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Abstract. Advancing the sustainable use and conservation of marine environments is urgent.
Tons of debris including macro- and microplastics generated on land are entering the oceans,
marine resources are decreasing, and many species are facing extinction. Though satellite remote
sensing techniques are commonly used for global environmental monitoring, it is still difficult to
detect small objects such as floating debris on the vast ocean surface, and the ecosystems deep in
the oceans where light does not reach are unobservable. An autonomous monitoring system
consisting of optimally controlled robots is required for acquiring spatiotemporally rich marine
data. However, object detection in marine environments, which is a necessary function the robots
should have for underwater and aerial monitoring, has not been extensively studied. Here, we
argue that state-of-the-art deep-learning-based object detection works well for monitoring under-
water ecosystems and marine debris. We found that by using the deep-learning object-detection
algorithm YOLO v3, underwater sea life and debris floating on the ocean surface can be detected
with mean average precision of 69.6% and 77.2%, respectively. We anticipate our results to be a
starting point for developing tools for enabling safe and precise acquisition of marine data to
elucidate and utilize this last frontier. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.13.044509]
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1 Introduction

In 2015, the United Nations set 17 goals, known as sustainable development goals (SDGs),1 to
achieve a better and sustainable future for all life on this planet. The goals include roughly two
major challenges: one addressing poverty, education, health, energy, and economics, which are
directly connected to our society, and the other concerning climate change, conservation, and use
of forests and oceans, which affect our lives indirectly through changes in the natural environ-
ment that are difficult to control. For the first challenge, we can take measures to improve our
society, such as developing new laws or technologies. For the second challenge, however, though
we can take any measures to increase resilience against environmental changes and conserve
nature, it will take several decades to evaluate their effectiveness. Therefore, continuous and
precise environmental monitoring techniques are required.

Satellite remote sensing is commonly used for global environmental monitoring. We can
observe wide areas and collect information regarding the atmosphere, land, and ocean surface.
The current constellation of satellites has enabled to observe the Earth improving temporal
resolution. Furthermore, satellites, such as WorldView-3 and 4, can take images with spatial
resolutions on the submeter order enabling the reconstruction of the land surface in three-
dimensional. However, spatiotemporal resolution is not precise enough for local observation
compared to the amount of information gathered with ordinary surveillance cameras used in
cities. Moreover, the satellite imagery products are still expensive, and it is difficult to obtain
information from underwater and in dense forests where light cannot reach.

Recently, unmanned aerial vehicles (UAVs) have been used to take high-resolution images
for land observation. Studies have focused mainly on using drones for agricultural application2
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and facility inspections.3 For underwater observation, autonomous underwater vehicles (AUVs)
and remotely operated vehicles (ROVs) have been developed and used for seabed resource
exploration,4 bathymetry analysis,5 and benthos survey.6

Advancing the sustainable use and conservation of marine environments is urgent. Tons of
debris, including macro- and microplastics from land, are entering the oceans, marine resources
are decreasing, and many species are facing extinction. The oceans have great potential for many
industries such as fisheries, resources, logistics, and tourism. However, ocean utilization has
been delayed due to inaccessibility and lack of sensing technologies. As UNESCO states in
the “Decade of Ocean Science” campaign in 2017, “The ocean covers 71 percent of the globe,
but we have explored less than 5 percent,” thus, a sufficient amount of marine information has
not been collected.

The current study explored marine-monitoring techniques using UAVs, AUVs, and other
autonomous robots for contributing to marine-ecosystem conservation and addressing the
marine-debris problem stated in SDG 14. Currently, marine-ecosystem surveys are mainly
executed by divers and through land-based visual inspections. Marine-debris monitoring also
depends on observation from ships or the coast. We report on a preliminary evaluation for
applying a state-of-the-art deep-learning algorithm for object detection in marine environments,
which include more complex and variable backgrounds compared to the land. We evaluated the
performance of the latest deep-learning object-detection algorithm called you only look once
(YOLO) v37 for identifying underwater sea life and detecting debris on the ocean surface and
beaches. We then discuss the possibilities of applying this algorithm to develop a marine-
monitoring system involving autonomous robots scattered throughout marine environments.

2 Related Work

Satellite remote sensing techniques are commonly used to obtain marine data. We can observe
sea-surface temperature, ocean current, waves, salinity, eutrophication, and/or chlorophyll-a dis-
tribution for long periods over wide areas.8,9 Satellite images have been applied in various fields,
including weather forecasting, fishery prediction,10 seagrass-bed analysis,11 and even counting
whales.12 However, there is a limitation of spatiotemporal resolution, though satellites capable of
taking submeter-order spatial resolution images and their constellation have improved this. It has
been pointed out that since coastal ecosystems have high spatial complexity and temporal vari-
ability, they frequently have to be observed from both satellite and aircraft to obtain the required
spatial, spectral, and temporal resolutions.13

To observe under water, where satellites cannot observe, systems, such as those involving
buoys with sensors and cameras and underwater vehicles, have been proposed.14–18 Argo Float19

is one such system consisting of many buoys scattered throughout the world’s oceans to collect
salinity and water temperature moving from sea surface to a depth of around 1000 m. Compared to
a buoys-based system, autonomous vehicles must provide spatially unrestricted ocean exploration.
Actually, Thompson pointed out that future marine monitoring systems would rely heavily on
autonomous vehicles to enable persistent and heterogeneous measurements needed to understand
the ocean’s impact on the climate system.20 The recently held “Ocean Discovery” is a worldwide
competition involving challenges to advance technologies for autonomous ocean exploration.21

Our study is in line with these challenges to realize autonomous ocean monitoring system.
Plastic debris in marine environments has been widely documented and regarded as a serious

problem that affects marine ecosystems and even humanity.22–27 Jambeck et al.28 estimated the
mass of land-based plastic waste entering the ocean by linking worldwide data on solid waste,
population density, and economic status. The Ocean Cleanup29 developed a system consisting of
a 600-m-long floater that sits on the surface of the water and a tapered 3-m-deep skirt attached
below to rid the ocean of plastic debris. They also reported that there are areas in the Pacific
Ocean that accumulate debris rapidly based on multivessel and aircraft surveys and simulation.30

However, it is still difficult to estimate debris distribution around the vast ocean and efficiently
clean up the area.

Deep neural networks are being successfully used for object recognition in images. A con-
volutional neural network (CNN)31 is one such deep network consisting of several convolutional,
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pooling, and fully connected layers. Recently developed deep learning algorithms for detecting
target regions and categories simultaneously, such as Faster R-CNN,32 YOLO,33 and SSD,34 have
shown higher detection accuracy and faster processing time. Previous studies have applied Faster
R-CNN or YOLO for detecting fish from underwater images.35–38 We believe that to realize an
autonomous ocean monitoring system, it is very important to evaluate the feasibility of a state-of-
the-art algorithm, YOLO v3,7 for marine ecosystems and debris monitoring.

3 Methods

In this study, we conducted a preliminary study for developing a marine-monitoring system
consisting of autonomous robots scattered throughout an environment. We evaluated the pos-
sibility of using UAVs and AUVs for such a system.

3.1 Data Acquisition

We first evaluated the visibility of small floating objects from aerial images. To do this, we flew a
drone (DJI Matrice 210 RTK) over Ishikari river estuary, Hokkaido, Japan, in September 2018.
The drone was equipped with a visible light camera (ZENMUSE X5S) and infrared (IR) camera
(ZENMUSE XT). We took images from different altitudes, i.e., 5, 10, and 30 m, targeting a toy
fish made of poly vinyl chloride cast into the water by using a fishing rod (Fig. 1). It was cloudy
and the wind speed was around 10 m∕s that day.

Next, we implemented an object-detection algorithm for underwater ecosystem monitoring
and finding marine debris. We collected images for model training and performance evaluation.
We took underwater images by scuba diving at Kawana beach in Shizuoka, Japan, in August,
2018. It was cloudy, the average diving depth was around 12 m, visibility in the water was
around 6 m, and the camera used was Go Pro Hero 6. The images of marine debris were taken
manually at beaches located in the Kanto region (Kanagawa and Chiba prefectures) in Japan in
January 2019 using three cameras (Go Pro Hero 6, OLYMPUS Tough TG-5, and iPhone).
We also downloaded images including underwater sea life, such as fish, sea turtles, and jelly
fish, from Google Open Images39 to cover the shortage in the variety of images.

3.2 Deep Network

We designed two deep-network models for detecting objects from ocean images: one to detect
underwater sea life and the other to detect debris floating on the ocean surface and drifting
ashore. The sea-life detection model was designed to identify three types of sea life; fishes, sea

Fig. 1 Field experiment of aerial marine monitoring. Drone and drifting target poly vinyl chloride
toy fish.
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turtles, and jelly fish. We prepared 8036 images including these targets sourced from Open
Images dataset and used 6908 (86%) of them for training the model and 1128 (14%) for evalu-
ation. The debris-detection model was designed to find plastic bottles, plastic bags, drift wood,
and other debris. Because it was difficult to obtain images of debris from the Open Images data-
set, we used 189 images including the target debris that we took and used 152 (80%) of them for
training the model and 37 (20%) for evaluation. Though more than 10,000 images are generally
required for developing a robust object detector, we know that it is possible to preliminarily
evaluate whether the model will work for the given task.

The computing specifications were as follows: Intel® Core™ i7-7800X CPU 350 GHz,
64 bits, 40-GB RAM, GPU Nvidia GTX 1080, CUDA 9.0, cuDNN 7.0.3, and OS ubuntu
16.04. The programs were implemented using Python 3.5 and OpenCV 3.4. We used
YOLO v3 object detection algorithm,7 which uses a deep network with 53 convolutional layers
and easily implemented using a deep-learning framework called Darknet.40 With YOLO v3,
the input images were resized to 608 × 608 pixels for processing.

3.3 Performance Evaluation

The performance measure commonly used for the object-category-segmentation problem is
called intersection-over-union (IoU). The IoU gives the similarity between the predicted and
ground-truth regions and is defined as the size of the intersection divided by the union of the
two regions. We used 0.5 and 0.75 as the IoU thresholds to examine mean average precision
(mAP) for evaluating the model performance.

4 Results

4.1 Visibility of Floating Objects from Air

We let the drone take off from the tip of a spit formed at the Ishikari river estuary and flew it over
the area within a few hundred meters from the coast except the no-fly zone designated as a
seaside plant protection district. We cast a 30-cm-long toy fish into the water by using a fishing
rod to be the target for image shooting (Fig. 1).

The visible light camera had a COMS 4/3 image sensor and 25-mm lens, and its resolution
was 5280 × 3956 pixels (4:3). Table 1 shows the relationship between distance to the target and
necessary pixels for representing a 30-cm-long object. According to this estimation, the target
may successfully be detected from 5- and 10-m observation, but there may be some cases in
which we might fail to detect it from 30 m according to marine conditions such as sun glint,
waves, and tide.

Figure 2 shows images taken from different altitudes using the visible light camera. As we
estimated, we could find the target visually in the images taken from 5 and 10 m [Figs. 2(a) and
2(b)]. We managed to find it in the image from 30 m [Fig. 2(c)]. However, the target in that image
was very small, and it may be difficult to find the same target under different conditions, e.g.,

Table 1 Distances to target and resolutions.

Distance to
target (m)

View
area (m)

Resolution
(mm/pixel)

Pixels for
30-cm target

Horizontal 5 3.5 0.66 455

Vertical 2.6 0.66

Horizontal 10 6.9 1.31 229

Vertical 5.2 1.31

Horizontal 30 20.8 3.93 76

Vertical 15.6 3.94
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stormy weather, strong sun glint, or different color combinations between background water
and target.

4.2 Object Detection in Marine Environments

To train the YOLO v3 object detection model, data gathered should be annotated to provide
information of the target region and label. Since the annotations were automatically created
with Open Images dataset, we just converted them to the YOLO format to train the sea-life
detection model. On the contrary, we had to annotate debris images manually to train the debris-
detection model.

Table 2 shows the model performances of object detection in marine environments. The
developed models achieved mAP values of 69.6% and 77.2% for sea-life and debris detection,
respectively, if we set IoU threshold as 0.5 as commonly used. These are sufficiently high com-
pared to the one reported in the original YOLO v3 paper (57.9% for YOLO v3-608 applied to
COCO dataset41). We found that the mAP values decreased when we set stricter IoU as 0.75.

Figure 3 shows example results of underwater fish detection for video input we took by scuba
diving. Schools of mid-sized fishes [Fig. 3(a)], small blue ones clearly contrasted with back-
ground rocks [Fig. 3(b)], and swimming in low transparency water [Fig. 3(c)] were successfully
detected (denoted with pink bounding boxes). Surprisingly, we found that our sea-life detection
model could identify small fishes, e.g., the one at the left far end in Fig. 3(a) and ones above
the rock in Fig. 3(c), which humans may fail to detect visually.

Figure 4 shows example results of marine-debris detection for video input we took manually
at the beaches. We found that our debris-detection model could successfully detect plastic bottles
(pink bounding boxes) and other debris such as plastic trays (light blue bounding boxes) floating
on the water [Fig. 4(a)]. Furthermore, not only plastic bottles but also a plastic bag (orange
bounding box) and drift wood (light green bounding boxes) were successfully detected on the
beach [Figs. 4(b) and 4(c)].

We confirmed that when inputting video images, the object detection process runs in real
time. Thus, we can conclude that the YOLO v3-based object detector works well for both
underwater and beach environments.

5 Discussion

We explored possibilities of developing a marine-monitoring system consisting of autonomous
robots, including UAVs and AUVs, for object detection.

Fig. 2 Target observed from different altitudes: (a) 5, (b) 10, and (c) 30 m. Orange lines indicate
target.

Table 2 Performances of sea-life and marine debris detection.

mAP

Sea-life detection Debris detection

IoU 0.50 69.6% 77.2%

0.75 50.8% 62.6%
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Fig. 4 Example detection results of debris. (a) Floating on ocean surface and (b), (c) drifting
ashore. Plastic bottles, plastic bag, drift wood, and other debris are denoted in pink, orange, light
green, and light blue bounding boxes, respectively. Video taken manually was input.

Fig. 3 Example detection results of schools of (a) mid-sized fishes, (b) small blue fishes clearly
contrasted with background, and (c) swimming in low transparency water. Video taken by scuba
diving was input.
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We found that aerial marine monitoring using UAVs that fly at lower altitudes, i.e., less than
30 m, provides sufficient image quality for capturing small targets. In our experiment, the
visual light camera on a drone successfully captured images of a 30-cm-long toy fish floating
in the water. From higher altitudes, it may be difficult to identify objects due to various water-
surface conditions or color and size of targets. Figure 5 shows images taken using both visible
light and IR cameras from a higher altitude, i.e., 150 m. In the image taken with the visible
light camera [Fig. 5(a)], we can identify something black appearing to be a person walking on
the edge of the water. In the enlarged view, we can find four birds as well, though it is difficult
to recognize them in the original image. In the IR image [Fig. 5(b)], however, the person and
birds are represented by bright colors different from the background. This indicates that not
only visible light cameras but also IR cameras are useful for aerial marine monitoring. We be-
lieve that multi- and hyperspectral cameras can also be applied for various marine-monitoring
tasks.

As some previous studies have applied Faster R-CNN for underwater fish detection (e.g.,
Refs. 35 and 36), we implemented Faster R-CNN for sea-life and debris detection to compare
performance with that of YOLO v3 for our datasets. We found that the YOLO v3 was outstand-
ing in terms of accuracy and processing speed. Our Faster R-CNN models achieved only 40.0%
and 41.2% of mAP for sea-life and debris detection, respectively, when IoU was set to 0.5. The
values were 28.8% and 21.0 when IoU was 0.75 showing much lower performances compare to
those of YOLO v3 (see Table 2). We found that Faster R-CNN was not good at detecting small
targets [e.g., schools of fishes shown in Fig. 3(b)] that YOLO v3 could successfully detect.

To develop an environmental monitoring system consisting of autonomous robots scattered
throughout a natural environment, such robots should have an object-recognition function to
determine their next action depending on the detection results. When we ran YOLO v3 on
a single board computer designed for developing such robots, Raspberry pi 3 Model B+
(CPU Broadcom BCM2837B0, Cortex-A53(ARMv8), and 1-GB memory), it took a very long
processing time, which was not realistic. This is because the processing ability of the board is too
weak for a very deep network with 53 convolution layers. Therefore, we applied tiny models
with shallower network structure, e.g., tiny-YOLO,42 to run on the board with a visual processing
unit (VPU) called Intel® Movidius™ Neural Compute Stick. In our preliminary experiment, we
could detect objects almost in real-time using this architecture. We plan to evaluate the perfor-
mance quantitatively for different hardware settings (multi VPUs, for example) and various deep
network structures.

We believe that using the swarm control technique of drones and underwater vehicles (e.g.,
Refs. 43 and 44) with various types of cameras and combining satellite observation will enable
the development of a high-spatiotemporal marine-monitoring system. For example, sending
multiple drones to a specific area, where a satellite discovered abnormal trends, to collect precise
local data will provide us with richer marine information that can be used not only for disaster
prevention but also for industrial fields such as smart fisheries. To realize such marine monitor-
ing system, we need to develop an algorithm to optimally control multiple robots based on the
object-detection results. We believe reinforcement learning is powerful under various natural
environments, where robots have to move under incomplete observable conditions, to run the
robots with cooperation to execute a task.

Fig. 5 150-m bird’s-eye view. Person and four birds on edge of water observed using (a) visible
light camera and (b) IR camera. Insets are enlarged views.
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6 Conclusion

We explored methods for monitoring marine environments by using autonomous robots includ-
ing commercial UAVs and AUVs. We found that by using the deep-learning object-detection
algorithm YOLO v3, underwater sea life and debris floating on the ocean surface can be detected
with mAP of 69.6% and 77.2%, respectively. Our results indicate the fundamental feasibility of
detecting underwater sea life and small objects, such as debris, using the state-of-the-art deep-
learning-based object detection algorithm that could be implemented on the robots scattered in
the nature to autonomously monitor the environment. For the next step, we plan to increase the
number of classes that the model can classify to observe various ecosystems and types of marine
debris. We also plan to develop a prototype robot with the object detection function controlled
optimally by reinforcement algorithm for the environmental monitoring. We believe that this
study will facilitate the development of a marine-monitoring system consisting of scattered
autonomous robots with deep-network-based object detector.
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