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Abstract. The relationship between surface infrared (IR) emissivity and soil moisture content
has been investigated based on satellite measurements. Surface soil moisture content can be
estimated by IR remote sensing, namely using the surface parameters of IR emissivity, temper-
ature, vegetation coverage, and soil texture. It is possible to separate IR emissivity from other
parameters affecting surface soil moisture estimation. The main objective of this paper is to
examine the correlation between land surface IR emissivity and soil moisture. To this end,
we have developed a simple yet effective scheme to estimate volumetric soil moisture
(VSM) using IR land surface emissivity retrieved from satellite IR spectral radiance measure-
ments, assuming those other parameters impacting the radiative transfer (e.g., temperature, veg-
etation coverage, and surface roughness) are known for an acceptable time and space reference
location. This scheme is applied to a decade of global IR emissivity data retrieved fromMetOp-A
infrared atmospheric sounding interferometer measurements. The VSM estimated from these IR
emissivity data (denoted as IR-VSM) is used to demonstrate its measurement-to-measurement
variations. Representative 0.25-deg spatially-gridded monthly-mean IR-VSM global datasets are
then assembled to compare with those routinely provided from satellite microwave (MW) multi-
sensor measurements (denoted as MW-VSM), demonstrating VSM spatial variations as well as
seasonal-cycles and interannual variability. Initial positive agreement is shown to exist between
IR- and MW-VSM (i.e., R2 ¼ 0.85). IR land surface emissivity contains surface water content
information. So, when IR measurements are used to estimate soil moisture, this correlation pro-
duces results that correspond with those customarily achievable from MW measurements.
A decade-long monthly-gridded emissivity atlas is used to estimate IR-VSM, to demonstrate
its seasonal-cycle and interannual variation, which is spatially coherent and consistent with
that from MW measurements, and, moreover, to achieve our objective of investigating the rela-
tionship between land surface IR emissivity and soil moisture. © The Authors. Published by SPIE
under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.
JRS.12.016030]
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1 Introduction

Land surface thermodynamic parameters are significant in Earth system science applications,
and provide linkage to the energy balance between the land surface and atmosphere. These
land surface parameters of skin temperature, emissivity, and soil moisture, together with atmos-
pheric thermodynamic parameters, are critical to scientific research concerned with the hydro-
logic cycle, weather, and climate.1–3 Significant efforts have been devoted to the observation,
modeling, and understanding of these parameters.4,5

Satellite-based microwave (MW) sensors have been developed and deployed to derive global
soil moisture since 1978.6,7 They include passive MW sensors such as the Nimbus-7 Scanning
Multichannel Microwave Radiometer (SMMR),8 the DMSP Special Sensor Microwave Imager
(SSM/I),9 the TRMMMicrowave Imager (TMI),10 and the Aqua Advanced Microwave Scanning
Radiometer for EOS (AMSR-E),11 along with active MW sensors such as the ERS-1 and ERS-2
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Scatterometer,12 and the MetOp Advanced Scatterometer (ASCAT).13 In addition, the recent
missions of soil moisture and ocean salinity (SMOS) and soil moisture active passive
(SMAP) are providing soil moisture measurements.14,15

Global volumetric soil moisture (VSM) products are routinely derived from satellite MW
sensors. However, efforts have been made in estimating soil moisture from thermal infrared
(TIR) measurements as well for many decades.6,16,17 Previous studies have also recognized
that the land surface emissivity retrieved from infrared radiance measurements contains land
moisture content information.18–21 In this effort, we wish to further exploit the fact that land
surface water content information (i.e., soil moisture) is contained within infrared (IR) radiance
measurements from the polar-orbiting environmental satellite advanced atmospheric sounding
sensors, such as the Aqua Atmospheric Infrared Sounder,22–24 the MetOp Interferometer
Atmospheric Sounding Instrument (IASI),25–27 and the Suomi NPP Crosstrack Infrared
Sounder (CrIS).28–30

Investigation into the relationship between land surface IR emissivity and soil moisture con-
tent has been performed and reported in this paper, giving another perspective from the IR ultra-
spectral radiance measurements in addition to that of the traditionally used MW measurements.
Global land surface emissivity with a decadal global-coverage climate variability, retrieved from
satellite IR ultraspectral radiance measurements of IASI, is available to carry out this investi-
gation. Our surface IR spectral emissivity retrieval algorithm was initially developed with data
from the National Airborne Sounder Testbed-Interferometer (NAST-I).31 Emissivity is retrieved
via its empirical orthogonal function amplitudes using a physical-regression retrieval; details of
the retrieval algorithm are found elsewhere;32 and later, the inversion scheme, dealing with
cloudy as well as cloud-free radiances has been developed and applied to IASI data to retrieve
simultaneously atmospheric thermodynamic and surface or cloud microphysical parameters.33–35

The objectives of this study are to investigate the relationship between IR emissivity and soil
moisture, to introduce a simple methodology to estimate VSM from land surface IR emissivity,
and to intercompare the VSM estimated from the IR emissivity (hereafter denoted as IR-VSM)
with that retrieved from satellite multisensor MW measurements (hereafter donated as MW-
VSM, obtained from the ESA CCI website). It is worth pointing out that the IR sensor detects
radiation from both the atmosphere and surface. The emissivity retrieved from IR radiance is
the surface emissivity, so the IR-VSM estimated is referring to a surface or near-surface soil
moisture throughout this paper. Currently, a 0.25 deg spatially-gridded monthly-mean IR
land surface emissivity atlas, assembled from those data products retrieved from MetOp-A IASI
measurements throughout this past decade (2007–2017), is used to estimate its corresponding
IR-VSM and help characterize its seasonal-cycle and inter-annual variability. An overview of
the methodology for converting IR emissivity to VSM is given in Sec. 2. IASI single field-of-
view (SFOV) VSM estimation and its seasonal-cycle and interannual variations are presented in
Sec. 3 and discussed in Sec. 4, followed by the conclusions drawn from them in Sec. 5.

2 Methodology for IR-VSM Estimation

The emissivity retrieved from satellite-measured IR radiance is an “effective” emissivity within
the satellite instrument FOV, corresponding to a linear combination of pure scene types.34,36,37

Those pure scene types include water content, for example, Zhou et al.34 used this linear combi-
nation to assess satellite-retrieved emissivity for the Kalahari validation site. The laboratory mea-
sured sand emissivity is combined with other possible surface materials. The effective emissivity
ε can be expressed as

EQ-TARGET;temp:intralink-;e001;116;165ε ¼
Xn
i¼1

aiεi; (1)

where ai is the fractional contribution for pure scene type i, assuming a total of n types in
the FOV. Furthermore, Eq. (1) can be written as a linear combination of water emissivity and
nonwater (or dry) emissivity as
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EQ-TARGET;temp:intralink-;e002;116;735ε ¼ Aεw þ ð1 − AÞεd; (2)

where εw (¼ 0.995) and εd are wet (i.e., water) and dry (i.e., nonwater) emissivities, respectively.
Coefficient A is the water proportion (0 ≤ A ≤ 1) related to the land surface soil moisture con-
tent. It is evident that retrieved emissivity is a function of soil moisture20,38 and its accuracy is
critical for estimating soil moisture content.

To constrain the absolute value of VSM in our inversion processing from IR emissivity,
Eq. (2) is expressed as

EQ-TARGET;temp:intralink-;e003;116;642ε ¼ fεw þ ð1 − fÞη; (3)

where f is an empirical constraining function of VSM denoted as γ hereafter and defined as

EQ-TARGET;temp:intralink-;e004;116;603fðγÞ ¼ 0.5 log

�
logð0.501Þ − logð0.50 − γÞ

logð0.501Þ − logðγÞ
�
: (4)

The inversion of this function (i.e., VSM) is constrained between zero and 0.50 ðm3∕m3Þ.
The upper boundary is based on the soil moisture climatology derived from MW measurements
of multiple satellite sensors,7,39,40 the maximum value of MW-VSM is found to be <0.465
ðm3∕m3Þ where η in Eq. (3) is defined as a pseudo dry-emissivity climatology

EQ-TARGET;temp:intralink-;e005;116;509η ¼ εc − εwfðγcÞ
1 − fðγcÞ ; (5)

which can be derived from a land surface model or realistic climatology from historical mea-
surements of surface emissivity and soil moisture. Since 0.25 deg spatially-gridded monthly-
mean datasets for IR emissivity and MW soil moisture climatology from satellite measurements
are available, we use these two climatology datasets to derive pseudo dry-emissivity using
Eq. (5), where the superscript c is denoted for climatology. To calculate η, we need monthly
mean VSM climatology (γc) and monthly mean IR emissivity climatology (εc). In this work,
we used γc of the global essential climate variables soil moisture dataset7,40,41 from November
1978 to December 2015; and εc of IASI emissivity atlas34 from June 2007 to May 2016.
It is noted that the absolute scaling constraint is included herein since the climatological
data of MW-VSM and IR emissivity were used. This controls absolute scaling of the IR results
but allows IR-VSM to characterize geophysical field spatial and temporal variability from
the observed IR emissivity.

Emissivity at 1240 cm−1 (8.0645-μm wavelength) is used since this spectral location has
a significant emissivity sensitivity to surface water content variations;42 however, emissivity
at another comparable frequency could be used as well. Hereafter, the emissivity ε refers to
a real total emissivity at 1240 cm−1. It is noted that pseudo dry-emissivity varies from location
to location and time to time as the nonmoisture-related surface condition (e.g., soil texture, tem-
perature, and vegetation cover) changes. To account for that variation, η is currently computed
with a monthly spatially-grid of 0.25 deg latitude–longitude. As an example, Fig. 1 shows

Fig. 1 A sample of pseudo dry-emissivity climatology for June is calculated using MW-VSM
climatology and IR emissivity climatology at 1240 cm−1.
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a pseudo dry-emissivity climatology for the month of June. It is noted that computed pseudo dry-
emissivity climatology depends on time and location; in other words, the surface parameters
other than real measured emissivity.

Estimation of IR-VSM is now straightforward via fðγÞ of Eq. (3) using IR-emissivity at
1240 cm−1, water emissivity at the same frequency, and a pseudo dry-emissivity η interpolated
from its original spatial and temporal grid to the location and time of observed IR emissivity.
The function fðγÞ is calculated as

EQ-TARGET;temp:intralink-;e006;116;651fðγÞ ¼ ε − η

0.995 − η
: (6)

As shown in Eq. (6), the soil moisture γ is a function of the pseudo dry-emissivity η and the real
total emissivity ε at a certain time and location. Here, it is assumed that ε has a higher frequency
variation containing water content information while η has a lower frequency background varia-
tion containing nonwater content information (see Sec. 4 for a detailed discussion with exam-
ples). In this study, the ε is satellite-measurement derived and the η is climatologically predicted.
The spatial and temporal resolution of η is desired to be similar to that of ε to account for spatial
and temporal variations. The IR-VSM is then obtained via the inversion of fðγÞ in Eq. (4);
a precalculated lookup table for γ ¼ f−1 is used to obtain IR-VSM γ.

The correlation between γ and ε can be plotted with η at a certain location (i.e., a 0.25-deg
grid in this case), and the correlation varies from month to month. For example, η variations
observed at two random locations are shown in Fig. 2 to show that they vary in space and
time. The function fðγÞ of Eq. (6) is a function of the real emissivity ε and predetermined pseudo
dry-emissivity η. At a certain location and time, the estimated soil moisture varies on the dashed
curve as the emissivity changes, and the dashed curve changes as the time of the year changes.
Currently, the temporal resolution of η is at each month; for a daily VSM estimation, η is linearly
interpolated between two monthly climatology data points. Although it is strongly desired to

Fig. 2 Two samples of correlation between soil moisture and IR emissivity as a function of pseudo
dry-emissivity depending on location and time: (a) 28ºN, 110ºE and (b) 35ºN, 100ºW. The symbols
shown on the curves indicate the monthly climatology of MW-VSM and IR emissivity, which are
used to calculate pseudo dry-emissivity.
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have a higher temporal resolution for climatological datasets, the results herein are based on
the information currently available for this study.

3 IR-VSM Results, Variability, and Comparisons with MW-VSM

The IR-VSM estimated by Eq. (6) is referring to surface or near-surface soil moisture. The rapid
change of water content on the surface, from rain, for example, could affect estimated IR-VSM
as the emissivity changes correspondingly. However, an averaged IR-VSM over a period of
a few days (i.e., short term) might be able to smooth out some rapid changes of IR-VSM
from high-frequency (i.e., weather)-related events and allow more of a focus on low-frequency
(i.e., climatological)-related trends. This short-term-temporally averaged IR-VSM might be
close to near-surface (0 to 5 cm) VSM, as the surface and near-surface soil moisture could
be similar when they are averaged. We are mindful that some differences between IR- and
MW-VSM are inevitable due to the nature of the different sensor/spectral band characteristics
(e.g., the effective depth of a measurement).

The pseudo dry-emissivity η derived here has a spatial resolution of 0.25-deg latitude–
longitude (about a 25-km diameter), and a temporal resolution of 12 months. IASI SFOV is
about 12 km, which is also the spatial resolution of retrieved ε. For an individual IASI meas-
urement, we obtain a spatial-grid and linearly interpolated η at the closest location and time of
the measurement. We assume that climatological η interpolated to that time and location of
the measurement is similar to its real surface condition (e.g., surface temperature, soil texture,
and vegetation coverage). Then we can use Eq. (6), the relationship between the IR-VSM and
IR emissivity, to estimate IR-VSM γ using a retrieved emissivity ε and a “known” pseudo
dry-emissivity η.

Daily IR-VSMs, estimated from IASI SFOV measurements, show a day-to-day (i.e., meas-
urement to measurement) variation. Missing data are due to cloudy conditions where IR surface
emissivities were not possible to retrieve.33,34 VSM depends on the measurement time and/or the
situations of clouds and rain. Their day-to-day (temporal) variation is mainly from the emissivity
ε with “a higher frequency” variation since “a lower frequency” variation from pseudo

Fig. 3 IASI week-to-week soil moisture distribution from two consecutive weeks (a) August 15–21,
2010 and (b) August 22–28, 2010.
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dry-emissivity η is assumed to be small from day to day. Figure 3 shows a 0.25-deg weekly-mean
assembled IR-VSM from two consecutive weeks of August 2010, showing the soil moisture
evolution over the time from location to location. A 0.25-deg monthly-mean assembled IR-
VSM is then compared with MW-VSM, shown in Fig. 4 for the same region of Northern
America, as an example for August 2010; the coefficient of determination (R2) and the standard
deviation error (STDE) are 0.877 and 0.024 (m3∕m3), respectively. And a similar intercompar-
ison over the globe is shown in Fig. 5 with the R2 and STDE being 0.861 and 0.028 (m3∕m3),
respectively. It is worth pointing out that IR-VSM estimated for an individual month of a certain
year (e.g., shown in Figs. 4 and 5) does use the climatological pseudo dry-emissivity of
the month. Estimated IR-VSM is based on both the real emissivity (i.e., different from its
climatology) and the pseudo dry-emissivity of the month (i.e., same as its climatology).

This decade-long global IR emissivity data record has already shown a seasonal-cycle and
interannual variations.35 We are confident that those variations should also be signified in IR-
VSM but wish to verify this with MW-VSM, which ensures that the corresponding IR emissivity
retrieval approach is consistent. This decade long IR-VSM data record is used to examine
IR-VSM seasonal-cycle and interannual variations by intercomparing them with those of
MW-VSM. Many interesting phenomena are captured by VSM and are worth exploring. We
have chosen two locations to demonstrate IR-VSM variability. One is the 2009 drought and
2010 greater rainfall (flooding) observed in Australia and the other is the monsoon cycle
observed in South Asia. In Australia, the 2009 drought and 2010 greater rainfall (flooding)

Fig. 4 August 2010 monthly mean: (a) MW-VSM, (b) IR-VSM, and (c) the difference between
MW- and IR-VSM in (m3∕m3). The R2 and STDE indicated are from the plotted areas.
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are recorded during the 2009 El Niño and 2010 La Niña events, respectively. The VSM captures
the drought and greater rainfall periods. Depending on the location, VSM may have seasonal-
cycle domination in coastal areas, whereas it may have interannual-variation domination in
central regions. For example, Fig. 6 plots VSM at 23.5-deg south latitude and 135-deg east
longitude showing its interannual variation captured by both MW- and IR-VSM during the
2009 El Niño and 2010 La Niña events; R2 and STDE data shown in the plot are from the
overlapping period from June 2007 to December 2016. To clearly show its interannual variation,
Fig. 6(b) plots VSM for the month of September only (i.e., any random month can be selected for
this demonstration). It is noted that MW-VSM is available from 1978 to 2015, but we only
plotted the data from the period for which IR-VSM is available.

The second example is the monsoon cycle observed in southern Asia. In India and Pakistan,
rainfall lasting from July to September is dominated by the humid southwest summer monsoon
that slowly sweeps across the country beginning in late May or early June. Monsoon rains begin
to recede from North India at the beginning of October. Floods and droughts are a normal occur-
rence in India and Pakistan; understanding the south Asian monsoon season and how it will
change in the future is a fundamental challenge for climate science that has been brought to
the world’s attention.3 So, we have chosen a location at 25-deg north latitude and 70-deg east
longitude of southeast Pakistan (near the Indian border) to reveal a seasonal cycle of VSM that is
associated with the south Asian monsoon. Similar to Fig. 6, monthly mean VSM from both MW-
and IR-VSM showing its seasonal-cycle and interannual variations are plotted in Fig. 7(a).

Fig. 5 Same as Fig. 4, but for a global coverage. The R2 and STDE indicated are from the plotted
areas.
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The VSM for the month of September of each year from 2007 to 2016 is plotted in Fig. 7(b) to
explain its interannual variation for clarity, showing a higher frequency variation containing
water content information of ε while a lower frequency background variation of η has been
set to be a climatological constant (see discussion in Sec. 4). The IR-VSM interannual variation
of the same month from different years is coherent with MW-VSM, e.g., as shown in Fig. 7(b)
[and Fig. 6(b)], confirming that the IR emissivity truly contains water content information.

Seasonal-cycle and interannual variation of VSM may not be obvious in all observations
everywhere; it depends on surface climate and soil conditions and their spatial/temporal vari-
ability. However, the above two cases illustrate that the IR-VSM seasonal-cycle and interannual
variation are practically consistent with that inferred from the MW-VSM. A few more samples
from the globe showing VSM variation over the time for both MW- and IR-VSM are shown in
Fig. 8 to show its seasonal-cycle and inter-annual variations at various locations. A relatively
small difference is expected as they are measured by different instruments. In general, IR-VSM
agrees well with MW-VSM, at least, in the sense of their variations. As shown in Figs. 4–8,
a minor but significant error can be introduced by the precalculated pseudo dry-emissivity cli-
matology and it may not precisely represent the current condition of observations at a specific
time. IR-VSM accuracy is also directly dependent on the accuracy of the IR emissivity retrieval,
and it is very difficult to near impossible to directly validate land surface emissivity globally.
Some more discussion on IR-VSM accuracy is given in Sec. 4 to explain why the absolute accu-
racy of IR-VSM is not addressed in this paper.

Fig. 6 (a) Monthly mean MW- and IR-VSM from central Australia, (b) September samples only. R2

and STDE shown in the plot are from their overlapped period from June 2007 to December 2016.

Fig. 7 Similar to Fig. 6, but from southeast Pakistan (near the Indian border).
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4 Discussion

Here, we would like to use the above two cases of the 2009 drought and 2010 flooding observed
in Australia and the monsoon cycle observed in south Asia to expand our discussion on Eq. (6) to
investigate how soil moisture was affected by the change of the real emissivity and pseudo
dry-emissivity. To carry out this discussion, soil moisture is calculated by two approaches:
(1) the pseudo dry-emissivity is set to be a constant of its mean and (2) the real emissivity
is set to be a constant of its mean in Eq. (6).

Figure 9 shows IR-VSM estimated with IASI emissivity and climatological pseudo dry-emis-
sivity [same as shown in Fig. 6(a)], IR-VSM estimated with IASI emissivity and a constant
pseudo dry-emissivity (scenario #1), and IR-VSM estimated with a constant emissivity and cli-
matological pseudo dry-emissivity (scenario #2). A higher frequency variation from scenario #1,
relating to a real emissivity containing water content information, captures the 2009 drought and
2010 greater rainfall (flooding) events. A lower frequency background variation from scenario
#2 is only related to a climatological pseudo dry-emissivity and repeated with a period of 1 year.
As mentioned above, the IR-VSM can be estimated from the real emissivity if we assume the
climatological pseudo dry-emissivity is reasonably accurate. Figure 10 shows the correlation
between the emissivity and IR-VSM although the monthly mean data are used. The year-to-year

Fig. 8 Samples plotted to show VSM variation for both MW-VSM (in blue) and IR-VSM (in red) at
locations of (a) 32.0ºN, 2.4ºE, (b) 23.5ºN, 76.0ºE, (c) 32.0ºN, 112ºW, (d) 28.0ºS, 20.0ºE, and
(e) 20.0ºS, 119.0ºE.
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variation of IR-VSM from the same month (i.e., dashed curves of Fig. 10) depends on emissivity
variation only because the climatological pseudo dry-emissivity of the month is a constant.
For example, the month of July from 2007 to 2016 (i.e., a family of July monthly-mean
data from 10 different years) is plotted on the dashed curve to show the relationship between
IR-VSM and emissivity as described using Eqs. (4) and (6); the dashed curve is controlled by
the climatological pseudo dry-emissivity of Eq. (5). IR-VSM from the same month of different
years [e.g., shown in Figs. 6(b) and 10] varies as the emissivity changes, while the same
climatological pseudo dry-emissivity is used.

Similar plots such as Figs. 9 and 10 are given in Figs. 11 and 12 for the second case of
monsoon cycle observed in south Asia, showing the correlation between the soil moisture, emis-
sivity, and pseudo dry-emissivity as described using Eqs. (4) and (6). As shown in Fig. 11,

Fig. 9 IR-VSM estimated with IASI emissivity and climatological pseudo dry-emissivity (in red), IR-
VSM estimated with IASI emissivity and a constant pseudo dry-emissivity of 0.978 (in blue), and
IR-VSM estimated with a constant emissivity of 0.964 and climatological pseudo dry-emissivity (in
green, repeated every 12 months) are plotted from central Australia.

Fig. 10 Relationship between the emissivity and estimated soil moisture plotted in Fig. 6 (central
Australia).

Fig. 11 Similar to Fig. 9, but from southeast Pakistan (near the Indian border): IR-VSM (in blue)
uses a constant pseudo dry-emissivity of 0.980, and IR-VSM (in green, repeated every 12 months)
uses a constant emissivity of 0.962.
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IR-VSM peaks of seasonal variation are in good agreement with MW-VSM as shown in
Fig. 7(a), but they are shifted when the real emissivity or pseudo dry-emissivity is set to be
a constant.

IR- and MW-VSM are not expected to be exactly the same since IR-VSM variation is
affected by IR emissivity. The IR-VSM presented herein captures soil moisture variability
but not the absolute accuracy, which depends on the accuracies of both emissivity and pseudo
dry-emissivity. Figure 13 shows global monthly statistical parameters of R2 and STDE between
MW- and IR-VSM; each data point represents a global monthly comparison as plotted in Fig. 5.
It reflects how IR-VSM compares with MW-VSM in a statistical sense for global coverage over
the period from June 2007 to December 2015. Overall global R2 and STDE during this period are
estimated to be about 0.85 and 0.032 (m3∕m3), respectively, a statistical measure between the
two datasets of MW- and IR-VSM. Since the same MW-VSM climatology was employed to
derive pseudo dry-emissivity used in this analysis, an overall bias between IR- and MW-
VSM is automatically corrected, but its STDE can still be estimated as a part of validation.
As previously stated, the scope of this paper is to examine the correlation between such emis-
sivity and soil moisture by estimating IR-VSM and comparing it with MW-VSM. We do believe
that an improved IR-VSM (i.e., surface or near surface soil moisture) can be derived from IR
emissivity when we have a better characterization of the pseudo dry-emissivity climatology,
which depends on the accuracy of the available MW-VSM climatology.

5 Conclusions

In this paper, we reported on our investigation into the relationship between IR-VSM and infra-
red land surface emissivity from a global perspective as inferred from advanced sounder satellite
data. Achieved objectives for this study were: (1) to confirm that the land surface emissivity

Fig. 12 Similar to Fig. 10, but from southeast Pakistan (near the Indian border).

Fig. 13 Global monthly statistical parameters of R2 and STDE between MW- and IR-VSM.
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retrieved from IR hyperspectral measurements contains soil moisture content information, (2) to
estimate VSM using infrared land surface emissivity and climatological pseudo dry-emissivity
(i.e., climatological MW-VSM and IR emissivity), and (3) to demonstrate that IR-VSM, as well
as its variation, is consistent with MW-VSM using an 8-year period of overlapping satellite data
from MW and IR observations.

IR-VSM is preliminarily estimated from IASI SFOV measurements and a pseudo dry-emis-
sivity climatology. In addition to their temporal variation from week to week and month to
month, the spatial distribution is found reasonable, in the sense of its monthly mean intercom-
parison with that derived from the MW measurements (i.e., ESA CCI VSM). A decade-long
global climatology of monthly-gridded emissivity from IASI is used to estimate IR-VSM and
to demonstrate its seasonal-cycle and interannual variations. Soil moisture estimated from IR
emissivity and a pseudo dry-emissivity climatology is shown to be spatially coherent and consis-
tent with that from MW measurements. IR-VSM seasonal-cycles and interannual variations are
captured and verified with those of MW-VSM. Positive agreement between the IR-VSM estimated
from IASI emissivity and MW-VSM indicates that IR land surface emissivity contains water con-
tent information and, when used to estimate IR-VSM, is consistent with that obtained from MW
measurements. Positive results from IR- and MW-VSM intercomparisons confirm the correlation
between soil moisture, IR land emissivity, and pseudo dry-emissivity as described using Eq. (6).

Our future work in this area will include obtaining or deriving a higher temporal resolution
database for a climatological pseudo dry-emissivity, and validating for IR-VSM daily products
with other satellite and/or in situ data. Both IR-VSM and emissivity will be routinely derived
using IASI SFOV measurements from both MetOp IASI satellite sensors with a desired higher
temporal-resolution climatological database of pseudo dry-emissivity. This scheme can also be
applied to IR emissivity retrieved from the SNPP CrIS sensor as well as other types of satellite
instruments, such as the moderate resolution imaging spectroradiometer of NASA Terra and
Aqua spacecraft43–45 to estimate its land VSM from satellite IR measurements. MW-VSM
data from recent and/or new satellite sensors are desired to continue these intercomparisons
and/or validation of IR-VSM. Multisatellite sensor data from both IR and MW measurements
might be used together to evaluate soil moisture product and provide a long-term global soil
moisture climatological dataset.
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