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Abstract. Worldwide, the number of people living in an urban environment exceeds the rural
population with increasing tendency. Especially in relation to global climate change, cities play a
major role considering the impacts of extreme heat waves on the population. For urban planners,
it is important to know which types of urban structures are beneficial for a comfortable urban
climate and which actions can be taken to improve urban climate conditions. Therefore, it is
essential to differ between not only urban and rural environments, but also between different
levels of urban densification. To compare these built-up types within different cities worldwide,
Stewart and Oke developed the concept of local climate zones (LCZ) defined by morphological
characteristics. The original LCZ scheme often has considerable problems when adapted to
European cities with historical city centers, including narrow streets and irregular patterns.
In this study, a method to bridge the gap between a classical land use/land cover (LULC) clas-
sification and the LCZ scheme is presented. Multitemporal Landsat 8 data are used to create a
high accuracy LULC map, which is linked to the LCZ by morphological parameters derived
from a high-resolution digital surface model and cadastral data. A bijective combination of
the different classification schemes could not be achieved completely due to overlapping thresh-
old values and the spatially homogeneous distribution of morphological parameters, but the attri-
bution of LCZ to the LULC classification was successful. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or
in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.11
.026001]
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1 Introduction

Before the use of air conditioning to counteract unpleasant effects of enhanced heat stress, people
used to construct their housing adapted to the local climate conditions. This kind of urban archi-
tecture can still be observed in old Arabic medina districts1 or in the historical centers of
European cities. Modern urban design, however, often ignored its role in the urban climate sys-
tem due to improved heating and cooling systems. During periods of rapid climate change,2 these
adaptations have to be reinvented, especially in the moderate and temperate climate zones.

Historical centers define usually the core of most European or North African cities
with different morphology due to climatic differences, topographic adaption, demographic
and cultural development, and destruction through totalitarian regimes3 or wars. Comparing
buildings outside the old medieval core built over the last 200 years during rapid urban growth
(i.e., Wilhelminian or Gruenderzeit era) with suburban neighborhoods, urban morphological
characteristics like street width, mean building height, or building density differ substantially.
These differences are well observable in satellite imagery with subkilometer resolution or in
orthophotos. The major challenge of land surface analysis is to translate these visible differences
into comprehensible quantities. Although satellite sensors usually measure data in a spectral
range beyond the visible wavelengths, and therefore see many more differences than the
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human eye, they cannot classify surface structures automatically. Different approaches of char-
acterizing these measurements have been developed: One possibility is to work with different
indices to identify and quantify vegetation,4,5 soil,6 buildings,7,8 and water bodies.9 Spectral mix-
ture analysis10–12 and support vector regression,13 to estimate the composition of satellite
imagery, are other popular methods. In this study, a classical approach using a maximum-like-
lihood classification based on ground truth data [regions of interest (ROIs)] is used to subdivide
the city into different levels of densification with various characteristics concerning thermal
behavior, air movement, morphological parameters, vegetation cover, and many more. This
information is crucial for urban development and should be available to planners in a useful
manner to enable the distribution of knowledge about basic urban climate aspects among
the different disciplines.14–16 Furthermore, LULC analysis data are important for urban climate
scientists as an input for models and urban climate studies.

Another issue of land surface analysis is the comparability of different classification schemes
throughout different cities around the world.17–23 Stewart and Oke17 have tried to overcome this
heterogeneity concerning land cover analyses with their local climate zones (LCZ) classification
scheme. The major thinking behind this approach is the definition of general zones within cities
in different countries worldwide to compare the climatic behavior. This can be very useful, for
example, to characterize the urban environment of a meteorological measurement station. The
idea of subdividing cities into “climate zones” has a long tradition in urban climatology.
Weischet introduced his Baukörperklimatologie (building-complex climatology) to group sim-
ilar urban structures and investigate their influence on the local climate of Freiburg im Breisgau
in the 1970s.24,25 Scherer et al.23 defined “climatopes” and Fehrenbach26 so-called “areal types,”
which already considered fractions of different land cover in a satellite pixel.

The LCZ approach claims to be universal and applicable in cities all over the world. It is
based on morphological parameters like imperviousness (impervious surface fraction and per-
vious surface fraction), sky view factor, height of roughness elements (buildings and vegetation,
here referred to as mean building height), building to surface fraction, and aspect ratio. This
scheme is used by many scientists in current research as a common reference frame and has
a certain impact on urban climate science, as it is frequently applied by the urban climate
community.18,27–29 But many people overestimated the fact that the scheme does not cover
the heterogeneity in an old European city as easily as the chessboard-structure of a planned
North American city. Using the thresholds of the LCZ scheme in a strict manner results in
many unclassified areas and only in a few different LCZ classes.29 Altering the thresholds
on the other hand would reduce the comparability, which is one of the major advantages of
the LCZ classification. Often, the only way to generate comprehensive LCZ is to map them
manually. Nevertheless, the LCZ scheme offers the possibility to compare different parts of dif-
ferent cities with trenchant distinctions representing the heterogeneous thermal behavior within
an urban environment.

To use the benefits of the LCZ scheme and apply them to a classical LULC classification,
a method to bridge the gap between those different approaches has been developed. The
following sections describe the workflow of this simple way to merge different classification
schemes.

2 Materials and Methods

2.1 Site Description

The city of Basel is located in the southern part of the Upper Rhine Valley in the trinational
border region France–Germany–Switzerland and is the capital of the Canton Basel-Stadt
(BS). The city structure is characterized by the river Rhine, whose channel undergoes an almost
90 deg bend during its passage through the city to enter the upper Rhine valley in the north
(Fig. 1).

Basel is well known for its historical old town center located on the south bank of the river
with a minor part on the north bank. Large industrial areas hosting big pharmaceutical/chemical
companies along the river are sited at the eastern and northwestern borders of the city. Compared
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to other Swiss cities, Basel (250 m a.s.l.) has a relatively mild climate with record high summer
temperatures. The annual mean temperature is 10.5°C with an annual precipitation of 842 mm
according to the suburban weather station Basel/Binningen maintained by the Federal Office of
Meteorology and Climatology (MeteoSwiss) for the reference period 1981 to 2010.31 Although
the city is located between the mountains of Jura, Vosges, and Black Forest providing the city
with fresh air,23 the distinct nocturnal urban heat island causes severe heat stress during major
heat waves.32,33

The investigation area contains the metropolitan area of Basel with ∼730;000 inhabitants in
total including the bordering suburbs located in the Canton Basel-Land (BL), the German cities
Weil am Rhein and Lörrach, the French city Saint-Louis and the city of Basel.15 The north to
south and west to east extent reaches 21 by 20 km2, respectively, spanning from the upper left
47°38’35”N 7°29’17”E to the lower right 47°27’25”N 7°45’32”E.

2.2 Data

For this study, Landsat 8 data acquired between June and August 2013 to 2015 with a
minimum cloud and haze cover is used from the Landsat paths 195∕196 and row 27. Seven
cloud free scenes with a comparable sun elevation were selected as an input for the classification
algorithm.

Morphological parameters are estimated by rasterizing a digital surface model (DSM) pro-
vided by the administration of BS34 updated with LIDAR derived tree information and vector
data of the official cadastral survey to a 1-m raster grid.34 Typical for an international border
zone, these data are only available for BS (white polygon in Fig. 1), omitting the French, the
German, and the BL parts (Table 1).

2.3 Methods

2.3.1 Land use/land cover

The LULC map is created using multitemporal Landsat 8 images in the VIS, NIR, and SWIR
range. Additionally, the data are resampled to 15 m using the Gram–Schmidt pan-sharpening

Fig. 1 Overview and location of the study area (map extent) with a topographic map based on the
Aster GDEM data set including the borders of the Canton Basel-Stadt (white) and the surrounding
countries (black) as a vector overlay. The overview map is created with Natural Earth data.30
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algorithm. Therefore, a higher spatial resolution panchromatic image is merged with several
lower resolution bands using a statistical procedure.35 Especially considering the sharpness,
Gram–Schmidt pan-sharpening is known for generally high quality results.36 Although theoreti-
cally pixel-based classifications are not applicable on pan-sharpened images, particular tests
have shown higher accuracy compared to the 30-m original data (see Sec. 4.1 for more
information).

The LULC analysis is based on a supervised classification using ROIs as training areas for a
maximum-likelihood algorithm.37,38 After several runs and refining of the training areas to
reduce the unclassified and false classified pixels, the same ROIs are used to calculate the maxi-
mum-likelihood for six other Landsat 8 images covering the same extent and satisfying the cri-
teria (no clouds, no haze, high sun elevation, and comparable vegetation cover). In a next step,
the classification images are stacked and combined expecting that not all pixels in the various
Landsat 8 images were classified in the same way. Thereafter, every individual pixel in the final
product is the result of the most frequently occurring class (i.e., modal value) of the specific
x-y-location in the different classification layers among this multilayer stack. A similar approach
was used before to successfully create complete coverage land cover maps with improved accu-
racy of areas with high cloud frequency.39

Unclassified pixels are omitted and filled with the class-majority of the neighboring pixels.
This is done first in a 3 × 3 surrounding and, if unclassified pixels still occur, in a 5 × 5

surrounding.
This procedure is applied only for the built-up classes and the water class, where no—or only

minor—changes are expected within the two-and-a-half-year period. Due to the heterogeneity of
the surrounding landscapes and the urban material, 25 different ROIs and resulting classes are
determined. Finally, these classes are grouped reasonably in five different nonurban and six built-
up classes due to the structures of the city and their natural surroundings (Table 2). Most of the
grouping concerned the classes forest, water, agriculture green, and agriculture yellow, which
represented a large number of the 25 ROIs.

2.3.2 Morphological parameters

The morphological parameters are estimated using GIS data provided by the administration
of BS. Therefore, the data are spatially limited by the borders of BS (see Fig. 1 for
orientation).

The sky view factor is calculated using the urban multiscale environmental predictor
(UMEP), an extension to QGIS provided by Lindberg et al.40 To reduce computation time,
the building layer of the vector DSM is rasterized to 3 m. Urban trees, received from
LIDAR data provided by the administration of BS, are added for the sky view factor calculations
as well. The values of roof and vegetation pixels are masked to obtain the ground-level sky view
factor product.

Table 1 Raster and original vector datasets used in this study with corresponding acquisition or
update time.

Dataset Acquisition date/last update

Raster Landsat 8 OLI 05 June 2013, 08 June 2014, 17 July 2014, 11 June 2015,
04 July 2015, 05 August 2015, 30 August 2015

Vector (origin) Administrative boundaries Downloaded 23 February 2016

Official cadastral survey Downloaded 04 March 2016

DSM Validity 20 March 2009

LIDAR-derived trees Validity 19 November 2011

Communal boundaries Downloaded 26 January 2016
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Mean building height is computed using the vector DSM rasterized to 1-m cell size. Averages
omitting the ground pixels, but including trees, are calculated on a 15-m grid. The same DSM is
used to calculate the building to surface fraction, which represents the ratio of building to non-
building pixels in a 15-m grid environment.

Aspect ratio is computed using an approach described in detail by Lindberg et al.41

Using the 1-m raster DSM, the Euclidean distance from each pixel to the nearest wall is
calculated. A local maximum algorithm filters the values representing the half-street width
(HSW). To receive the corresponding building height to the particular street canyon, the
1-m raster DSM is adjusted using Voronoï polygons (MBHV) and divided by the HSW as
follows: aspect ratio ¼ MBHV

2�HSW.
Impervious surface fraction and pervious surface fraction are estimated using GIS vector data

containing the surface coverage based on a cadastral map of BS. Therefore, percentages of sealed
surfaces (including streets, railways, pedestrian ways, motorways, etc.) and nonsealed surfaces
(bare soil, parks, forests, water, etc.) are estimated on a 1-m grid. Similar to the other urban
morphology parameters, the impervious surface fraction and pervious surface fraction are
resampled to 15 m. All rasterizing is done using the Landsat classification image as a geometrical
reference to ensure spatial congruence. An overview showing the calculated morphological
parameters within the extent of BS is presented in Fig. 2.

2.3.3 Combination of land use/land cover and morphological parameters

LCZ are defined by morphological characteristics and the corresponding thresholds (Table 3).
Ideally, a supervised classification based on remote sensing data should result in LULC classes
with different morphological behavior throughout different classes.

With the combination of the morphology and LULC classes, the LCZ thresholds, as defined
by Stewart and Oke,17 can be used to characterize the land cover classification.

It needs to be mentioned that LCZ are not intended to be applied on a per pixel scale. Stewart
and Oke describe a minimum radius of 300 m as reasonable.17 Due to the small-scale

Table 2 Description of the final LULC class compositions considering real world conditions after
combination and filtering.

Class Description

Dense Urban Preindustrial old town development, small houses, roof tiles, crooked and
narrow streets, minimum vegetation cover

Urban Wilhelminian housing with regular three to five story buildings and
backyards with greenspace

Suburban Detached/semidetached houses with gardens, two to three story
buildings

Urban Garden Allotment gardens, cemeteries

Rail/Road/Concrete Large roads, open concrete space, train stations, bridges, large railways,
railway sidings

Industry/Commercial Manufactories, metal roofs, industrial neighborhoods, port, construction
sites, artificial sports ground, pharmaceutical/chemical industry

Agriculture Yellow Mature crops, rape

Agriculture Green Meadows, growing crops, maize, urban greenspace

Vineyard/Shrub Vineyards, shrubs, small urban trees, bushes, medium-sized vegetation

Forest/Plantation Deciduous and coniferous forests, agricultural plantation, urban trees

Water Lakes, ponds, pools, rivers, dredging lake
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characteristics of a typical European city, the proposed radius is not able to depict this hetero-
geneity. Therefore, the 15-m resolution is retained until potential aggregations are presented at
the end of Sec. 4.4.

The workflow and basic steps of the approach are summarized in Fig. 3 as a simple
flow chart.

Table 3 LCZ thresholds by Stewart and Oke.17 Only zones 1 to 10 are shown (built-up zones) and
the terrain roughness class criteria is omitted.

Local
climate
zone

Sky view
factor

Mean
building
height

Building to
surface
fraction Aspect ratio

Impervious
surface
fraction

Pervious
surface
fraction

LCZ 1a 0.2 to 0.4 >25 40 to 60 >2 40 to 60 <10

LCZ 2a 0.3 to 0.6 10 to 25 40 to 70 0.75 to 2 30 to 50 <20

LCZ 3a 0.2 to 0.6 3 to 10 40 to 70 0.75 to 1.5 20 to 50 <30

LCZ 4b 0.5 to 0.7 >25 20 to 40 0.75 to 1.25 30 to 40 30 to 40

LCZ 5b 0.5 to 0.8 10 to 25 20 to 40 0.3 to 0.75 30 to 50 20 to 40

LCZ 6b 0.6 to 0.9 1 to 10 20 to 40 0.3 to 0.75 20 to 50 30 to 60

LCZ 7c 0.2 to 0.5 2 to 4 60 to 90 1 to 2 <20 <30

LCZ 8c >0.7 3 to 10 30 to 50 0.1 to 0.3 40 to 50 <20

LCZ 9c >0.8 3 to 10 10 to 20 0.1 to 0.25 <20 60 to 80

LCZ 10c 0.6 to 0.9 5 to 15 20 to 30 0.2 to 0.5 20 to 40 40 to 50

aLCZ 1-3: compact high-rise, compact midrise, compact low-rise.
bLCZ 4-6: open high-rise, open midrise, open low-rise.
cLCZ 7-10: lightweight low-rise, large low-rise, sparsely built-up, heavy industry.

Fig. 2 Morphological parameters [i.e., (a) sky view factor, (b) aspect ratio, (c) building to surface
fraction, (d) mean building height, (e) impervious surface fraction and (f) pervious surface fraction]
of Basel-Stadt with 15-m resolution and the coordinates in UTM-32N.
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3 Results

3.1 Accuracy Assessment

The overall accuracy of the classification after the combination and the frequency analysis, esti-
mated using the input ROIs within a confusion matrix, is 83%. The highest amount of incorrectly
classified pixels within the ROIs is found in the Urban class. This can be explained with the
heterogeneous building types between the historic city center and the suburbs or construction
dynamics. The other urban classes reveal accuracies of 76% (Suburban) to 91% (Urban Garden).
The two separated industrial classes show substantial overlap with only 56% of Industry/
Commercial class pixels and 29% of Rail/Road/Concrete class pixels in the Industry/Commercial
ROI field. The latter showed high purity within its ROI with 93% overlap between ground truth
ROI and classification. These two classes are nevertheless separated due to the large differences
in building to surface fraction and aspect ratio, which is important for roughness class estimation
and urban climate studies. The nonurban classes (agricultural, vineyards, forests, and water
bodies) show accuracies of almost 100% with Vineyard/Shrub as the exception. This can be
explained with the large number of limestone walls and narrow streets within vineyards, mis-
classified as built-up areas.

Besides the occurrence matrix, visual interpretation using expert knowledge was performed
carefully through the whole scene.

To test the benefit of the multitemporal method, the same quality assessment is performed
for all individual classification layers and for a second test run without the pan-sharpening.
All seven input classifications showed a lower overall accuracy compared to the combined clas-
sification with a mean value of 79%. Comparing the pan-sharpening approach with the original 30-
m resolution classification, an improvement of 1% in overall accuracy is achieved using the sharp-
ened images. Nonetheless, in most of the built-up classes, the accuracy is improved by up to 4%.
Only the class Industry/Commercial revealed better results without the pan-sharpening approach.

Different ways of using the multitemporal data and panchromatic channel (without pan-
sharpening) were tested as well but revealed many more unclassified pixels and are, therefore,
not further investigated. The Kappa coefficient is not mentioned in this accuracy assessment due
to the findings of Pontius and Millones.42

3.2 Land Use/Land Cover Classification

The LULC map shows high levels of detail and, due to the multilayer approach, high robustness.
Detailed structures like bridges, airport runways, motorways, or small urban parks are clearly
visible (Fig. 4). The distinction between built-up, water, forest, and other natural surfaces worked
almost perfectly due to the use of multiple classification layers and therefore a minimization of
misclassification. The inner-urban discrimination is much more difficult, due to mixed pixels and
the large heterogeneity within urban environments. Nevertheless, the classification map repre-
sents the distribution of different urban built-up types with high accuracy.

Fig. 3 Flow chart including the basic steps during the data processing.
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3.3 Morphological Parameters

Histograms describing the frequency distribution of the morphological parameters for every
LULC class are shown for the sky view factor [Fig. 5(a)] and the mean building height
[Fig. 5(b)]. The histogram displays comparable sky view factors in the urban classes, with
increasing tendencies among decreasing urban density. In contrast to the other urban classes,
almost all Dense Urban (i.e., old town) pixels have sky view factors below 0.75. These results
have been anticipated, but they also show that many of the classes in reality cover a wide range of
morphological parameters, which lead to ambiguous assignments of classes.

The mean building height distribution represents the urban structures with medium high
buildings in the Urban Dense class, a bimodal distribution due to the typically three to five
story buildings in the Urban class and lower mean building height in the Suburban class. The
heterogeneous structures within the classes Industry/Commercial and Rail/Road/Concrete with
large streets and tower buildings alternated by flat construction halls are represented by the sky
view factor (widespread values between 0.2 and 0.9) and the bimodal distribution in the mean
building height histogram. The Rail/Road/Concrete class also includes train stations, bridges,
and large concrete roofs, such as parking flats. Therefore, the building height distribution also
contains values far above street level for this class, which might be unexpected.

Fig. 4 LULC map of Basel and its surroundings using the modal value of seven individual clas-
sifications from 2013 to 2015. The coordinate system is UTM-32N and the pixel resolution is 15 m.
The national borders are represented by black lines and the BS border by a white line; a shaded
relief overlay using resampled SRTM data depicts the topography. The vegetation represents an
overpass of 30 August 2015.
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Spatial extent, plus mean and standard deviation (σ) of sky view factor, mean building height,
building to surface fraction, aspect ratio, and impervious surface fraction are shown in Table 4.
The spatial distribution is dominated by the Forest/Plantation class with almost 29%. This class
is located mainly on the surrounding hills and provides the city and agglomeration with fresh and
cool air due to nocturnal cooling and therefore has an important function for the urban climate
system.43

Although essential for urban dwellers and for the cityscape with the historic old town as
an important venue, Dense Urban as the smallest class covers only 3.1 km2 of the whole study
area (0.7%). Suburbs dominate the built-up classes, but the industry classes—due to large
industrial zones and extensive railway tracks—are also well represented in the investigation
area.

Table 4 Description of the LULC analysis with spatial extent (km2 and %) and class specific
morphological surface parameters (built-up classes only). The sky view factor is calculated includ-
ing trees and omitting roofs and the mean building height contains only buildings and trees, without
ground pixels. All parameters are based on a resampled DSM (1 m and 3 m for sky view factor)
including the Canton Basel-Stadt only.

Class

Total area Sky view
factor
(�σ)

Mean
building height

(�σ) [m]

Building to
surface fraction

(�σ) [%]

Aspect
ratio
(�σ)

Imperv.
surface fraction

(�σ) [%][km2] [%]

Dense Urban 3.1 0.7 0.29� 0.17 15.3� 6.5 46.9� 34.0 1.22� 0.86 46.2� 33.4

Urban 15.4 3.6 0.31� 0.16 12.8� 5.5 32.3� 32.3 0.76� 0.64 41.2� 33.8

Suburban 63.8 15.2 0.36� 0.18 10.3� 5.2 22.0� 28.2 0.46� 0.43 26.3� 29.5

Urban Garden 14.7 3.5 0.57� 0.21 7.6� 5.2 9.3� 17.2 0.21� 0.26 18.6� 25.5

Rail/Road/Concrete 31.7 7.5 0.54� 0.24 14.8� 8.0 22.4� 32.5 0.71� 0.77 60.5� 37.6

Industry/
Commercial

17.3 4.1 0.54� 0.22 14.4� 9.4 38.5� 40.3 0.86� 1.06 50.1� 39.8

Agriculture Yellow 45.9 10.9 — — — — —

Agriculture Green 74.1 17.6 — — — — —

Vineyard/Shrub 27.3 6.5 — — — — —

Forest/Plantation 120.6 28.6 — — — — —

Water 7.0 1.7 — — — — —

Fig. 5 (a) sky view factor including vegetation and omitting roofs and (b) mean building height includ-
ing vegetation and omitting streets based on a vector DSM of Basel-Stadt for each built-up class.
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3.4 Combination of Land Use/Land Cover and Morphological Parameters

The combination of the different classification schemes was done using the average morphology
of every class and the threshold values given by the definition of Stewart and Oke17 introduced in
Table 3. Most class values fit in several LCZ classes, due to overlapping threshold values, as
shown in Table 5.

In the next step, the above table is summarized and evaluated. Figure 6 shows this evaluation
with values ranging from 0 (= no matches) to 5 (= fitting to all criteria). Only one class (i.e., Rail/
Road/Concrete) matched with exactly one LCZ (i.e., open midrise or LCZ 5) in all criteria.
Urban and Urban Garden are the only other classes with explicit matching (four matches) to
compact midrise (LCZ 2) and sparsely built (LCZ 9), respectively. The other classes have
two matching zones: Dense Urban fits to compact midrise and compact low-rise (LCZ 3),
Suburban to open midrise and heavy industry (LCZ 10), and Industry/Commercial to open
high-rise (LCZ 4) and open midrise (LCZ 5).

4 Discussion

4.1 Accuracy Assessment

The accuracy assessment using a coherence matrix revealed best results if a combination of
multiple land cover classifications is used instead of a single classification. These findings sup-
port the simple visual impression. Concerning vegetation cover, agricultural fields or coastal
areas influenced by tides, multitemporal analysis can be problematic due to rapid changes.
To classify urban structures, which do not change dramatically within 2 years in developed coun-
tries, it is useful to consider multiple scenes to handle mixed pixels and complex surface patterns
with high accuracy. Falsely classified pixels due to shadowing or drought are minimized and
problems with physical similarities of unequal surfaces are reduced in multitemporal analysis.23

Table 5 Relation between the LULC classification and LCZ from Stewart and Oke by applying the
mean morphological parameters for each class to the LCZ thresholds.17 The numbers are the
respective LCZ types that fit to the given thresholds.

Class Sky view factor
Mean

building height
Building to

surface fraction Aspect ratio
Impervious

surface fraction

Dense Urban 1, 3, 7 2, 5, 10 1 to 3, 8 2 to4, 7 1 to 6, 8

Urban 1 to 3, 7 2, 5, 10 4 to 6, 8 2 to 4 2 to 6, 10

Suburban 1 to 3, 7 2, 5, 10 4 to 6, 10 5 to 6, 10 2 to 6, 10

Urban Garden 4 to 5 3, 6, 8 to 10 ∼9a 8 to 10 5, 7, 9

Rail/Road/Concrete 4 to 5 2, 5, 10 4 to 6, 10 5 to 6 1 to 6, 8

Industry/Commercial 4 to 5 2, 5, 10 4 to 6, 8 2 to 4 1 to 6, 8

aNearest LCZ value applied.

Suburban 1 3 1 2 4 3 1 0 0 4 

Urb Garden 0 0 1 1 2 1 1 2 3 2 

Rai/Roa/Con 1 2 1 3 5 3 0 1 0 2 

Indstr/Com 1 3 2 4 4 2 0 2 0 1 

Class LCZ 1 LCZ 2 LCZ 3 LCZ 4 LCZ 5 LCZ 6 LCZ 7 LCZ 8 LCZ 9 LCZ 10 
Dense Urb 3 4 4 2 2 1 2 2 0 1 
Urban 1 4 3 3 3 2 1 1 0 2 

Fig. 6 Affiliation of LULC classes to the LCZ by Stewart and Oke17 according to the LCZ thresh-
olds. All matches are summed up (maximum ¼ 5, dark gray) and the individual boxes are colored
according to the number of matches.
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The benefit of using a pan-sharpened image is questionable. The same workflow is applied
using 30-m original Landsat 8 data with the same ROIs and the same channel combination. The
resulting classification showed slightly lower overall accuracies. Even though a clear quantitative
improvement cannot be verified using a coherence matrix, the pan-sharpened classification
revealed many more details–such as streets, bridges, or individual buildings–compared to
the original 30-m classification. Because these elements represent only a very small amount
of the total pixels, the measurable improvement is negligible. Nevertheless, the heterogeneous
urban structures showed an improvement using the pan-sharpened image by up to 4% compared
to the other classes. The only class that revealed better results in the 30-m classification is
Industry/Commercial, which consists of much wider structures like big factories and large
streets, which are well represented in a 30-m pixel environment.

4.2 Land Use/Land Cover Classification

The developed LULC classification scheme is based on a classical maximum-likelihood clas-
sification using ground truth data. The highly heterogeneous and small-scale structures within an
urban environment could only be captured using the higher resolution pan-sharpened data. The
main goal of this classification is to differentiate inner-urban structures, which were better
resolved using the sharpened images. The use of multitemporal images thereby reduced possible
errors and smoothed the results. The differentiation between natural and built-up classes was
successful, but the ambitious goal of differentiating inner urban structures explicitly could
not be completely achieved. Nevertheless, due to the heterogeneity of urban environments,
the results are sufficient and will be used as an input for future urban climate studies.44

The presented LULC classification is only a means to an end and the focus of the work is on
the combination of any given LULC classification with morphological characteristics. The clas-
sification represents the city configuration accurately and the results show reasonable structures
mirroring the reality. Micrometeorological differences within the classes defined in the LULC
analysis—and therefore a suitable basis for LCZ comparisons—are confirmed by the findings of
the BUBBLE-project (2001 to 2002) with nocturnal air temperature differences and differences
in the energy balance within various urban environments in Basel.32

Therefore, the resulting LULC classification serves as an input for subsequent investigations.

4.3 Morphological Parameters

Morphological parameters are an ideal description of the characteristics of any given city. They
allow comparisons independent of sun elevation or surface materials. Therefore, cities through-
out the world can be compared using the same thresholds according to city structures.

Most of the morphological parameters are well defined and can be computed easily using
existing GIS software. One of the most discussed parameters, however, is mean building height.
It can be developed in two ways: masking ground pixels and averaging only building pixels; or
averaging all pixels including the ground pixels with a value of zero. Problems occur if—for
example—a 100-m tall tower surrounded by a large open square is averaged with completely
different results depending on which definition is used. Stewart and Oke use the “geometric
average of building heights and tree/plant heights.”17 In this study, the same definition—omitting
ground pixels—was used because the aspect ratio, sky view factor, and building to surface frac-
tion represents the above-mentioned issue in detail.

Limitations in developing morphological parameters exist regarding the availability of such
datasets globally. The use of freely available SAR data could be a possible solution to derive
morphology without the dependence on high-resolution GIS data.45

4.4 Combination of Land Use/Land Cover and Morphological Parameters

The use and application of LCZ for future land cover classification is very promising, but prob-
lems and limitations are undeniable. In many European cities, the morphological values between
visually clear distinguishable classes (e.g., between old town and Grunderzeit area) often vary
less than would be required for the LCZ scheme. Therefore, an additional criterion that is based
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on expert knowledge could help to increase the discrimination between classes. Another problem
is the definition of industrial classes. In Basel, “industry” means, in most cases, pharmaceutical/
chemical industry characterized by office and laboratory buildings, which may be classified as
open midrise (LCZ 5). Conversely, they are usually surrounded by large silos and huge factories,
which clearly belong to heavy industry (LCZ 10). Using remote sensing data, these areas are
usually classified well due to the typically bright surface materials installed, but the LCZ scheme
cannot capture them precisely. Furthermore, the class Rail/Road/Concrete is not well represented
by the LCZ scheme. Here, a combination of classes, proposed by Stewart and Oke17 themselves,

Table 6 LULC classes allocated to the LCZ classification scheme by Stewart and Oke17 based on
expert knowledge, basic description of the classes and by analyzing the thresholds for morpho-
logical parameters.

Class LCZ by expert knowledge
LCZ by morphological parameter

thresholds

Dense Urban Compact low-rise (LCZ 3) Compact midrise (LCZ 2) or compact low-
rise (LCZ 3)

Urban Compact midrise (LCZ 2) Compact midrise (LCZ 2)

Suburban Open low-rise (LCZ 6) Open midrise (LCZ 5) or heavy industry
(LCZ 10)

Urban Garden Sparsely built (LCZ 9) Sparsely built (LCZ 9)

Rail/Road/Concrete Open midrise paved (LCZ5E) Open midrise (LCZ 5)

Industry/Commercial Heavy industry (LCZ 10) Open high-rise (LCZ 4) or open midrise
(LCZ 5)

Fig. 7 Possible aggregation (modal value) of the LULC/LCZ using residential units (a and b) and
300-m cells (c). The plotted detail (d) shows the city center and the legend includes the abbre-
viated class names plus the associated LCZ from Table 6 (right column, with small corrections).
The black lines depict the neighborhoods (a) and residential districts (b-d) and the white line delin-
eates the border of the Canton Basel-Stadt. Letters A to G used as suffixes for the LCZ scheme
describe the associated land cover types (A = dense trees, C = bush, D = low plants, and G =
water).
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could solve the problem [e.g., LCZ 5 (open midrise) combined with LCZ E (bare rock
or paved)].

The other classes are represented sufficiently by the LCZ scheme, but there is still a need for
some adjustments. In Table 6, the results of the semiautomatic LCZ classification are compared
with a classification done by expert knowledge, which is strongly influenced by personal
opinion. However, the results are promising for future work and useful for comparison between
classification schemes.

As mentioned above, LCZ are not applicable on a per pixel scale. One possibility would be to
determine the dominating LCZ on a 300 × 300 m2 pixel grid. This procedure results in a large
number of mixed pixels and trade-offs, especially in medium-sized cities like Basel [Fig. 7(c)].
A practical approach would be the use of neighborhoods [Fig. 7(a)] or residential districts
[Fig. 7(b)], which are administrative units used to collect statistical data. The big advantage
of using these spatial units is that the limits are not defined randomly but according to the
city structures like ancient city walls or the course of a river. Furthermore, it allows including
LCZ in the administrative GIS database of the Canton Basel-Stadt and combining it with stat-
istical data. Disadvantages of using residential units arise from the fact that not all units are as
homogeneous as they should be. Urban parks, open squares, or large building complexes disturb
average morphology values. For example, the neighborhood Matthaeus [white asterisk on
Fig. 7(a)] has a substantially lower standard deviation within the mean building height
(4.2 m) and the sky view factor (0.13) compared to the adjacent neighborhood Rosental [white
plus on Fig. 7(a)] with values twice as high.

5 Conclusion

This study presents the combination of a remote sensing based LULC classification and the LCZ
scheme by using morphological parameters. The LULC classification is, therefore, created by a
maximum-likelihood classifier using a combination of multitemporal Landsat 8 data. The mor-
phological parameters are derived from a vector DSM and a cadastral map. The morphology is
used to characterize the LULC classes and connect descriptive classes with the universal LCZ
scheme. This is done using the LCZ thresholds described by Stewart and Oke.17

The resulting LULC classification is accurate and sufficient for this study in comparison with
the “standard” LCZ determination, which leads to many unclassified areas in complex cities with
historical city centers and heterogeneous urban structures. The use of multitemporal data
enhanced the accuracy and made it more robust with a discrimination of individually misclas-
sified pixels.

The extraction of morphological parameters based on a high-resolution DSM produces excel-
lent results. The analysis showed that the morphology of a city like Basel does not fluctuate
substantially. Differences are visible and measurable, but the use of these parameters together
with the LCZ thresholds in a strict manner results in large homogeneity and unclassified areas.29

Therefore, the parameters are used to characterize the LULC classes and applied to the LCZ
afterward.

This combination offered the possibility of classifying the city according to remote sensing
data and assigning them through the morphology to LCZ. Eventually, this could be applied to
any LULC classification and serve as a link or a translation between the LCZ and individual
classification schemes. Eventually, a possible aggregation of the final zones using residential
units is proposed.
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