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Abstract. The hyperspectral remote sensor acquires hundreds of contiguous spectral images,
resulting in large data that contain a significant amount of redundant information. This high-
dimensional and redundant data always influence the efficiency of the data processing.
Therefore, feature extraction becomes one of the critical tasks in hyperspectral image classifi-
cation. A transform-domain-based feature extraction technique, three-dimensional discrete
cosine transform (3-D DCT), is proposed. The reason behind the transform domains is that,
generally, an invertible linear transform reconstructs the image data to provide the independent
information about the spectra or more separable transformation coefficients. Moreover, DCT has
excellent energy compaction properties for highly correlated images, such as hyperspectral
images, which reduces the complexity of the separation significantly. Unlike the discrete wavelet
transform that requires sequential transform to obtain the approximation and detailed coeffi-
cients, DCT extracts all coefficients simultaneously. As a result, computation time in the feature
extraction can be reduced. The experimental results on three benchmark datasets (Indian Pines,
Pavia University, and Salinas) show that the proposed approach produces a good classification in
terms of overall accuracy, average accuracy as well as Cohen’s kappa coefficient (κ) when com-
pared with some traditional as well as transform-based feature extraction algorithms.
Experimental result also shows that the proposed method requires less computational time
than the transform-based feature extraction method. © 2018 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.12.046010]
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1 Introduction

Over the past decade, hyperspectral imaging is of widespread interest among the remote sensing
research community due to its ability to discriminate between the variety of ground objects.1 The
hyperspectral data consist of rich information in both spectral and spatial domains, which has
opened opportunities in numerous diverse field applications, such as land cover classification,2

target detection,3 tree species classification,4 food technology,5 and medical imaging.6 The
hyperspectral data present a very difficult challenge caused by a large number of narrow spectral
bands with a small number of available labeled training samples. This problem along with other
difficulties, such as high variations of the spectral signature from identical material, high simi-
larities of the spectral signatures between some different materials, and noise from the sensors
and environment, will significantly decrease the classification accuracy. Therefore, feature
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extraction is an essential task in hyperspectral image processing to explore the hidden discrimi-
nant features of hyperspectral data that are useful for the classification and in turn increases the
classification accuracy.

Researchers have proposed various feature extraction techniques in the past few years for the
extraction of features from the hyperspectral images. Feature extraction is the transformation of
the original feature space into a new set of coordinates or features.7 The feature extraction proc-
ess preserves the most informative contents of the original high-dimensional feature space.
Principle component analysis (PCA) is one of the most commonly used feature extraction
techniques.8,9 This is because the PCA is an invertible transformation, which makes easy to
interpret the extracted features. PCA finds the projections with lower reconstruction error for
the whole data. It works on the global features and ignores the local information. Hence, seg-
mented PCA (SPCA) is proposed as an extended version of PCA where PCA is applied to the
blocks that are composed of correlation between bands to use local information.10 As an exten-
sion to PCA, modified algorithms are proposed, such as maximum noise fraction (MNF)11 and
kernel PCA (KPCA).12 Probabilistic PCA (PPCA) is a generative latent variable model in con-
nection with maximum likelihood function, which is also used to extract features.13 Independent
component analysis14 is then proposed to extract class discriminant features. Another best-
known feature extraction approach is linear discriminant analysis (LDA).15 LDA finds the pro-
jections that preserve the most discriminative information. Many other extensions to the above-
mentioned two approaches have been developed, such as regularized LDA,15 nonparametric
weighted feature extraction (NWFE),16 and kernel NWFE.17 The PCA- and LDA-based methods
assume that the distribution of the samples in a class is Gaussian; however, sample distribution is
not always Gaussian, and sometimes it may have complex multimodal structure. Therefore,
locality preserving feature extraction methods have emerged, which includes local Fisher’s dis-
criminant analysis (LFDA) and locality-preserving projection (LPP). In Refs. 18 and 19, random
feature selection (RFS)-based methods are developed to explore the diverse feature set that leads
to the higher classification performance. Clustering-based feature extraction techniques are also
widely used for feature extraction, which removes the redundancies and the correlated
features;20,21 however, most of the clustering methods focus on only spectral features rather
than exploring the hidden discriminant features.

The above-mentioned approaches are nearly matrix-based approaches or vector-based
approaches. However, the original hyperspectral data are represented in a three-dimensional
(3-D) volumetric array, which includes two spatial dimensions and one spectral dimension.
Therefore, it is more obvious to represent the hyperspectral data as a 3-D cube or tensor22

to preserve the higher-order statistical structure. The transform-domain method, 3-D discrete
wavelet transform (DWT), is used to extract the texture feature at different scales and frequen-
cies and has achieved the significant classification performance.23,24 Recently, deep learning
techniques have emerged too as the most powerful methods for feature extraction of the hyper-
spectral data. Deep learning techniques that are extensively used for feature extraction includes
deep belief network,25 stacked autoencoder,26 convolutional neural network (CNN),27 and
recurrent neural network.28 A 3-D convolutional neural network (3-D CNN) framework is
proposed in Ref. 29 to extract the deep spectral–spatial features. It is observed that the ten-
sor-based or 3-D methods provide the significant performance as the joint spectral–spatial
structure is adequately preserved. Although the deep learning methods provide the significant
deep feature representation of the high-dimensional data that can improve the classification
performance of the system, it also increases the computation time and the complexity of the
algorithm.

From the study of various existing feature extraction techniques, we found the following
challenges such as:

a. The existing feature extraction methods fail to explore the hidden discriminant features as
well as to provide the more complementary features while reducing the redundant
information.

b. Most of the existing feature extraction methods fail to provide the promising results when
the number of labeled samples is limited.
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c. When dealing with the high dimensional data, some existing methods demand high com-
putational cost.30

d. Even though the existing transform domain methods have achieved the significant classi-
fication performance, it takes more computational time.23,31

In this work, three-dimensional discrete cosine transform (3-D DCT) for classification of
hyperspectral images is proposed. DCT exhibits excellent energy compaction properties, and
large DCT coefficients are located in the low-frequency region. Therefore, DCT is chosen
for feature extraction in hyperspectral image classification. DCT extracts highly discriminative
and informative features from the hyperspectral images. The proposed method transforms the
hyperspectral image into a DCT coefficient matrix and looks for a signature pattern in the DCT
domain for classifying different land cover classes. Further, support vector machine (SVM) clas-
sifier is used to obtain labels of unknown samples of the hyperspectral images. To the best our
knowledge, this is the first time where DCT is used for feature extraction in hyperspectral image
classification. This technique has shown very distinct features that are more suitable for hyper-
spectral classification, including high classification accuracy and computational efficiency.
The main contribution of this paper can be summarized as follows:

a. Distinct features are extracted from hyperspectral image data as DCT captures local varia-
tion present in the hyperspectral data, which increases discrimination among the different
land cover classes.

b. DCT involves computation of real data only. Hence, the proposed method significantly
reduces the computational load without compromising the overall classification accuracy.

c. The proposed method has shown the distinct properties that are extremely suitable for
hyperspectral image classification including exploration of extrinsic discriminant features,
high computational efficiency, and very high classification accuracy.

The rest of the paper is arranged as follows: overview of feature extraction using 3-D DCT is
given in Sec. 2. Section 3 deals with experimentation on standard benchmark datasets and dis-
cusses the findings of the experiments, and finally, Sec. 4 presents the conclusion and future
directions.

2 Proposed Three-Dimensional Discrete Cosine Transform-Based
Feature Extraction Framework

In this section, the proposed feature extraction framework for hyperspectral image classification
is explained in detail. As shown in Fig. 1, the proposed approach consists of two stages such as
feature extraction and classification. The following subsection deals with the detailed explan-
ation of the various stages present in the proposed system.

Consider the hyperspectral image dataset that is represented as, X ∈ RH×W×N , where H and
W be the height and width of hyperspectral image and N is a total number of spectral bands
or the feature dimension. Assume the training samples of hyperspectral image data as
x ¼ ½x1; x1; : : : ; xM�, y ¼ ½y1; y1; : : : ; yM�, are the labels of training samples that belong to
the k classes in the data that are denoted as Ω ¼ ½Ω1;Ω2; : : : ;Ωk�.

Fig. 1 Block diagram of the proposed feature extraction framework.
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2.1 Principal Component Analysis

Principal component analysis (PCA) is widely used in the image preprocessing step to reduce the
dimension and redundancy. PCA reduces the dimension of the image by choosing information
only from the significant bands. It uses a vector space transform, which reduces the dimension-
ality of the original dataset and can be interpreted as a dataset with fewer variables, called prin-
cipal components (PCs).32

Let us consider the hyperspectral image X ∈ RH×W×N , where H and W be the height
and width of the hyperspectral image and N is the total number of spectral bands or
the feature dimension, respectively. The pixel vector of a hyperspectral image is represented
as follows:

EQ-TARGET;temp:intralink-;e001;116;609xi ¼ ½x1; x2; : : : xN �T: (1)

The mean μ of all image pixel vectors can be written as follows:

EQ-TARGET;temp:intralink-;e002;116;558μ ¼ 1

M

XM
i¼1

xi; (2)

where M ¼ H ×W denotes the total number of pixels in a spectral band.
The covariance matrix can be given as follows:

EQ-TARGET;temp:intralink-;e003;116;476CM ¼ 1

M

XM
i¼1

ðxi − μÞðxi − μÞT: (3)

The eigenvalue decomposition of the covariance matrix is follows:

EQ-TARGET;temp:intralink-;e004;116;408CM ¼ BDBT; (4)

where D is the diagonal matrix composed of eigenvalues λ1; λ2; : : : ; λN of covariance matrix CM

and B is the orthonormal matrix comprised of N eigenvectors and is given as follows:

EQ-TARGET;temp:intralink-;e005;116;348B ¼ ðb1; b2; : : : ; bNÞ: (5)

Then linear transformation can be calculated as follows:

EQ-TARGET;temp:intralink-;e006;116;294χi ¼ BT
j xi; i ¼ 1; 2; : : : ;M; (6)

which is the PCA pixel vector and j is the number of principal components with the highest
eigenvalues. Each pixel vector is mapped similarly, and the new low-dimensional image is
obtained.

2.2 Three-Dimensional Discrete Cosine Transform

Discrete cosine transform (DCT) is one of the most widely used techniques in numerous areas of
image processing including the denoising and compression.33 Due to energy compaction
property of DCT, the image information is represented using a few DCT coefficients. Thus,
making DCT more suitable for image compression applications. As DCT is a linear and
invertible transformation, it can provide easy separation of the transformation coefficients.
The extracted independent transformation coefficients give a meaningful data structure that
allows extracting information at a finer level of precision. The favorable outcome of such
transformation is the removal of the interpixel redundancy as well as interband redundancy.
In this paper, 3-D DCT is applied to the hyperspectral cube, which encodes the information
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in the form of DCT coefficients. It should also be noted that 3-D DCT can be achieved by
applying two-dimensional (2-D) DCT to a pixel vector. The 2-D DCT fðm; nÞ of size
M × N is given as follows:

EQ-TARGET;temp:intralink-;e007;116;699fðu; vÞ ¼∝u∝v

XM−1

x¼0

XN−1

y¼0

fðm; nÞ cos
�
πð2mþ 1Þu

2M

�
cos

�
πð2nþ 1Þv

2N

�
; (7)

where 0 ≤ u ≤ M − 1, 0 ≤ v ≤ N − 1 and

EQ-TARGET;temp:intralink-;sec2.2;116;629 ∝u¼
� ffiffiffiffiffiffiffiffiffiffi

1∕M
p

if u ¼ 0ffiffiffiffiffiffiffiffiffiffi
2∕M

p
otherwise

; ∝v¼
� ffiffiffiffiffiffiffiffiffi

1∕N
p

if v ¼ 0ffiffiffiffiffiffiffiffiffi
2∕N

p
otherwise

:

To extract the features from the low-dimensional hyperspectral image, 2-D DCT is applied to
each pixel vector of low-dimensional image and coefficients of DCT are computed. One of the
main characteristics of DCT is its ability to convert the energy of the image into a few coef-
ficients. Thus, in the field of pattern recognition, DCT coefficients are widely used as features.

The DCT coefficients of each pixel at position ðm; nÞ of the low-dimensional hyperspectral
image can be directly concatenated to form its feature vector:

EQ-TARGET;temp:intralink-;e008;116;504xm;n ¼ ½f1ðm; n; ·Þ; f2ðm; n; ·Þ; : : : ; fjðm; n; ·Þ�; (8)

EQ-TARGET;temp:intralink-;e009;116;470f̂ j ¼ Eðxm;nÞ ¼ E½f1ðm; n; ·Þ; f2ðm; n; ·Þ; : : : ; fjðm; n; ·Þ�; (9)

where Eð·Þ is the expectation operator.
Let f̂ ∈ RH×W×j be the final concatenated cube of the 3-D DCT-based feature vector is

given as

EQ-TARGET;temp:intralink-;e010;116;400f̂ ¼ ðf̂1; f̂2; : : : ; f̂ jÞ: (10)

2.3 Support Vector Machine Classifier

SVM has been widely used in the classification of hyperspectral image because of its particular
advantages in solving problems about small-sized samples training, nonlinear, and high
dimensions.34,35 In this paper, the SVM classifier is employed to get the final classification
map. Assume the training samples of hyperspectral image data as x ¼ ½x1; x1; : : : ; xM�,
y ¼ ½y1; y1; : : : ; yM�, are the labels of training samples that belong to the k classes in the
data that are denoted as, Ω ¼ ½Ω1;Ω2; : : : ;Ωk� and a nonlinear kernel mapping ð·Þ, xi is a
pixel vector with j-dimensional spectrum. The SVM technique solves

EQ-TARGET;temp:intralink-;e011;116;247min
W;ξ;b

�
1

2
kWk22 þ C

X
i

ξi

�
: (11)

Constrained to

EQ-TARGET;temp:intralink-;e012;116;182yi½ϕTðxiÞ:wþ b� ≥ 1 − ξi; ∀ i ¼ 1; : : : ; l; (12)

where w is normal to the decision hyperplane, b represents the closest distance to the origin of the
coordinate system, and l denotes the number of samples. Parameter C is the regularization
parameter, which controls the generalization capabilities of the classifier, and ξi are the positive
slack variables.

Figure 1 shows a flowchart of the proposed technique, and the entire process is summarized
in Algorithm 1.
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3 Experimentation

In this section, to assess the effectiveness of the proposed method, a series of experiments on
three standard datasets were conducted, namely Indian pines, Pavia University, and Salinas
dataset.36 All the experiments are conducted using MATLAB 2018a on PC with 16 GB
RAM and 2.70 GHz CPU. To verify the efficacy of the proposed method, few traditional feature
extraction methods were considered for comparison. Widely studied methods such as SVM,34

SVM-PCA,9 ICDA,37 and LDA38 were compared. The 3-D DWT, a transform-based feature
extraction method, is also considered.23 For the SVM method, the original hyperspectral
image is directly used for the classification without any feature extraction step.

3.1 Dataset Description

a. The first dataset is Indian Pine dataset, which is captured by Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) over North–Western Indiana region in June 1992. This
dataset contains 16 classes of agriculture as well as vegetation species. The size of the data-
set is 145 × 145 pixels with 20-m spatial resolution and 10-nm spectral resolution over the
range of 400 to 2500 nm. This scene contains 224 spectral reflectance bands, where only
204 bands will remain for experimentation after the removal of water absorption bands.

b. The second dataset is University of Pavia dataset, which is captured by Reflective Optical
System Imaging Spectrometer (ROSIS) over Pavia, Northern Italy in July 2002. This dataset
contains nine different classes. The size of the dataset is 610 × 340 pixels with 1.3-m spatial
resolution over the range of 430 to 860 nm. This scene contains 103 spectral reflec-
tance bands.

c. The third dataset is Salinas dataset, which is captured by Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) over Salinas Valley, California. This dataset contains 16 different
classes. The size of the dataset is 512 × 217 pixels with 3.7-m spatial resolution over the
range of 400- to 2500-nm range. This scene contains 224 spectral reflectance bands.

3.2 Performance Metrics

The performance of the proposed method is compared with other competing methods using three
widely used quality metrics, i.e., overall accuracy, average accuracy, class-wise accuracy, and
kappa coefficient. Overall accuracy (OA) is the percentage of correctly classified pixels in the

Algorithm 1 3-D DCT-based hyperspectral image classification.

Input: Hyperspectral image X ∈ RH×W×N , k number of classes.

Output: Labels y .

1. Obtain low-dimensional image χ by applying PCA to hyperspectral image data X , j < N [Eq. (6)];

2. Apply 3-D DCT to low-dimensional image χ j and obtain the DCT coefficients for each pixel vector [Eq. (7)]
and obtain DCT coefficient pixel vector [Eq. (8)];

3. Obtain the mean of DCT coefficient of each pixel vector as

EQ-TARGET;temp:intralink-;t001;116;616̂fj ¼ E ½f 1ðm; n; ·Þ; f 2ðm; n; ·Þ; : : : f jðm; n; ·Þ�;

4. Obtain final feature vector of DCT coefficient as, f̂ ¼ ðf̂1; f̂2; : : : f̂jÞϵRH×W×j , [Eq. (10)];

5. Randomly select some samples in f̂ as training samples and use the remaining samples as testing
samples;

6. Train the SVM classifier using training samples;

7. Predict class labels for testing samples and get the classification map.
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whole scene. Average accuracy (AA) is the mean of percentage of correctly labeled pixels for
each class. Classwise accuracy is also known as producer’s accuracy. Kappa coefficient is
a robust measure of the degree of agreement, which integrates diagonal and off-diagonal entries
of the confusion matrix.

3.3 Parameter Setting

In the beginning, to evaluate the effectiveness of the proposed method with less amount of
labeled data, 20% samples for each class from the reference data of Indian pine dataset,
Pavia University dataset, and Salinas dataset are randomly chosen as training samples, and
the remaining samples in each class are used for testing purpose. This experiment is repeated
for 10 times to evaluate an average of OA, AA, and κ. The training and testing samples used for
conducting tests are shown in Table 1–3. Also, some parameters need to be tuned for the con-
duction of tests. For all the SVM-based methods, the penalty parameter C and the radial basis
function (RBF) parameter γ are tuned through fivefold cross-validation (γ ¼ 2−3; 2−2; : : : ; 22; 23,
C ¼ 21; 22; : : : ; 28). Also, few other parameters of these methods need to be tuned. For the pro-
posed technique, the RBF parameter γ and the penalty parameter C are tuned as the meth-
ods above.

For SVM-PCA, 25 principal components (PCs) have obtained best classification accuracy.
So, in this experiment, the number of PCs is set to 25.10 The number of independent components
(ICs) are selected such that it could give a better result and have lesser computation burden. Also,

Table 1 Details of Indian pines dataset including some classes, class name, training, testing, and
the total number of samples.

Indian Pines

Class Samples

No Name Train Test Total

1 Alfalfa 10 36 46

2 Corn-no till 286 1142 1428

3 Corn-min till 166 664 830

4 Corn 48 189 237

5 Grass-pasture 97 386 483

6 Grass-tree 146 584 730

7 Grass-pasture-mowed 6 22 28

8 Hay-windrowed 96 382 478

9 Oat 4 16 20

10 Soybean-no till 195 777 972

11 Soybean-min till 491 1964 2455

12 Soybean-clean 119 474 593

13 Wheat 41 164 205

14 Woods 253 1012 1265

15 Buildings-grass-trees-drives 78 308 386

16 Stone-steel-towers 19 74 93

Total 2055 8194 10,249
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Table 2 Details of Pavia University dataset including number of classes, class name, training,
testing, and the total number of samples.

Pavia University

Class Samples

No. Name Train Test Total

1 Asphalt 1327 5304 6631

2 Meadows 3730 14,919 18,649

3 Gravel 420 1679 2099

4 Trees 613 2451 3064

5 Painted metal sheets 269 1076 1345

6 Bare soil 1006 4023 5029

7 Bitumen 266 1064 1330

8 Self-blocking bricks 737 2945 3682

9 Shadows 190 757 947

Total 8558 34,218 42,776

Table 3 Details of Salinas dataset including number of classes, class name, training, testing, and
the total number of samples.

Salinas

Class Samples

No Name Train Test Total

1 Broccoli-green-weeds-1 402 1607 2009

2 Broccoli-green-weeds-2 746 2980 3726

3 Fallow 396 1580 1976

4 Fallow-rough-plow 279 1115 1394

5 Fallow-smooth 536 2142 2678

6 Stubble 792 3167 3959

7 Celery 716 2863 3579

8 Grapes-untrained 2255 9016 11271

9 Soil-vinyard-develop 1241 4962 6203

10 Corn-senesced-green-weeds 656 2622 3278

11 Lettuce-romaine-4wk 214 854 1068

12 Lettuce-romaine-5wk 386 1541 1927

13 Lettuce-romaine-6wk 184 732 916

14 Lettuce-romaine-7wk 214 856 1070

15 Vinyard-untrained 1454 5814 7268

16 Vinyard-vertical-trellis 362 1445 1807

Total 10,833 43,296 54,129
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it has been observed that a lesser or greater number of ICs may have redundant information. So
as per Ref. 37, the number of ICs is set to 18.

3.4 Classification Results

This section discusses the classification results obtained for Indian pines dataset, Pavia
University dataset, and Salinas dataset, the impact of the different proportions of training sam-
ples on overall accuracy and execution time taken by all competing method.

First, we illustrate how DCT influenced the original spectra of the real hyperspectral datasets.
Here, the original spectra of hyperspectral datasets, such as Indian Pines, Pavia University, and
Salinas dataset, are shown in Figs. 2(a), 2(d), and 2(g), respectively. The transformed output
spectra after PCA transformation on hyperspectral datasets, such as Indian Pines, Pavia
University, and Salinas dataset, are shown in Figs. 2(b), 2(e), and 2(h), respectively. The trans-
formed output spectra after applying DCT on hyperspectral datasets, such as Indian Pines, Pavia
University, and Salinas dataset, are shown in Figs. 2(c), 2(f), and 2(i), respectively. The spectral
curves shown in Figs. 2(b), 2(e), and 2(h) indicate the high correlation between various classes of
hyperspectral images, which influences the discrimination among the classes. Figures 2(a), 2(d),
and 2(g) indicates the original spectral curves of datasets. It shows slightly more separation
between the land cover classes. However, these curves are obtained by considering all available
spectral bands, which lead to heavy computations. However, in Figs. 2(c), 2(f), and 2(i), the
spectral responses of land cover classes look more separated from each other in DCT domain,
which directly influences the performance of the hyperspectral image classification.

Fig. 2 Spectral response of different land cover classes of (a–c) Indian Pines dataset, (d–f) Pavia
University dataset, and (g–i) Salinas dataset, before and after transformation. First column depicts
original spectral response of respective datasets; the second column depicts spectral response of
respective datasets after PCA transformation and third column depicts spectral response of
respective datasets after discrete cosine transformation (DCT).
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3.4.1 Result analysis by comparing the proposed method with different
classification methods on Indian Pines dataset

The information required for experimentation, such as ground-truth data, training sample map,
and testing sample map of Indian pines dataset is shown in Fig. 3. The classification map of
all competing techniques on Indian pines dataset is shown Fig. 4, and the classification results
(i.e., OA, classwise accuracy, AA, and κ) of all competing methods and the proposed method are
shown in Table 4.

The performance of the proposed method is compared with traditional methods such as
SVM, SVM-PCA, LDA, ICDA, and transform-based method such as 3-D DWT. From
Table 4, it can be shown that the proposed technique attains greatest performance in terms
of overall accuracy, average accuracy, classwise accuracy as well as the κ. For the PCA-
based classification algorithm, the original image was reduced into few principal components
that are then used for classification using SVM classifier. The PCA-based classification tech-
nique decreases the dimensionality of hyperspectral images in the spectral domain. However, it
increases the discrepancy in the spatial domain (i.e., texture or shape variation). Therefore, the
classification accuracies of the SVM-PCA-based method are not solely better for Indian pines
dataset. By exploiting spectral–spatial features, 3-D DWT has achieved better performance in
terms of OA, AA, and κ over all other competing methods, such as SVM, SVM-PCA, ICDA, and
LDA. The proposed approach shows excellent and comparable classification performance due to
the application of 3-D DCT features. The classification map of SVM-, SVM-PCA-, ICDA-, and
LDA-based approaches have shown some salt and pepper noise that is less visible in the DWT
method and proposed 3-D DCT method. This noise will disappear if the spatial information is
considered for classification along with spectral information.

When compared with other competing approaches, the proposed approach improves the clas-
sification accuracy significantly as shown in Table 4 (boldface). For instance, the classification

Fig. 3 Indian pine dataset information (a) ground-truth data, (b) training map, and (c) testing map.

Fig. 4 Classification map of Indian pine data for all competing methods (a) SVM, (b) ICDA,
(c) SVM-PCA, (d) LDA, (e) 3-D DWT, and (f) 3-D DCT.
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accuracy of classes “Corn-no till” and “Corn-min till” increases from 46.50% to 75.83%,
22.29% to 70.63%, respectively. However, it is observed that the proposed method is not per-
forming well in terms of the classwise accuracy of individual classes such as “Alfalfa,” “Grass-
pasture-moved,” and “Oat” as shown in Table 4. The reason behind the lesser accuracy is that, the
classes, such as “Alfalfa,” “Grass-pasture-mowed,” and “Oats,” have a limited number of sam-
ples (also called small classes) as shown in Table 1. By selecting 20% samples per class as
training samples, these classes are represented by only a few samples in the training set,
which probably do not provide a fair-enough representation of the class. For pixel-wise classifier
SVM, the training samples are too limited to learn an effective model. Moreover, for classes,
such as, “Grass Pasture,” “Oat,” “Buildings-grass-trees-drives,” and “Stone-steel-towers,” 3-D
DWT method outperforms 3-D DCT method due to the localization property of the 3-D
DWTmethod. 3-D DCT considers only frequency content of the signal and ignores the localized
information.

3.4.2 Result analysis by comparing the proposed method with different
classification methods on Pavia University dataset

The information used for experimentation such as ground-truth data, training sample map, and
testing sample map of Pavia University dataset is shown in Fig. 5. The classification map of all
competing techniques on Pavia University dataset is shown Fig. 6, and the classification results
(i.e., OA, classwise accuracy, AA, and κ) of all competing methods and the proposed method are

Table 4 Comparison of classification accuracies (%) obtained by proposed method with com-
peting methods for Indian pines dataset.

Class number SVM34 SVM-PCA9 ICDA37 LDA38 3-D DWT23 3-D DCT

1 13.89 72.22 41.67 75.00 25.64 69.44

2 47.11 69.70 46.50 71.62 74.11 75.83

3 22.29 60.09 33.13 59.33 61.41 70.63

4 23.28 44.97 31.75 62.43 53.23 53.96

5 71.76 90.41 79.53 87.30 94.39 93.26

6 87.33 88.70 96.06 92.46 94.51 94.52

7 63.64 72.73 77.27 86.36 69.56 40.90

8 98.85 95.81 97.91 97.64 98.27 98.95

9 0 25.00 23.4 25.00 94.11 37.89

10 40.54 72.46 53.41 58.17 73.72 79.40

11 79.94 81.98 82.03 76.78 85.85 86.59

12 14.14 57.17 14.14 78.27 72.42 77.63

13 87.20 93.29 90.85 99.39 86.78 95.73

14 96.74 92.79 94.17 94.86 94.79 97.43

15 35.39 54.55 43.51 63.31 71.64 59.41

16 83.78 64.86 85.14 83.78 88.60 81.08

OA 65.96 77.02 66.84 77.39 81.47 83.15

AA 54.12 71.05 60.44 75.73 77.44 78.36

K 0.5667 0.7364 0.6131 0.7411 0.7876 0.8071
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presented in Table 5. From Fig. 6 and Table 5, it can be shown that the proposed technique attains
most excellent performance in terms of OA, AA, class wise accuracy as well as κ. Also, it is
noted that the traditional feature extraction methods, such as SVM, SVM-PCA, ICDA, and LDA,
yield similar results.

Because of the inherent multiresolution approach to the complex data, the transform-based
feature extraction method 3-D DWT shows remarkable performance in comparison with tradi-
tional feature extraction methods, SVM, SVM-PCA, ICDA, and LDA. However, the proposed
methods have achieved better performance over the 3-D DWT method, which means the energy
coefficients preserves more complementary information of original feature space. As shown in
Fig. 6, the proposed approach can help to eliminate most of the noisy pixels generated by the
other methods, and the overall classification accuracy increases by >2%. For example, misclas-
sified pixels from other comparable methods were corrected in the green region at the center of
Fig. 6, which is very close to the ground truth and also the overall classification map has become
smoother. Compared with other competing approaches, the proposed approach has improved
classification accuracy significantly as shown in Table 5 (boldface). For instance, the classifi-
cation accuracy of class “Asphalt” increases from 88.71% to 95.12%, and the classification accu-
racy of class “Trees” increases from 79.63% to 95.63%. Moreover, class “Shadow” is identified
with 100% accuracy. As shown in Fig. 6, for the proposed method, many pixels of the “Bare soil”

Fig. 5 Pavia University dataset information (a) ground-truth data, (b) training map, and (c) testing
map.

Fig. 6 Classification map of Pavia University data for all competing methods (a) SVM, (b) ICDA,
(c) SVM-PCA, (d) LDA, (e) 3-D DWT, and (f) 3-D DCT.
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class are misclassified as “Meadows” class because of the complex structure of the classes. Also,
some of the pixels of “Gravel” class are misclassified as other classes, such as “Bitumen” and
“Self-blocking bricks.” By visual inspection, it is observed that the proposed method produces a
more smooth and accurate classification map. For the classes “Gravel,” “Bare soil,” “Bitumen,”
and “Self-blocking bricks,” 3-D DWT produces better accuracy than 3-D DCT. It is due to the
localization property of the 3-D DWT method, whereas 3-D DCT performs a transform of fre-
quency contents only.

3.4.3 Result analysis by comparing the proposed method with different
classification methods on Salinas dataset

The information used for experimentation, such as ground-truth data, training sample map, and
testing sample map of Salinas dataset, is shown in Fig. 7. Figure 8 shows the classification map
of all competing techniques on Salinas dataset and the statistical results (i.e., OA, class wise
accuracy, AA, and κ) of all competing methods, and the proposed method is summarized in
Table 6. It is clear that the classification map of the proposed method has less noise and is

Table 5 Comparison of classification accuracies (%) obtained by proposed method with com-
peting methods for Pavia University dataset.

Class number SVM34 SVM-PCA9 ICDA37 LDA38 3-D DWT23 3-D DCT

1 90.18 88.71 89.88 88.78 91.93 95.12

2 94.10 95.11 94.47 93.75 92.55 97.78

3 14.77 24.00 31.15 65.45 86.14 77.96

4 79.60 81.56 82.54 86.08 92.27 95.63

5 98.61 98.61 98.70 99.44 98.76 99.72

6 43.33 47.28 62.59 63.01 95.50 89.71

7 73.78 82.61 78.95 43.79 93.91 88.44

8 87.98 87.74 87.71 78.03 91.02 90.66

9 99.60 99.87 100 99.47 100 100

OA 80.70 83.23 85.24 84.83 92.73 94.50

AA 75.77 78.39 80.66 79.76 93.57 93.78

K 0.7508 0.7721 0.8012 0.7972 0.9046 0.9269

Fig. 7 Salinas dataset information (a) ground-truth data, (b) training map, and (c) testing map.
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Table 6 Comparison of classification accuracies (%) obtained by proposed method with com-
peting methods for Salinas dataset.

Class number SVM34 SVM-PCA9 ICDA37 LDA38 3-D DWT23 3-D DCT

1 97.76 94.71 96.33 99.75 99.25 99.32

2 88.22 79.63 98.15 99.93 99.93 99.70

3 52.41 97.46 85.89 97.97 99.62 99.75

4 99.55 99.01 98.39 97.75 99.36 99.46

5 90.01 96.35 93.46 98.64 99.07 98.74

6 97.82 98.64 99.02 99.65 99.61 99.81

7 96.23 77.33 98.81 99.75 99.93 99.41

8 84.70 83.51 83.88 86.06 90.59 90.68

9 95.57 98.73 96.45 99.97 99.94 99.68

10 80.05 92.02 80.40 93.93 96.26 96.91

11 78.57 94.49 80.80 92.38 97.07 99.06

12 99.22 97.72 99.09 100 99.94 99.74

13 99.04 92.34 98.36 99.31 98.77 99.48

14 87.27 92.05 88.90 91.23 96.38 98.71

15 40.45 49.62 44.55 66.73 70.81 77.90

16 61.52 85.25 84.71 98.13 99.24 99.33

OA 81.55 84.71 85.14 91.61 93.18 94.62

AA 84.28 89.31 89.20 95.07 96.33 97.33

K 0.7937 0.8292 0.8339 0.9065 0.9239 0.9400

Fig. 8 Classification map of Salinas data for all competing methods (a) SVM, (b) ICDA, (c) SVM-
PCA, (d) LDA, (e) 3-D DWT, and (f) 3-D DCT.
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more accurate. From Fig. 8 and Table 6, it can be shown that the proposed technique attains the
most significant performance in terms of OA, AA, class wise accuracy as well as the κ. Table 6
shows that ICDA and SVM-PCA methods perform better than the SVM method. Furthermore,
the LDA method balances both interclass and intraclass criteria using a balancing parameter that
outperforms the SVM, SVM-PCA, and ICDA.

Due to the inherent multiresolution property, the transform-based feature extraction method
3-D DWT shows remarkable performance in comparison with the traditional feature extraction
methods. However, the proposed methods have achieved better performance over the 3-D
DWT method, which means the energy coefficients of the DCT preserves more complementary
information of original feature space. As shown in Fig. 8, the proposed approach can help to
eliminate most of the noisy pixels generated by the other methods, and the overall classification
accuracy increases by >2%. As shown in Fig. 8, overall classification map is very close to the
ground truth.

Compared with other competing approaches, the proposed approach has improved the clas-
sification accuracy significantly as shown in Table 6 (boldface). It also is shown that the pro-
posed method presents higher performances, especially in classes with a small number of
training samples such as “Fallow-rough-plow,” “Lettuce-romaine-4wk,” “Lettuce-romaine-
6wk,” and “Lettuce-romaine-7wk.” The best classwise accuracy is produced by the proposed
method for most of the classes (11 out of the 16 classes). Also, the class “Lettuce-romaine”
is correctly identified with 100% accuracy. However, it can be seen that the proposed approach
produces slightly lesser classification accuracy for classes such as “Broccoli-green-weeds-2,”
“Fallow-smooth,” “Celery,” “Soil-vineyard-develop,” and “Lettuce-romaine-5wk,” which is
almost negligible. The reason is that the DCT coefficients do not consider the localized infor-
mation about the data.

3.4.4 Influence of different proportions of training samples on overall accuracy

To verify the superiority of the proposed method as the number of training samples increases,
additional tests are conducted by considering randomly chosen 10%, 20%, 30%, 40%, and 50%
training samples39,40 from each class of all datasets. The remaining samples are used as testing
samples. Figure 9 shows OA obtained by the proposed method for a different proportion of
training samples, and it is observed that the proposed method achieves a better result as sample
proportion increases. Thus, the proposed method obtains the sufficient information to divulge the
discriminative features of the hyperspectral data.

Fig. 9 Influence of different proportions of training samples on (OA) for Indian Pines, Pavia
University, and Salinas dataset.
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3.4.5 Computational time

Figure 10 shows the computational time or the execution time (in seconds) of all competing
methods for all datasets, such as Indian Pines, Pavia University, and Salinas dataset.

As shown in Fig. 10, the proposed method takes more computation time than traditional
feature extraction methods but less than the transform-based feature extraction method. The
3-D DWT approach requires much more computational time, which degrades the competency
of the 3-D DWTmethod when applied for the high dimensionality of data. The reason behind the
expensive computations of the DWT method is the recursive computation of approximation and
detail coefficients. In contrast, the DCT involves computation of real data only, which reduces
computation burden. Also, DCT captures local variation present in the hyperspectral data that
increase discrimination between different classes. So, by taking into account the overall accuracy
and computational time, the proposed 3-D DCT approach significantly outperforms the other
competent methods.

4 Conclusion and Future Work

In this paper, a 3-D DCT-based feature extraction technique for hyperspectral image classi-
fication is proposed. This study proved that DCT allows a more efficient representation of the
hyperspectral data by removing the redundancy between the neighboring pixels and adjacent
bands and provides excellent decorrelation for the hyperspectral images. This technique is
beneficial to extract discriminative features from high-dimensional data and is computationally
competent. The experimental results on three standard benchmark datasets demonstrate that
the proposed technique is more useful in extracting informative features and removing the
redundant ones. Experimental results also show that compared with popular feature extraction
methods, the proposed technique has significant performance on hyperspectral image classi-
fication. The proposed method has achieved a maximum classification accuracy of 94.62% for
Salinas dataset.

Although the proposed method is competitive with other state-of-the-art methods, there are
still two crucial research directions deserving future attention. First, the spectral information can
be integrated with the spatial information, such as edge-preserving filtering,41 Markov random
field,42 discriminative random field method,43 and morphological profiles44 to improve the clas-
sification performance further. Second, the computational efficiency of the proposed method will
be increased by parallel processing and graphics processing unit programming.
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