F11 ¼ ðf½ð _B �AÞþ ðB � _AÞ�H½IþðRΦ ⊗ P−1ÞRHc
�−1ðRΦ ⊗ P−1Þ½ð _B �AÞþ ðB � _AÞ�gÞ⊙ðβ�βTÞ

(26)

EQ-TARGET;temp:intralink-;e027;116;549F12 ¼ diagðβ�Þfð _B � Aþ B � _AÞH½Iþ ðRΦ ⊗ P−1ÞRHc
�−1ðRΦ ⊗ P−1ÞðB � AÞg (27)

EQ-TARGET;temp:intralink-;e028;116;514F22 ¼ ðB � AÞH½Iþ ðRΦ ⊗ P−1ÞRHc
�−1ðRΦ ⊗ P−1ÞðB � AÞ (28)

EQ-TARGET;temp:intralink-;e029;116;482

A ¼ ½ aðθ1Þ; aðθ2Þ; : : : ; aðθKÞ �; B ¼ ½ bðθ1Þ; bðθ2Þ; : : : ; bðθKÞ �;
β ¼ ½ β1; β2; : : : ; βK �T (29)

EQ-TARGET;temp:intralink-;e030;116;434

_A ¼
�
∂aðθ1Þ
∂θ1

· · · ∂aðθKÞ
∂θK

�
; _B ¼

�
∂bðθ1Þ
∂θ1

· · · ∂bðθKÞ
∂θK

�
; (30)

where Ht ¼
P

K
k¼1 βkaðθkÞbTðθkÞΦ, the other parameter is the same as the illustration in Sec. 2.

Insertion of Eqs. (26)–(28) into Eq. (2), then we can calculate the CRB for the robust MMSE-
based method proposed in Ref. 21.

In the following, the performance of the proposed method is demonstrated in two cases,
i.e., one is that only the initial angle estimate error is considered, and the other is that only
the calibration error in both the transmitting and receiving arrays is considered.

4.1 Uncertainty in Initial Angle Estimation

In this scenario, we assume that the initial angle estimate lies in an uncertainty Δθ ¼
½−3 deg; 3 deg�, i.e., θ̃ ¼ ½17 deg; 23 deg�, where ~θ is the estimate of θ. After calculating,
we can obtain ζ ¼ 5.4382, σ ¼ 7.6593 for MIMO radar 1 and ζ ¼ 27.6329, σ ¼ 29.6754

for MIMO radar 2.
First, we show the transmitting beampatterns optimized by the proposed approach when the

array signal-to-noise ratio (ASNR) is equal to 10 dB, where ASNR is defined as PMtMr∕σ2W.
Note the proposed approach puts a peak around the target location, which implies the maximum
power can be emitted toward the location with the worst-case CRB in the estimation error set and
then the worst-case accuracy can be improved. Besides, it can be seen that some grating lobes are
shown in Fig. 1(b) for MIMO radar 2, which is due to the sparse transmitting array.2

Next, the worst-case CRBs obtained by the proposed method, the robust MMSE-based algo-
rithm proposed in Ref. 21, and that of uncorrelated waveforms against ASNR are compared in
Fig. 2 to verify the improvement of the worst-case parameter estimation performance with the
CRB acquired by the nonrobust method with perfect knowledge of h̃ and _̃h as a benchmark.
Obviously, the worst-case CRB of the four waveforms decreases with the increase of ASNR.
Also, it can be seen the waveforms generated by the proposed method outperform uncorrelated
waveforms and that of the robust MMSE-based algorithm significantly while the waveforms
obtained by the robust MMSE-based algorithm surpass uncorrelated waveforms considerably,
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regardless of ASNR. The reason for these can be illustrated as following: the optimized wave-
forms generated by the proposed method that aims at lowering the worst-case CRB focus the
transmitted energy on the uncertainty set of the initial parameter estimates while uncorrelated
waveforms emit omnidirectionally; the robust MMSE-based algorithm is to reduce the worst-
case MMSE rather than CRB by designing the transmitted waveforms, yet the variance obtained
by the MMSE estimator is lower than CRB considerably.37 Moreover, it can be seen that the gap
between the worst-case CRB generated by the proposed method and the CRB acquired by the
nonrobust method with exactly known h̃ and _̃h is rather small, which means that the worst-case
parameter estimation performance can be improved effectively by the proposed method. Besides,
we can obtain a better CRB in Fig. 2(b) as compared with that of Fig. 2(a), because the virtual
receive array aperture produced by MIMO radar 2 is larger than MIMO radar 1.2

In Fig. 3, the average worst-case CRBs obtained by the proposed method and the robust
MMSE-based algorithm versus ASNR are shown, as compared with those of uncorrelated
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Fig. 2 The worst-case CRB obtained by the proposed method versus ASNR and that of the robust
MMSE-based algorithm and uncorrelated waveforms, by using the CRB acquired by the non-
robust method with perfect knowledge of target channel matrix as a benchmark, in case of the
initial angle estimate error. (a) MIMO radar 1. (b) MIMO radar 2.
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Fig. 1 Transmitting beampatterns designed by the proposed method when ASNR ¼ 10 dB in
case of initial angle estimate error. (a) MIMO radar 1. (b) MIMO radar 2.
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waveforms and the nonrobust method, which is based on 100 Monte-Carlo simulations. One can
observe that the transmitted waveforms obtained by the proposed method have a lower worst-
case CRB than the others, and the waveforms generated by the robust MMSE-based algorithm
outperform the nonrobust method and uncorrelated waveforms. In other words, the proposed
method has a better robustness against ζ and σ.

To verify the effect of the bound of the uncertainty of δ and _δ, i.e., ζ or σ, on the performance
of the proposed method, the worst-case CRBs obtained by the proposed method and uncorrelated
waveforms are compared in Fig. 4, as a function of various size of the considered uncertainty
sets, where ASNR ¼ 10 dB. One can see that the worst-case CRB of these two methods
increases as the increasing of ζ or σ, which is similar to that of Ref. 36. Moreover, it is
noted that the proposed method always outperforms uncorrelated waveforms.
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Fig. 4 The worst-case CRB obtained by the proposedmethod versus the bound of uncertainty ζ or
σ, as well as that of uncorrelated waveforms with ASNR ¼ 10 dB, in case of the initial angle esti-
mate error. (a) The worst-case CRB versus ζ for MIMO radar 1. (b) The worst-case CRB versus σ
for MIMO radar 1. (c) The worst-case CRB versus ζ for MIMO radar 2. (d) The worst-case CRB
versus σ for MIMO radar 2.

−10 0 10 20 30
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

ASNR (dB)

T
he

 a
ve

ra
ge

 w
or

st
-c

as
e 

C
R

B
 (

de
g)

 

 

−10 0 10 20 30
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

ASNR (dB)

T
he

 a
ve

ra
ge

 w
or

st
-c

as
e 

C
R

B
 (

de
g)

 

 

The proposed method
Uncorrelated waveforms
The non robust method
The robust MMSE-based method

The proposed method
The non robust method
Uncorrelated waveforms
The robust MMSE-based method

(a) (b)

Fig. 3 The average worst-case CRBs obtained by the proposed method and the robust MMSE-
based algorithm against ASNR and that of the nonrobust method as well as uncorrelated
waveforms, in case of the initial angle estimate error. (a) MIMO radar 1. (b) MIMO radar 2.
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4.2 Calibration Error in the Transmitting and Receiving Arrays

In this scenario, both the transmitting and receiving arrays are assumed to have calibration errors
(the sensor amplitude and phase error as well as position error). Each element of the transmit and
receive array steering vectors is perturbed by a CSCG random variable with zero-mean and vari-
ance σ2e ¼ 0.03. After calculating, we can obtain ζ ¼ 13.4764, σ ¼ 14.5712 for MIMO 1,
ζ ¼ 29.8362, σ ¼ 32.6573 for MIMO 2.

Figure 5 depicts the beampattern generated by the proposed method when ASNR ¼ 10 dB.
From Fig. 5, we can draw a conclusion similar to that of Fig. 1.

The worst-case CRB obtained by the proposed method versus ASNR for this case is shown in
Fig. 6 and that of the robust MMSE-based algorithm and uncorrelated waveforms, as well as the
nonrobust method. It is obvious that the results obtained from Fig. 6 is similar to that of Fig. 2.

In the following, four average worst-case CRBs versus ASNR in this case are shown in Fig. 7
to verify the robustness of the proposed method, where 100 Monte-Carlo simulations are used.
One can see that the results drawn from Fig. 7 are similar to that of Fig. 3.
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Fig. 6 The worst-case CRB obtained by the proposed method against ASNR and that of the
robust MMSE-based algorithm and uncorrelated waveforms, by using the CRB acquired by
the nonrobust method with perfect knowledge of target channel matrix as a benchmark, in
case of the array calibration error. (a) MIMO radar 1. (b) MIMO radar 2.
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Fig. 5 Transmitting beampatterns produced by the proposed method when ASNR ¼ 10 dB in
case of array calibration error. (a) MIMO radar 1. (b) MIMO radar 2.
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Finally, the effect of the bound of the uncertainty of δ and _δ on the performance of the
proposed method for this case is shown in Fig. 8. Similar conclusions to that of Fig. 4 can
be obtained from Fig. 8.

5 Conclusions

The robust waveform design issue for collocated MIMO radar has been studied in this work
aiming to improve the worst-case estimation accuracy in the presence of clutter for the case
that the prior knowledge of the receive and transmit array steering vectors of targets of interest
is imprecise and lies in a convex uncertainty set. For the purpose of improving the worst-case
accuracy, the CRBmatrix is considered as an important optimization metric and the cost function
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Fig. 8 The worst-case CRB obtained by the proposedmethod versus the bound of uncertainty ζ or
σ, as well as that of uncorrelated waveforms with ASNR ¼ 10 dB, in case of the array calibration
error. (a) The worst-case CRB versus ζ for MIMO radar 1. (b) The worst-case CRB versus σ for
MIMO radar 1. (c) The worst-case CRB versus ζ for MIMO radar 2. (d) The worst-case CRB versus
σ for MIMO radar 2.
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Fig. 7 The average worst-case CRBs obtained by the proposed method and the robust MMSE-
based algorithm against ASNR and that of the nonrobust method as well as uncorrelated
waveforms, in case of the array calibration error. (a) MIMO radar 1. (b) MIMO radar 2.
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of the robust design is established. To tackle the formulated complicated problem, a new DL-
based iterative algorithm has been developed to optimize the WCM to acquire the better
worst-case accuracy, each step in which can be relaxed as an SDP issue, and therefore can
be solved very effectively. An optimal solution to the initial problem has been obtained via
the LS fitting of the solution acquired by the iterative approach. Numerical examples have dem-
onstrated the effectiveness and superiority of the proposed algorithm compared to the nonrobust
method, the robust MMSE-based algorithm, and uncorrelated waveforms.

Appendix: Proof of Proposition
For the purpose of recasting the function in Eq. (8) as a linear one, note that
EQ-TARGET;temp:intralink-;e031;116;601

½Iþ ðR̃Φ ⊗ P−1ÞRHc
�−1ðR̃Φ ⊗ P−1Þ ¼ ½ðR̃Φ ⊗ P−1Þ−1 þ ðR̃Φ ⊗ P−1Þ−1ðR̃Φ ⊗ P−1ÞRHc

�−1
¼ ðR̃−1

Φ ⊗ Pþ RHc
Þ−1 (31)

and let

EQ-TARGET;temp:intralink-;e032;116;538D ¼ ðR̃−1
Φ ⊗ Pþ RHc

Þ−1: (32)

Substitute Eq. (32) into the objective in Eq. (8), it is obvious that the outer issue is the linear
function w.r.t. D. As ~RΦ ≻ 0, we have

EQ-TARGET;temp:intralink-;e033;116;486

~RΦ ⊗ P−1 ≻ 0 (33)

and then Eq. (32) can be rewritten as

EQ-TARGET;temp:intralink-;e034;116;441D−1 ¼ R̃−1
Φ ⊗ Pþ RHc

: (34)

According to Weyl’s theorem,31 we can obtain

EQ-TARGET;temp:intralink-;e035;116;395λmaxðD−1Þ ≤ λmaxðR̃−1
Φ ⊗ PÞ þ λmaxðRHc

Þ; λminðD−1Þ ≥ λminðR̃−1
Φ ⊗ PÞ þ λminðRHc

Þ; (35)

where λminð·Þ denotes the smallest eigenvalue of a matrix. Based on the fact that

EQ-TARGET;temp:intralink-;e036;116;350λmaxðR̃−1
Φ ⊗ PÞ ≤ λmaxðR̃−1

Φ ÞλmaxðPÞ; λminðR̃−1
Φ ⊗ PÞ ≥ λminðR̃−1

Φ ÞλminðPÞ: (36)

Equation (35) can be equivalently represented as

EQ-TARGET;temp:intralink-;e037;116;306λmaxðD−1Þ ≤ λmaxðR̃−1
Φ ÞλmaxðPÞ þ λmaxðRHc

Þ; λminðD−1Þ ≥ λminðR̃−1
Φ ÞλminðPÞ þ λminðRHc

Þ:
(37)

Note that

EQ-TARGET;temp:intralink-;e038;116;247

1

LPþ ε
I⪯R̃−1

Φ ⪯
1

ε
I: (38)

As a sequence, Eq. (37) can be recast as

EQ-TARGET;temp:intralink-;e039;116;198λmaxðD−1Þ ≤ 1

ε
λmaxðPÞ þ λmaxðRHc

Þ; λminðD−1Þ ≥ 1

LPþ ε
λminðPÞ þ λminðRHc

Þ; (39)

with Eq. (39), we can obtain

EQ-TARGET;temp:intralink-;e040;116;144αI⪯D⪯βI; (40)

where

EQ-TARGET;temp:intralink-;e041;116;101α ¼ ε

λmaxðPÞ þ ελmaxðRHc
Þ (41)
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and

EQ-TARGET;temp:intralink-;e042;116;723β ¼ LPþ ε

λminðPÞ þ ðLPþ εÞλminðRHc
Þ ; (42)

with Eqs. (40)–(42), Eq. (21) holds immediately.
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