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Abstract. The rapid development of remote sensing technologies provides interesting possibil-
ities for the further development of nationwide mapping procedures that are currently based
mainly on passive aerial images. In particular, we assume that there is a large undiscovered
potential in multitemporal airborne laser scanning (ALS) for topographic mapping. In this study,
automated change detection from multitemporal multispectral ALS data was tested for the first
time. The results showed that direct comparisons between height and intensity data from differ-
ent dates reveal even small changes related to the development of a suburban area. A major
challenge in future work is to link the changes with objects that are interesting in map produc-
tion. In order to effectively utilize multisource remotely sensed data in mapping in the future, we
also investigated the potential of satellite images and ground-based data to complement multi-
spectral ALS. A method for continuous change monitoring from a time series of Sentinel-2
satellite images was developed and tested. Finally, a high-density point cloud was acquired
with terrestrial mobile laser scanning and automatically classified into four classes. The results
were compared with the ALS data, and the possible roles of the different data sources in a future
map updating process were discussed. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.13.4.044504]
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1 Introduction

Nationwide topographic databases presenting, for example, buildings, roads, water areas, ground
elevation, and some land use information provide the basic material for map production and
numerous applications exploiting geospatial data. Currently, there are increasing demands for
up-to-date and detailed data. Keeping the databases up to date and further developing their con-
tents and maintenance processes thus becomes more and more important (see, e.g., Refs. 1 and
2). In Finland, as in many other countries, aerial images covering the entire country are acquired
regularly at a few years’ intervals and used as the main remotely sensed data source in map
updating. Data from single-channel airborne laser scanning (ALS) are also used, primarily
to create high-quality digital terrain models (DTMs). The first scanning of the entire country
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with a minimum density of 0.5 points∕m2 is planned to be finished in 2019. Multitemporal ALS
datasets are not yet commonly available, and the intensity information of the ALS is not gen-
erally in active use. Some objects in the National Land Survey of Finland (NLS) Topographic
Database3 are currently updated continuously (e.g., roads) or yearly (e.g., buildings) using infor-
mation obtained, for example, from municipalities. More extensive updating of the database is
done at a few years’ intervals following aerial image acquisitions. This updating process is
mainly based on visual interpretation of the images.

In the present article, we investigate and discuss the possibilities that the newest remote sens-
ing techniques could bring to map updating, especially considering the increasing demands for
updating frequency, automation, and detailed contents of databases. Our work is not directly
linked to the operational updating process of the NLS Topographic Database or its development
in the near future. Instead, the objective is to consider the topic from a wider perspective and
provide ideas for further research and development. Previous research has suggested that the
updating of map databases could be made more automatic, for example, by developing auto-
mated change detection approaches (see, e.g., Refs. 4–6). This previous research has mainly
concentrated on datasets currently in operational use, such as aerial images and height informa-
tion derived from images or single-channel ALS. The results have been encouraging, but chal-
lenges have also been reported. These challenges include shadows, and the diversity of objects
and aerial image values over large areas or at different times of the year (see, e.g., Ref. 7).

Due to their favorable spatial resolution and viewpoint, aerial data acquisitions by cameras
and laser scanners are likely to remain the main approach for nationwide topographic mapping in
the future. In particular, we assume that there is a large undiscovered potential in multitemporal
ALS. The newest developments in this field include multispectral ALS, which provides accurate
3-D information and intensity in three bands simultaneously.8 Unlike traditional passive aerial
imaging, the technique is independent of external illumination conditions and the data do not
include shadows. This is a very interesting novelty in the field of mapping. For example, the
feasibility of using the technique for land cover classification has been demonstrated (see, e.g.,
Refs. 9–11). Matikainen et al.10 also tested change detection between buildings and roads on a
map and in multispectral ALS data from one date. According to our knowledge, change detec-
tion between multitemporal multispectral ALS datasets has not yet been studied. When such data
are available, change detection approaches utilizing both height and multispectral intensity
comparisons between different dates can be developed.

In addition to ALS, remote sensing technologies, in general, have developed rapidly in recent
years,12 and the use of multisource data has been considered promising in different fields. In
forestry, for example, data assimilation using multisource remotely sensed data has been sug-
gested as a potential approach for providing updated forest inventory data.13 Holland et al.14

discussed the numerous ground-based and airborne survey techniques currently available and
how the rapid development of systems challenges a mapping agency in collecting and main-
taining data. This development means that standard aerial data sources could be complemented
with other remotely sensed datasets more easily than before. In order to effectively utilize multi-
source remotely sensed data in nationwide mapping in the future, the advantages and challenges
of different data sources and their possible roles in an integrated map updating process should be
understood. Therefore, we also investigated the potential of satellite images and ground-based
data to complement multispectral ALS.

One limitation of aerial data is that data acquisitions are relatively expensive and time con-
suming. On a country-wide level, they can normally only be repeated once in a few years, which
can be a challenge when considering the increasing demands for up-to-date databases. Different
from aerial techniques, satellite systems provide frequent coverage of large areas. The Sentinel
satellites of the European Space Agency (ESA) are currently particularly interesting.15 They
provide large amounts of data that are freely available. In our study, we investigated the use
of Sentinel-2 optical satellite images for change detection. The spatial resolution of Sentinel-2
images is not high enough for mapping small details, such as individual buildings. They could,
however, be used to monitor larger changes in the landscape.

In addition to demands on updating frequency, there are needs for very detailed geospatial
information and 3-D city models, especially in urban areas. To meet these needs, very detailed
remotely sensed data from the ground level are also increasingly available due to advanced
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terrestrial mobile mapping systems with laser scanners and cameras.16,17 Data from mobile laser
scanning (MLS) are more accurate and denser than before and can be rapidly and flexibly col-
lected. Applications of such data vary from their application in smart cities, urban planning, and
street mapping to their application in autonomous driving systems. Interestingly, for mapping
applications, the viewing perspective of the data is different from aerial systems. In our study,
we also investigated the use of MLS data for detailed urban mapping.

The specific objectives of our study were as follows:

1. To investigate the potential use of multitemporal multispectral ALS data for automated
change detection for the first time: a method was developed and tested to detect the most
important height and intensity changes by direct comparison of two multispectral ALS
datasets.

2. To investigate the potential of satellite images and MLS data to support map updating
and complement ALS data:

• a processing chain and method for continuous change monitoring from Sentinel-2
satellite images was developed and tested

• urban scene classification of MLS data for detailed 3-D mapping was tested.

3. To discuss the possible roles and integration of multispectral ALS data, satellite images,
and MLS data in a future multisource map updating process.

The multitemporal multispectral ALS data were considered the elementary data and refer-
ence for other datasets. The level of detail in the multispectral ALS data corresponds approx-
imately to that of aerial images currently used in map updating work, and in the future,
multispectral ALS could thus have a central role in nationwide mapping. After discussing related
work in Sec. 2 and presenting our study area and data in Sec. 3, the methods and experimental
results are presented in Sec. 4. Section 5 concentrates on analyzing the quality of the results from
the viewpoint of map updating. Finally, the possible roles of the different data sources in a future
map updating process are discussed in Sec. 6. The conclusions of the study are presented in
Sec. 7. Considering the individual parts of the study, our aim is not to find the most optimal
or best-performing methods in this study. Rather, we aim to present practical methods that allow
the discussions mentioned above, give satisfactory results, and can be later used as a starting
point for further developments.

All remotely sensed datasets used in the study have been acquired with the most novel and
advanced systems currently available. The combination of multispectral ALS data, Sentinel-2
satellite images, and MLS data from the same area is unique and has not been discussed in
previous literature. This is also the first study investigating change detection from multitemporal
multispectral ALS data.

2 Related Work

2.1 Multisource Data Analysis Approaches in Mapping

The integration and fusion of different remotely sensed datasets have received much attention
during recent decades (see, e.g., Refs. 18 and 19) although wider discussions on the possible
roles of airborne, spaceborne, and ground-based remote sensing techniques for a given appli-
cation are not common. In the field of mapping, typical examples of data integration in research
literature include the use of ALS and aerial image data or satellite image data for mapping build-
ings (see, e.g., Refs. 20 and 21) and land cover (see, e.g., Ref. 22). As mentioned above, Holland
et al.14 discussed the numerous survey techniques from the viewpoint of a mapping agency. Data
analysis methods were not presented in their article. The integration of ALS and MLS data has
been discussed, for example, by Rutzinger et al.23 regarding the extraction of vertical walls. Zhou
and Vosselman24 compared curbstone mapping results from ALS and MLS data. Zhu and
Hyyppä25 presented an approach for the 3-D modeling of railway environments by utilizing
both ALS and MLS data. Bamber et al.26 presented a digital elevation model of Greenland based
on various spaceborne and airborne datasets and digitized map data.
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2.2 Mapping with Multispectral ALS Data

The feasibility of conventional single-channel ALS data for creating DTMs and mapping
elevated objects, such as buildings and trees, is well known (see, e.g., Ref. 27). Several studies
related to change detection and map updating have also been carried out. Change detection
between multitemporal single-channel ALS datasets has been discussed, for example, by
Murakami et al.,28 Richter et al.,29 and recently by Tran et al.30 Since the emergence of the first
operational multispectral ALS system, Optech Titan, in late 2014, the potential of this single-
sensor technology for several applications has also been demonstrated. These include land cover
classification (see, e.g., Refs. 8–11, 31, and 32), tree species classification,33,34 road mapping,35

and map updating.10 In particular, the ability of the technique to map ground-level classes—such
as low vegetation, roads, paved and unpaved surfaces—is a valuable addition to the conventional
ALS technique.

The Optech Titan sensor has three channels: infrared 1550 nm (channel 1), near-infrared
1064 nm (channel 2), and green 532 nm (channel 3). Each channel produces a separate point
cloud. The most common approach to utilizing the multispectral intensity information has been
to produce multispectral intensity images in raster format. A point-based approach that exploits
the nearest neighbor approach in order to merge intensity information from different channels
has also been used.9 Radiometric correction of Optech Titan data was discussed by Yan and
Shaker.36 To our knowledge, change detection based on multitemporal multispectral ALS data
has not yet been investigated.

2.3 Change Detection from Optical Satellite Images

Monitoring Earth surface dynamics and tracking changes from satellite images has been an
important research topic in the past, and it still is. For example, multispectral optical data from
Landsat satellite series have been applied for land use mapping for decades. The opening of the
Landsat archive for free use has further increased the use of Landsat data.37 A review of change
detection using Landsat has been presented by Zhu.38 Generally, a number of change detection
techniques have been developed, and it continues to increase.39–41 When selecting a change
detection method, the characteristics of the remotely sensed images used and the phenomenon
under study should be considered.42 In a built-up area, this could include, for example, the type
and density of urban structures and vegetation, and seasonal changes in the landscape.

The Copernicus Sentinel-2 mission43 is a constellation of twin polar-orbiting satellites with
global coverage and a revisit time of five days at the equator with the two satellites. The satellites
Sentinel-2A and Sentinel-2B were launched in June 2015 and March 2017, respectively. Each of
the satellites carries a multispectral optical instrument with a swath width of 290 km. They
acquire information in 13 spectral bands (from 443 to 2190 nm) at different resolutions (10,
20, and 60 m). The service is mainly focused on land monitoring and security. All the data are
available for scientific and commercial use, free of charge. One of the first insights into the use of
Sentinel-2 data for urban areas was provided by Lefebvre et al.44 In their study, change detection
approaches were divided into image-to-image comparison and postclassification comparison.
They used the fusion of the independent image classifications of Sentinel-2 and Landsat 8
to update the Copernicus High Resolution Imperviousness Layer. Pesaresi et al.45 tested the
applicability of a classification method called symbolic machine learning on Sentinel-2 imagery
and also demonstrated the added value of Sentinel-2 products over Landsat-derived products for
mapping built-up areas. Being a recently launched system, the real usability of Sentinel-2 data
has not yet been widely and fully analyzed. There are also many commercial satellite systems
providing data with higher spatial resolution, but they exceed the scope of this study.

2.4 Mapping of Urban Objects from MLS Data

Much research has been carried out on the mapping of urban objects from MLS data including
pole-like objects (e.g., Refs. 46–49) and more general object classes (see, e.g., Refs. 50 and 51).
More recently, Li et al.52 segmented pole-like road furniture, i.e., street lights and traffic
signs, into different components based on their spatial relations and compared a proposed
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knowledge-driven method and different machine learning classifiers to label these components.
Also, the extraction of building facades has been studied23,51 as well as the retrieval of road
markings and curbstones.53 The MLS classification studies reviewed above follow the
object-based approach, that is, a point cloud is first segmented into objects and then the objects
are classified. Also, two other approaches exist, namely the point-based approach54 and the
voxel- or supervoxel-based approach (see, e.g., Ref. 55) where either single points or (super)
voxels are classified. In this study, we adopted the object-based approach because it can preserve
the spatial relations between different objects.

The most common object recognition workflow starts with the removal of ground and build-
ing facade points.23,48,50,51 Then, a connected component analysis48,51 or some more advanced
segmentation method, such as graph-cut,50 is carried out on the above-ground points. Finally, the
above-ground objects are classified into different classes, such as cars, lamp posts, and traffic
signs. The classification algorithms may apply machine-learning methods50,51 or knowledge-
based rules.48 Some approaches only concentrate on finding objects of a pole-like shape.46,47,49

3 Study Area and Data

3.1 Study Area, Reference Data, and Map Data

Our study area is located in Espoonlahti, in the city of Espoo, about 15 to 20 km from the center of
Helsinki. The area is a growing suburban area with high-rise and low-rise residential areas and an
industrial area. Areas that are not built-up are mainly covered by coniferous and mixed forest. In
method development and testing, an “intensive study area” covered by both ALS and Sentinel-2
datasets was used. This area is illustrated in Fig. 1 (the center point is approx. 60° 9′ 18” N,
24° 38’ 24” E). The Sentinel-2 satellite images used in the study covered a larger area. On the
outskirts of this larger area, there are also some agricultural fields and a golf course. These areas,
however, were not used in method development or evaluation. The study area is located on the
coast, and the multispectral ALS data and Sentinel-2 images covered some water areas, but these
were also excluded from the analyses as our study concentrated on the changing suburban area.

A permanent land cover classification test field consisting of reference points with known land
cover is located in the study area (see Refs. 10 and 56). In the present study, 427 “unchanged”
reference points were used as training points in Sentinel-2 satellite image analyses to define train-
ing segments for developing a change detection method (with the classes “changed” and
“unchanged”). The points used in the study were selected so that they cover part of the intensive
study area, and the density of the points is feasible for segment-based analysis of Sentinel-2 sat-
ellite images (1 point∕100 m × 100 m; see Fig. 1). Part of the intensive study area remained out-
side the training points for quality evaluation purposes (quality evaluation in this study was based
on ALS classifications rather than the reference points). In addition, only those points were used
that remained unchanged during the time period of interest, that is, between August 2015 and June
2016. To select unchanged points, two versions of the reference points were used. The first one is
the same as that used in Ref. 10 and corresponds to the situation in August 2015. The second is a
newer one corresponding to the situation in June 2016.57 The main data sources used in the manual
checking and updating of the land cover information of these point sets were multispectral
ALS data acquisitions from the corresponding points of time. To select unchanged points for the
satellite image analysis, the land cover was generalized into three classes: “built-up area,” “tree,”
and “low vegetation.” Unchanged points considering these classes were selected.

For evaluating the quality of change detection results from multitemporal multispectral ALS
data, a specific set of test points was collected. These were collected from changes that are
important for topographic mapping and included 34 points on new buildings, 56 points on new
roads, and 57 points on new clear-cut forest areas. The selection of these points was based on
visual comparison of the two multispectral ALS datasets used in the study. Map data were used
as an aid. Some of the new buildings and roads were still under construction, but they were
already clearly visible in the ALS data from the second date. The clear-cut points were selected
from areas where trees had been cut, but the construction of new roads and buildings had not
yet begun.
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Map data used in the study included information extracted from the Topographic Database
maintained by the NLS.3 Buildings and roads from early 2015 were used in change detection
tests with multispectral ALS data. Water areas and agricultural polygons were used to mask these
areas out of analyses. Water areas were excluded from multispectral ALS and Sentinel-2 analy-
ses. Agricultural areas were excluded from Sentinel-2 analyses. Road vectors in the database
represent the center lines of the roads, and the width of the roads is not available. In change
detection, we used buffered road vectors. The widths of the buffers were based on approximate
information available on the widths of different types of roads. Different versions of the topo-
graphic database data, and openly available map and aerial image data from the city of Espoo
(map service58) were also used as an aid at various stages of the study. It should be noted that due
to the active construction work in the area, we did not have map data that exactly corresponded to
the situation at the time of data acquisitions.

Fig. 1 An illustration of the intensive study area covered by different datasets (the yellow polygon).
The Sentinel-2 satellite image in the background is from June 29, 2016 (Copernicus Sentinel data
[2016]). A water mask that contained data from the NLS Topographic Database 2015 was used to
define the boundary of the study area.
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3.2 Multispectral ALS Data

Multispectral ALS data from two dates, August 21, 2015, and June 14, 2016, were used in the
study. The trees were in leaf in both of these datasets. The point density in preprocessed data was
about 8 to 9 points∕m2 for each channel in the August 2015 data and about 11 to 13 points∕m2

in the June 2016 data. The main steps in preprocessing of the August 2015 data included basic
preprocessing, the range correction of intensity values, cutting out overlap points, removing
some error points, and the creation of digital surface models (DSMs), DTMs, and three-channel
intensity images in raster format (for more details, see Ref. 10). The same procedures, except the
procedure for DTM generation, were also applied to the June 2016 data. The pixel size of the
DSMs and DTM used in the study was 1 m on the ground. The pixel values in the DSMs re-
present the maximum height of points from all channels. The pixel size of the three-channel
intensity images was 0.2 m, and the intensity values represent the average intensity of first-pulse
and only-pulse laser points divided by 100.

An additional preprocessing step compared to those described in Ref. 10 was a calibration to
adjust the intensity information from June 2016 so that it would be comparable with the August
2015 data. Originally, the intensity levels from the two data acquisitions were not comparable,
which means that direct change detection between the intensity values is not possible without
adjustment. The adjustment used 18 natural and manmade targets found in the study area.
The targets included building roofs, parking places, sports fields, and beaches. The ALS points
falling to each of the areas were inspected to only include target hits, not, for example, cars or
reflective lines on an asphalt-covered car park. One of the targets was discarded because its
behavior in the time series data was anomalous. For each channel, linear fit with scalar adjust-
ment was found between the mean intensities from the two dates. Intensities in the later dataset
were then adjusted with this linear model. To avoid extrapolation and negative intensity values,
values below the minimum mean intensity value of the reference targets were not adjusted.
According to visual evaluation, the intensity levels in the two datasets matched each other
relatively well after the adjustment.57

In addition to the preprocessed height and intensity data, land cover classifications carried out
for the data10,57 were used in the study. The land cover classifications were carried out using
object-based random forest59 classification. The classification results from the first date, together
with the DSMs and intensity images from both dates, were used as input data in change detection
tests based on multispectral ALS data. The classification results from both dates were used as
reference data in evaluating change detection results based on Sentinel-2 satellite images.

3.3 Sentinel-2 Satellite Image Data

All Sentinel-2 images from our study area were downloaded from the Copernicus Open Access
Hub (previously known as the Sentinels Scientific Data Hub60). Starting from July 15, 2015, and
concluding on June 30, 2016, a total of 44 Sentinel-2 images were downloaded. Many of these
images had a high percentage of cloud cover, and only nine images were finally used in the study
(Table 1). The selection criterion for images was that they should be completely cloud-free over
our study area.

Sentinel-2 data at the time of image acquisition were only available in Level-1C format,61

so it was necessary to manually produce a level-2A product, which represents bottom-of-
atmosphere information (i.e., atmospherically corrected data). For this purpose, the sen2cor tool
provided by the ESA62 was used. Nowadays, users can also download level-2A data directly
from the hub.

Having all the images processed to the level-2A product level, the calculation of a normalized
difference vegetation index (NDVI) and normalized difference built-up index (NDBI) was done
for each image. NDVI was selected because it is the most frequently used vegetation index and it
easily distinguishes healthy vegetated areas, whereas NDBI is suitable for highlighting urban
areas. Appropriate Sentinel-2 bands and the official software SNAP (Sentinel-2 Toolbox)63 were
used to calculate the indices:

EQ-TARGET;temp:intralink-;e001;116;92NDVI ¼ NIR − RED

NIRþ RED
; (1)
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EQ-TARGET;temp:intralink-;e002;116;592NDBI ¼ SWIR − NIR

SWIRþ NIR
; (2)

where NIR is the near-infrared band (842 nm), RED is the red band (665 nm), and SWIR is the
shortwave infrared band (1610 nm). The NDVI and NDBI were converted to new bands and
added to the Sentinel-2 products. Subsets of the images were then exported for our study area.
These only included bands used in the study, i.e., red, green, blue, NIR, SWIR, NDVI, and
NDBI. The final spatial resolution of the bands used in the study was 10 m, which means that
only the SWIR band was upscaled from the native 20-m resolution to 10 m. All the other bands
used have a native resolution of 10 m.

3.4 MLS Data

The MLS data for the study were collected using a Finnish Geospatial Research Institute (FGI)
proprietary MLS system called Roamer. Roamer used a Riegl VUX-1HA laser scanner to collect
3-D data of the scenery. The frequency of the scanning mirror was 250 Hz, resulting in cross-
track profiles; the scanner emitted 1 017 000 pulses/s. In the online signal processing, the scanner
could resolve for up to seven echoes per pulse, depending on the object characteristics. Each
360 deg profile corresponded to 4068 transmitted pulses, resulting in an angular resolution of
1.5 mrad. The point spacing was ∼4 mm right below the scanner due to the sensor elevation of
about 2.8 m from the ground. The point spacing on a plane perpendicular to the laser rays was
77 mm at a 50-m distance to the scanner. The positioning of the MLS system was carried
out using the NovAtel SPAN GNSS-IMU (Global Navigation Satellite System—Inertial
Measurement Unit; Flexpak6 receiver and ISA-100C IMU) positioning system for raw observ-
ables. The trajectory and orientation data were postprocessed with base station data from Trimnet
virtual data service using Waypoint Inertial Explorer (NovAtel Inc., Calgary, Canada). The data
were then georeferenced into a 3-D point cloud using Riegl RiWorld software (Riegl, Horn,
Austria) and using previously acquired system offsets and calibration. The point cloud data were
stored in LAS 1.2 format for delivery and processing.

The data used in the study were acquired on May 9, 2017, when trees were not yet in full leaf.
Roamer was driven mainly on streets and, in some cases, on pedestrian routes in order to cover
the area, buildings, and construction sites of interest. An excerpt of the data is presented in Fig. 2,
showing the 3-D point cloud colored by the pulse return amplitude in tones of gray.

4 Methods and Experimental Results

In this section, we present the specific methods developed and tested in the present study.
These include:

1. a new change detection method that uses multitemporal multispectral ALS data from
two dates

2. a new continuous change monitoring method that uses a time series of Sentinel-2 satellite
images

3. a method for urban scene classification that uses MLS data from one date (following
Ref. 64).

Table 1 The acquisition dates of the remotely sensed datasets used in the study.

Data source Dates

Optech Titan multispectral ALS data August 21, 2015, June 14, 2016

Sentinel-2 satellite images August 17, 2015, August 24, 2015, October 3, 2015,
October 6, 2015, April 10, 2016, May 10, 2016,
May 13, 2016, May 30, 2016, June 29, 2016

MLS data May 9, 2017
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The experimental change detection results (methods 1 and 2) and classification results
(method 3) obtained by using these methods are also presented in this section. Quality analysis
of the results, inter-relationships between the different datasets, and their possible use in a future
multisource map updating process will be discussed in further sections.

4.1 Change Detection from Multitemporal Multispectral ALS data

4.1.1 Change detection method

The objective of the change detection test was to study the feasibility of direct height and inten-
sity comparisons between multitemporal multispectral ALS datasets for map updating. A change
detection process relying on two datasets was developed and mainly implemented with the
eCognition software (Trimble Germany GmbH, Munich). The basic steps of the method are
illustrated in Fig. 3. The main input data for the method include multispectral intensity images
and DSMs from the two dates, and the results show the changes that have occurred in height or
intensity. The land cover classification results from the first date are used as a starting point for
the analysis. This ties the detected changes to land cover classes and also allows the use of
different change detection rules for different classes. The land cover classes were generalized
for the purpose of change detection (see Table 2).

The most typical changes in our study area include the felling of trees due to the beginning of
construction work and various other changes related to the construction of new buildings and
roads. The felling of trees and the construction of new buildings are basically clearly visible in
the height data. The same applies to changes in existing buildings, such as their expansion,
demolition, and changes in height. The change detection of objects previously classified as
“buildings” and “trees” was thus studied on the basis of the two DSMs. Height changes in
ground objects were also analyzed because these can reveal new buildings and the extensions
of previous ones.

Changes in ground-level objects, such as the construction of new roads, may also be visible in
the height data, but it can be expected that intensity changes are the most important cue in this
case. Changes in ground-level objects were thus also studied on the basis of the two intensity
images, in practice, pseudo-NDVI values calculated from the images. A pseudo-NDVI can be
calculated from Optech Titan channels 2 and 3.9 The aim was to detect changes from natural to
artificial ground, indicating new roads, parking places, and construction sites. The opposite case
(i.e., change from artificial to natural ground) was also included. This is a less typical change in
practice, but it can occur, for example, when construction work is finished and newly sowed
grass begins to grow on roadsides or in courtyards.

Fig. 2 An excerpt of the MLS data shows a building under construction. The data capture lots of
details for interpretation.
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Fig. 3 The main steps of the method used for change detection from multitemporal multispectral
ALS data. Pseudo-NDVI values for segments were calculated from their mean values in channels
2 and 3. The height values of segments were their mean values in the maximum DSM that
represents the highest elevation values for individual pixels.

Table 2 The relation between land cover classes in the suburban study area10 and change
detection from multitemporal multispectral ALS data.

Class from
land cover
classification

Input class in change
detection based
on intensity

Input class in change
detection based

on DSM
Output classes from
change detection

Building — Building Building, height increase

Building, height decrease

Tree — Tree Tree, height increase

Tree, height decrease

Asphalt Artificial ground Ground Artificial ground, NDVI increase

Ground, height increase

Ground, height decrease

Gravel Artificial ground Ground See above

Rocky area Natural ground Ground Natural ground, NDVI decrease

Ground, height increase

Ground, height decrease

Low vegetation Natural ground Ground See above
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The most typical uninteresting changes detected with our approach include large vehicles,
such as buses on roads, and temporary buildings or other constructions not presented on the map.
Special rules exploiting the existing map data were developed to recognize these cases. The
parameter values used in change detection and the reasoning for the selection of these values
are shown in Table 3. Generally, the parameter values were based on general knowledge or
analyses and experiments carried out in our training area. For extending the method to larger
areas and different seasons, more sophisticated learning approaches could be utilized.

The land cover classification method and the quality of the results have been described by
Matikainen et al.10 Segmentation was carried out with the multiresolution segmentation
method,65,66 and the parameter values were the same as those that were used in land cover clas-
sification. The multiresolution segmentation method is a widely used segmentation method
based on bottom-up region merging. It uses an optimization procedure to minimize the average
heterogeneity of segments.66 By varying parameters and input data, users can create segments
with different sizes and shapes. These segmentation results can form a hierarchical structure,
where segments on an upper level consist of one or several segments on a lower level. In our
ALS change detection test, we created only one segment level based on the DSM data and one
based on the intensity data and these were separated from each other. The segment hierarchy,
however, was utilized to create segments inside certain land cover classes and to merge neigh-
boring segments with similar changes before analyzing the sizes of changed areas.

4.1.2 Change detection results

The method development, including the setting of parameter values, was carried out in a 2 km ×
2 km subarea (about 3.9 km2 excluding water). Another 2 km × 2 km subarea (about 3.4 km2

excluding water and a small land area outside the intensive study area) was used for testing and
evaluating the usefulness of the detected changes. The results for this test area are shown in

Table 3 The parameter values used in change detection from multitemporal multispectral ALS
data.

Parameter Value Reasoning

Threshold values for height changes Less than −2.5 m or
greater than 2.5 m

The expected minimum height for
a building or one floor in a building;
trees are also normally higher than this

Threshold values for pseudo-NDVI
changes

Less than −0.2 or
greater than 0.2

According to histogram analysis in
the training area, intensity changes in
ground classes were normally within
the range of −0.2 to 0.2

Threshold value for eliminating height
changes with small object size

<20 m2 Buildings are normally larger than this;
the threshold value helps to avoid
a large number of very small changes in
the results

Threshold value for eliminating intensity
changes with a small object size

<200 m2 Experiments were carried out in the
training area to find a suitable value;
ground-level objects normally presented
in the topographic database are also
clearly larger than this

Threshold values for separating vehicles
from the classes “ground, height
increase” and “building, height decrease”:
Maximum overlap with buffered road
objects from the map, Object size

>30% <150 m2 Experiments and object size
measurements were carried out in the
training area; it should be noted that
moving vehicles can appear as elongated
objects in ALS data

The criterion for separating temporary
buildings from the class “building, height
decrease”: The number of overlapping
building objects on the map

0 These buildings were not presented on
the map; it is thus likely that they were
building-like objects or temporary
buildings that are not of interest for
mapping
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Fig. 4. Figure 5 shows some details of the results, together with the DSMs, intensity images, and
land cover classification results from the first date.10 The figures include changes that are poten-
tially of interest for map updating (i.e., changes classified as “vehicles” or “temporary buildings”
were excluded).

4.2 Continuous Change Monitoring with Sentinel-2 Satellite Images

4.2.1 Change monitoring method

The method developed for continuous change monitoring from Sentinel-2 satellite images
consists of preprocessing, segmentation, and change detection. An overview of the method is
presented in Fig. 6.

Fig. 4 Change detection results based on multitemporal multispectral ALS data from August 2015
and June 2016. The land cover classes correspond to the classification of the August 2015 data.10

Buildings and road center lines from the map are based on data from the NLS Topographic
Database 2015. The boundary of the study area is mainly based on a water mask that also con-
tained data from the NLS Topographic Database 2015.

Matikainen et al.: Toward utilizing multitemporal multispectral airborne laser scanning. . .

Journal of Applied Remote Sensing 044504-12 Oct–Dec 2019 • Vol. 13(4)



Preprocessing included atmospheric correction and the calculation of an NDVI and NDBI, as
described in Sec. 3.3. Segmentation was performed in a hierarchical manner using the multi-
resolution segmentation algorithm65,66 and appropriate bands and parameter values (see Table 4)
in the eCognition software. The basic idea of this hierarchical segmentation method was already
described in Sec. 4.1.1. In the Sentinel-2 change detection test, the first and the last image of the
time series were used as input data. The first image was first segmented to obtain initial segments
on a higher hierarchical level, and a lower hierarchical level of segments was then created inside
the initial ones using the last image. In this way, boundaries already detected from the first image
remained and new ones only detected from the last image were added. The final segments on the

Fig. 5 Close-up views of the multitemporal multispectral ALS change detection results for (a) sub-
area 1 and (b) subarea 2. Left column: DSMs from August 2015 and June 2016. Middle column:
intensity images from August 2015 and June 2016. Right column: land cover classification results
from August 201510 and change detection results between August 2015 and June 2016. For the
legend of the change detection results, see Fig. 4. Buildings and road center lines in the change
detection results are based on data from the NLS Topographic Database 2015.
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lower level were analyzed in change detection. The boundaries of changed areas should be vis-
ible in these segmentation results. Water and agricultural polygons from the topographic data-
base were used as thematic layers in segmentation and excluded from further change analysis.
Agricultural areas have their specific behavior considering spectral changes, and they require
separate rules for change detection. In our intensive study area covered with reference points,
there were only a couple of agricultural areas, and therefore, this topic was not studied in our
case. Generally, most of the nonbuilt-up land in Finland is covered by forest, and the study could
be later extended to agricultural areas. The parameters for segmentation were selected based on
visual analysis and interpretation of segmentation results while varying their values. A total of
1686 segments (polygons) were created. The segmentation results for a subarea can be seen
in Fig. 7.

To develop rules for the change detection, training segments with no changes during the time
frame were analyzed. There are natural changes in reflectance values during the year, such as the

Fig. 6 Continuous change monitoring from Sentinel-2 satellite images.

Table 4 The parameters used in the segmentation of Sentinel-2 images for change detection.

Parameter Segmentation level I Segmentation level II

Input level Pixels Segmentation level I

Source image August 17, 2015 June 29, 2016

Image bands in use Red, green, blue, near-infrared
(each with equal weight)

Red, green, blue, near-infrared
(each with equal weight)

Thematic information Water and agricultural areas Water and agricultural areas

Scale 100 100

Shape 0.6 0.6

Compactness 0.8 0.8
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normal, expected changes in vegetation, and the purpose of analyzing the training segments was
to obtain an understanding of these changes. The basic assumption was that changes in
interest when mapping are larger than these normal seasonal changes. Training segments
were selected on the basis of reference points that remained unchanged (see Sec. 3.1).
Every segment that had at least one reference point within its boundaries was selected as a train-
ing segment. The total number of training segments was 100, and all of them were considered
unchanged.

For each of the training segments Si; i ∈ f1;2; : : : ; 100g, the median value was calculated
from NDVI and NDBI bands for each date Dn; n ∈ f1;2; : : : ; 9g to represent the segment
reflectance. Median values were used instead of mean values in order to avoid the influence of
outliers and averaging in the case of mixed segments. The differences of median values between
every two consecutive dates were then calculated for the segments (MEDIANSiDnþ1

−
MEDIANSiDn

). For each time fragment (two consecutive dates), the minimum and maximum
segment differences were found, and these were the threshold values for change detection
rules:

EQ-TARGET;temp:intralink-;e003;116;324TminDnþ1Dn
¼MINðMEDIANSiDnþ1

−MEDIANSiDn
Þ; i∈ f1;2; : : : ;100g;n∈ f1;2; : : : ;9g; (3)

EQ-TARGET;temp:intralink-;e004;116;279TmaxDnþ1Dn
¼MAXðMEDIANSiDnþ1

−MEDIANSiDn
Þ; i∈ f1;2; : : : ;100g;n∈ f1;2; : : : ;9g: (4)

Time series statistics, including the average, minimum, and maximum values of the median
differences for each time fragment, are shown in Fig. 8. Change detection for a given segment
Sj; j ∈ f1;2; : : : ; 1686g was based on the threshold values:

Fig. 7 The segmentation of Sentinel-2 images for change detection. The Sentinel-2 satellite
image in the background is from June 29, 2016 (Copernicus Sentinel data [2016]).

Fig. 8 (a) NDVI and (b) NDBI time series statistics that were calculated for the training segments.
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EQ-TARGET;temp:intralink-;sec4.2.1;116;735

if ½ðMEDIANSjDnþ1
−MEDIANSjDn

Þ < Tmin Dnþ1Dn
or

ðMEDIANSjDnþ1
−MEDIANSjDn

Þ > TmaxDnþ1Dn
�

then Change

else No Change

An additional rule applicable to an NDVI was based on the assumption that the NDVI value
should decrease if a change from a vegetation area to a built-up area occurs. This was the change
we were mostly interested in. In our case, this additional condition was met by only using the first
inequality of the criterion above. This was possible because all the minimum threshold values
(Tmin) were negative, that is to say, they were related to an NDVI decrease, and all the maximum
threshold values (Tmax) were positive, that is to say, they were related to an NDVI increase.

4.2.2 Change monitoring results

After having set the rules using the training segments, the median value of the NDVI and NDBI
was calculated and change detection was performed for all 1686 segments. The change detection
results based on the NDVI decrease rule are shown in Fig. 9. The results shown in the figure are
a combination of all the changes detected within the selected time span (August 2015 to
June 2016). A total of 432 polygons were detected to have changed.

4.3 Detailed 3-D Mapping with MLS

4.3.1 Methodology for urban scene classification

Our method for classifying MLS data consists of three steps: data preprocessing, ground
removal, and classification.64 In the first phase, we remove noise and partition data into blocks.
Then, ground points are removed. Lastly, above-ground points are clustered using connected
component analysis and these clustered components are classified into different categories.
The workflow of the method is shown in Fig. 10.

Data preprocessing. On occasion, the scanner produces noise, in other words, points in the
air, which are mainly due to multiple reflections. Long-distance echoes, that is to say, objects at
a longer range than the given measurement rate permits, are also not solved for the correct range.
Presumably, some misinterpretations are caused by scattering from aerosols (dust) and other
scanner online echo detection faults (e.g., direct or reflected sunlight entering the scanner optics).
The noise causes mistakes in the following stages if not treated properly. Because of the low
intensity of these noisy points, a low-intensity threshold was used to remove them. In this paper,
this threshold was empirically defined to be 1200.

MLS datasets can be very large and the processing can be computationally expensive if we
process the whole dataset in one time. Additionally, there are many urban objects that are
scanned multiple times, which will cause shifts of objects. In order to solve these problems,
the data are partitioned into blocks based on trajectory points and their sequenced time. Then,
these generated, sequenced blocks are cropped into a regular size along the trajectory direction,
30 m along the trajectory, and 60 m across the trajectory.

Ground point removal. Compared with the points of other classes, ground points have
smaller height differences locally. Therefore, ground points are extracted by filtering out points
with large height differences in their local neighborhood. Here, the neighborhood is defined to
include the 100 nearest neighboring points of a certain point. The threshold for a large height
difference was set to be 0.15 m. In addition, we filtered out points that were too high compared
with the height of a trajectory point at the same time instant. Ground points are removed and
the rest of the points remain for the next phases of processing.

Clustering and classification. After ground points are removed, a connected component
analysis67 is carried out to obtain above-ground components. The distance threshold in the
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connected component analysis was set to be 0.5 m. Rules were defined and applied to classify the
components into three classes: “buildings,” “trees,” and “pole-like road furniture.” Building and
nonbuilding components are first detected in the following way. From every above-ground com-
ponent, planar patches are extracted using surface growing. If there is at least one detected planar

Fig. 9 (a) Changed segments detected from Sentinel-2 images based on the NDVI decrease rule.
The large yellow/orange polygon shows the coverage of the area that was used to select seg-
ments for the quality evaluation, and the smaller orange square shows the coverage of the sub-
area that is shown in (b), (c), and (d). The Sentinel-2 images in the background are from August 17,
2015 (b) and June 29, 2016 (a, c, d) (Copernicus Sentinel data [2015 and 2016]). A water mask
that contained data from the NLS Topographic Database 2015 was used to define the boundary of
the study area. The area of the smaller square with changes detected from multitemporal
multispectral ALS data and some topographic database data can be seen in Fig. 4.
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patch satisfying the following conditions, the above-ground component is classified as a building
component: (1) the area of the patch should be large enough (the threshold was set to be 18 m2)
(2) the normal of the detected planar patch should be parallel to a horizontal direction, that is,
the angle between the normal of the detected plane and the horizontal plane should be less than
5 deg; and (3) the patch should mostly contain points with a prominent planarity, that is, points
whose local neighborhood are situated approximately on a plane. The planarity FP for a point p
is calculated based on the eigenvalues λ1 ≥ λ2 ≥ λ3 of the covariance matrix of the points in the
neighborhood of p using the equation FP ¼ ðλ2 − λ3Þ∕λ1. The point p is classified as promi-
nently planar if planarity FP is larger than linearity FL ¼ ðλ1 − λ2Þ∕λ1 and scatterness
FS ¼ λ3∕λ1. In a building component, the ratio of points with a prominent planarity had to
be larger than 0.65. Apart from the conditions 1 to 3 above, the horizontal distance between
at least one pair of points in a detected vertical planar patch should be larger than 2.5 m in
order to remove narrow nonbuilding segments.

Next, trees are extracted from the nonbuilding components. One sent laser pulse can reflect
multiple times from vegetation because of gaps between small branches or leaves. In contrast,
bare ground or a building facade can only give a single return for one transmitted pulse. In
addition, trees are typically higher than other types of vegetation. Therefore, a nonbuilding
component is classified as a tree if the following two conditions are met: (1) the percentage
of multiple returns in the component is high enough (>5%) and (2) the highest point of the
component is 2 m or higher from ground level.

Last, pole-like road furniture are recognized from the remaining nonbuilding and nontree
components. This is performed by first applying a slice analyzing method and then a cylinder

Fig. 10 The workflow of street scene classification from MLS data.
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mask method for each component. We first cut the component into slices in a vertical direction.
If the horizontal diameter of any slice is larger than 0.5 m, the component is discarded; otherwise,
it is considered as a pole candidate. Next, for each pole candidate, we calculate the shift of center
points and the difference of the diameters between every two adjacent slices. If the shift of center
points or difference in the diameter between any two adjacent slices is too large (>0.05 m), the
slices are removed from the pole candidate. If the number of remaining slices is lower than 3, the
component is removed from the pole candidates. For the remaining pole candidates, a cylinder
mask47 is used to perform a final check regarding if the candidate is pole-like road furniture.
A detailed description of a cylinder mask can be found in Ref. 47; here, we use the center
points of slices to define the cylinder axis. The main difference to the method of Ref. 47 is
that we use unorganized point clouds, whereas in Ref. 47, the scan line information, also called
profile or row and column information, is used. With the scan line information, neighborhood
searches are faster, but such information is not always available, and thus, the method used in
this paper is more generic.

4.3.2 Classification results

Figure 11 shows objects of different classes detected from the MLS data. According to visual
evaluation, most objects were correctly classified. Most misdetections come from connected
objects such as trees connected with buildings. This is the main drawback of object-based

Fig. 11 (a) Ground, (b) buildings, (c) trees, and (d) pole-like road furniture detected from the MLS
data. Different objects are shown with different colors in the detection of buildings, trees, and
pole-like road furniture.
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classification. Some tree trunks with only a few branches were misclassified as pole-like objects.
It is difficult to distinguish them from pole-like road furniture. Except for the classified objects,
the rest of the objects remained unclassified with the method and were removed. For example,
there were some trees that were visible in the original data but not in the final results because they
were not recognized as trees with the set of classification rules in use.

5 Analysis of the Experimental Results

5.1 Potential of Multitemporal Multispectral ALS Data for Change Detection
and Map Updating

When changes detected from the multitemporal multispectral ALS data are combined with map
data, an illustrative presentation of the changes is obtained (Fig. 4). It can be seen that many
changes related to construction work in the study area were detected. The most prominent of
these was the felling of several forest areas before the beginning of construction work. These
changes were classified as “tree, height decrease.” Several construction sites previously classi-
fied as “ground” are also visible in the results because the height of these areas has increased or
their pseudo-NDVI value has decreased. All these changes are obviously interesting for map
updating, although their direct linking to map objects is not straightforward. Buildings are nor-
mally presented on the map in their finalized form, not as construction sites. Forest areas are not
presented as polygon objects on the present Finnish topographic maps because they are con-
sidered to belong to the background. Larger clear-cut areas, however, are presented. Many small
changes are also visible in the results. The most typical of these is the felling of individual trees.
Such changes are not needed for nationwide topographic mapping, but they are interesting for
detailed city models that also represent trees. The short time interval between data acquisitions
also affected the nature of the changes detected in this study, for example, there were many
construction sites instead of finalized buildings.

To better understand the usefulness and nature of the changes detected from multitemporal
multispectral ALS data, two evaluations were carried out. The first one was a numerical one and
its objective was to test how well new objects interesting to topographic mapping were detected.
It was based on the reference points collected on new buildings, new roads, and new clear-cut
forest areas. The results are summarized in Table 5. They show that 95% of the changes were
detected. Two buildings points and five road points were not detected as changes. All the clear-
cut points were detected. The classification of the detected changes varied depending on the land
cover class of the segments on the first date.

The second evaluation was a visual one, and the objective was to understand the nature of
changes that were detected by direct automatic comparison of the multitemporal datasets. The
evaluation was based on visual inspection of the two multispectral ALS datasets with some help
from existing map data. The information given by this evaluation could be used in further
research and development. Basically, the detected differences can include changes that are

Table 5 A comparison of the changes detected from multitemporal multispectral ALS data to
reference points.

The class of the
reference point

Detected as
changed

Not detected
as changed Sum Detected change class (number of points)

New building 32 (94.1%) 2 (5.9%) 34 Tree, height increase (1); tree, height
decrease (7); ground, height increase (24)

New road 51 (91.1%) 5 (8.9%) 56 Tree, height decrease (44); natural ground,
NDVI decrease (7)

New clear-cut
forest area

57 (100%) 0 57 Tree, height decrease (57)

All 140 (95.2%) 7 (4.8%) 147
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interesting to mapping but also many other changes, which, from the viewpoint of map updating,
could be considered as false detections. Categorical classification of the detected changes
as desired and undesired ones was not included in this study. This topic is closely related to
the definition of mapping rules for different objects and requires special attention if the method
is further developed for operational use. A total of 10 changes were picked from each change
class in the results, including vehicles and temporary buildings. If the number of changes in a
class was smaller than 10, each change was evaluated. The changes were picked evenly from
attribute tables listing the detected DSM and intensity changes. The results are reported in
Table 6.

A visual evaluation of the detected changes (Table 6) showed that most of them were real
changes that had occurred in the area. However, the changes were not always important for
mapping or the importance was difficult to determine. For example, many small changes had
occurred in the industrial area. In an industrial area, there are containers, large vehicles, and other
large manmade objects, and changes in such objects are visible in the change detection results.
They can be difficult to separate from small buildings in aerial data, even visually. Seven out of the
96 evaluated changes were interpreted as false detections due to minor geometric differences in the
data from two dates. For example, in some cases, the boundary of a large building was in slightly
different positions in the two DSMs. This was probably related to the lack of laser points besides
an obscuring building. In some cases, there was a real change in the area but the classification of
the change was incorrect due to a misclassification of the object from the first ALS dataset. For
example, parts of a building that was under construction in both datasets had been originally
misclassified as tree, and these parts were now assigned to the class “tree, height increase.”

Some new buildings were present in both ALS datasets although they were still missing from
the map data used in the study. These buildings were not detected as changes and they are miss-
ing from the final results, that is to say, they are presented neither as map buildings nor as
changes. Some examples of these can be seen in Fig. 5(a). In a real mapping situation, it would
be important that the contents of the map correspond exactly to the situation in the first dataset.

5.2 Potential of Sentinel-2 Satellite Images for Continuous Change
Monitoring

From the viewpoint of data integration in map updating, an important question related to the
Sentinel-2 monitoring process is its ability to map changes that are meaningful for mapping
and appear in the same areas as those detected from higher-resolution datasets. In our study,
this was evaluated by comparing the results with the multispectral ALS classifications from the
beginning and ending of the monitoring period. Reference changes were derived from the land
cover classifications of the two multispectral ALS datasets from August 2015 and June 2016.
The ALS results originally had six land cover classes, which were combined into three classes:
“built-up area” (including the original classes “asphalt,” “gravel,” and “building”), “low vegeta-
tion” (originally “low vegetation” and “rocky area”), and “tree” (“tree”). The three classes were
the same as those that were used to select unchanged reference points for the Sentinel analysis.
Cross-classification of the August 2015 and June 2016 results was carried out, and a reference
change map with changed and unchanged areas was obtained. Water areas and areas outside the
ALS data coverage were excluded. Three different Sentinel-2 change detection results created
with the three different change rules (NDVI change, NDBI change, and NDVI decrease) were
first evaluated by using the entire ALS data coverage (i.e., also including the areas of training
segments). The best result was then also evaluated with the training segments excluded.

In practice, the Sentinel-2 segment vectors were first converted into raster format with the
same pixel size as the ALS classifications (0.2 m). Segments with more than 90% of their area
inside the ALS data coverage were selected for further analyses. This included a total of 223
segments. For each segment, the percentage of changed pixels in the ALS change map was
calculated. The segments were then divided into four change categories using 25% intervals
based on this reference change percentage. From the Sentinel-2 change detection results, the
number of changed segments in each of these categories was calculated and divided by the total
number of segments in the reference change category. The results are presented in Table 7.
Among the three different change detection rules, the one with an NDVI decrease as the change
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Table 6 A visual evaluation of changes detected from multitemporal multispectral ALS data.

Change class (number of changes
evaluated / total number of
changes in the class) Visual interpretation of detected changes

Building, height increase (9/9) Six changes in construction sites, typically in buildings under
construction

Three changes in the industrial area; two of these were related to
construction or structural changes visible in the data and one was
an unclear change

Building, height decrease (8/8) One demolished building

Four changes in the industrial area; these were visible changes in
building-like objects

Three changes related to minor geometric differences in data from
besides high buildingsa

Tree, height increase (10/12) Seven changes with trees in the first dataset and a building under
construction or a crane in the second one

Two changes inside a building that was under construction in
the first dataset and had been partly misclassified as a tree in
land cover classification

One change with trees in both datasets; the change was probably
due to minor geometric differencesa

Tree, height decrease (10/349) Eight changes most probably related to the felling of trees,
the cutting of tree branches or trees falling (it is sometimes
difficult to define exactly)

Two changes, probably related to minor geometric differencesa

Ground, height increase (10/133) Six changes related to new buildings or building parts

Two changes in the industrial area; one of these was probably
a large vehicle or a container and, in the other case, there are
some unknown objects in the second dataset

One temporary building-like object in a construction site

One new tree

Ground, height decrease (9/9) Eight changes in construction sites or other similar areas

One unknown change in a courtyard

Vehicle (10/38) Nine vehicles are present in one dataset but not in the other

One change in a new built-up area under construction that is not
a vehicle

Temporary building (10/50) Seven temporary buildings or building-like objects (such as large
vehicles) are in the first dataset but not in the second one

There is one change with a power line that is in the first dataset
but not in the second one

One change due to minor geometric differencesa

One change due to the cutting of trees on a forest edge that had
been misclassified in the land cover classification

Natural ground, NDVI decrease
(10/28)

Nine changes from vegetated ground to nonvegetated ground or
other objects

One unknown change in vegetation cover

Artificial ground, NDVI increase
(10/10)

Seven changes, probably new vegetation (it is sometimes difficult
to determine exactly)

One new building and one construction site with changes in
materials and reflectance

One unknown change

a“Minor geometric difference” means that the boundary of a building or tree object was in a slightly different
position in the raster datasets from the two dates.
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criterion gave the best correspondence with the reference results. The criterion based on NDBI
change clearly gave the lowest correspondence. The results based on the NDVI decrease cri-
terion were thus also evaluated with the training segments excluded. There were more changes
in the western part of the study area outside the training points (see Fig. 9), which is reflected in
these results. Overall, the correspondence between the changes detected with the NDVI decrease
rule and the ALS land cover classifications was good. In the highest change category (75% to
100% of the segment changed according to the reference data), 100% of the segments were
detected to have changed. In the lowest category (0% to 25%), the percentage was only 9%.

A more detailed analysis of the reference classifications showed that the most common
changes inside the changed Sentinel-2 segments obtained with the NDVI decrease rule were
a change from tree to built-up area (39.3% of changed pixels), a change from tree to low veg-
etation (34.9%), and a change from low vegetation to built-up area (18.7%). It can thus be seen
that most of the changes detected from the Sentinel data were clearly related to construction.
Visual analysis of the detected changes and reference changes was also carried out. The overall
accuracy of the original ALS classifications was as high as 96%.57 However, there were some
false positive changes in the reference change map due to classification errors (e.g., noise in
forested areas, sports fields with artificial cover, nonhomogeneous gravel areas). In Sentinel-2
images, small image shifts (1 to 2 pixels) and some special vegetation types (e.g., waterfront
vegetation) caused false-positive changes. Such shifts occurred in the early stage of Sentinel-2A
image acquisition, and it is expected that this effect will decrease in the future. A suburban area is
a mixture of different built-up and vegetated surfaces, and for small segments, even small shifts
can cause remarkable changes in reflectance. Also, the small temporal difference between the
Sentinel-2 and multispectral ALS acquisitions caused errors in active construction sites.

Despite the minor issues discussed above, we can conclude that the presented Sentinel-2
change monitoring method is feasible for detecting changes in a growing built-up area.
Being fully automated, this method allows an easy and affordable way of performing continuous
change detection over large areas. In the future, further development of the method can be carried
out, for example, to better analyze special cases, such as waterfront vegetation and to extend the
analyses to agricultural areas.

5.3 Potential of MLS Classification Results to Complement ALS Data in
Mapping Urban Areas

The ability of the classified MLS point cloud to complement ALS data and provide finer details
for mapping an urban area was evaluated by visual interpretation. The MLS classification test did

Table 7 A comparison of Sentinel-2 change detection results with reference change categories
derived from two multispectral ALS classifications. The best results were obtained with the NDVI
decrease rule, and they are highlighted bold in the table.

Reference

Sentinel-2 change detection results
Rule NDVI change/NDBI change/NDVI

decrease/NDVI decrease, training
segments excluded

Total number
of segments
All/training

segments excluded

Percentage of
segments detected
as “changed” (%)

The change
percentage of a
segment from
multispectral ALS
classifications

Detected as
“changed”
(number of
segments)

Detected as “not
changed” (number

of segments)

75%–100% 7/3/7/7 0/4/0/0 7/7 100.0/42.9/100.0/100.0

50%–75% 8/3/8/8 2/7/2/2 10/10 80.0/30.0/80.0/80.0

25%–50% 6/6/5/5 5/5/6/5 11/10 54.5/54.5/45.5/50.0

0%–25% 36/31/18/15 159/164/177/90 195/105 18.5/15.9/9.2/14.3

All 57/43/38/35 166/180/185/97 223/132 25.6/19.3/17.0/26.5
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not involve change detection. The comparison was thus based on the ALS data from the second
date and concentrated on the appearance of buildings and poles in ALS and MLS data. These are
important objects for detailed city models of urban areas.

Figure 12 shows a comparison of ALS and MLS data in a small area of active construction.
The upper row shows a top view of the multispectral ALS point cloud and the MLS point cloud,
and the lower row shows the results from building extraction. The buildings extracted from the
ALS data are based on the classification of the June 2016 multispectral ALS data in raster
format.57 Figure 13 presents a side view of one building in the ALS data, classified MLS data,
and combined ALS and MLS data. A comparison for poles is presented in Fig. 14.

The comparisons show the complementary nature of the MLS and ALS point clouds.
Building roofs are well presented in the ALS data, and the number of reflections from building
walls is small. In MLS data, the situation is quite the opposite, and wall structures are very well
presented. A combination of these two datasets would allow accurate modeling of both building
roofs and facades. ALS and MLS data also provide two alternative ways for defining the outlines
of 2-D buildings, ALS according to the roof outlines, and MLS according to the position of the
walls. This might be useful, especially if map data present the bases of the buildings instead of
roof edges, as for example the NLS Topographic Database.68 In such cases, building outlines
derived from MLS data could correspond to maps better than those derived from ALS data.
However, MLS data acquired from roads also have deficiencies when considering building map-
ping, such as the lack of courtyards.

Poles are another interesting example, where MLS data could be used to complement ALS
data. The tops of poles such as street lamps are often visible in dense ALS data, but the sides of
the poles are not visible. In the MLS data, the poles are clearly visible and they can be extracted.
Poles are not needed for nationwide topographic mapping, but they are interesting for detailed
city mapping and modeling, street lighting design, and optimization,69 and also for power line
monitoring.70

Fig. 12 (a) ALS data and (b) MLS data from an area under active construction (top view; colors are
based on elevation; black areas represent areas with no data; the MLS data only include classified
points). (c) Buildings extracted from the ALS data (based on Ref. 57) and (d) buildings extracted
from the MLS data (based on the present study).
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6 Discussion on Multisource Data Integration in Future Map Updating

As discussed in Sec. 1, the most important remotely sensed datasets currently used in nationwide
mapping are multispectral aerial images and single-channel ALS data. In the ALS data, the geo-
metric information is clearly more important and more widely used than the intensity informa-
tion. The advantages, challenges, and main applications of aerial images and single-channel ALS
data are summarized in Table 8. The information is based on the authors’ general knowledge of
the field. Table 9 lists corresponding information for multispectral ALS data, Sentinel-2 satellite
images, and MLS data. In the case of these new datasets, the advantages and challenges are
evaluated in comparison to the conventional techniques.

Multispectral ALS data have a similar spatial resolution compared to current operational
techniques and, in the future, they could be used to complement, or possibly even replace, these
in the mapping of terrain surface, land cover, and 3-D objects. The main benefits compared to
aerial images are the lack of shadows and the independence of external illumination conditions,
which make automated analyses easier to develop. Multitemporal multispectral ALS data allow
direct change detection between height and intensity data from two dates. The change detection
results obtained in the present study would probably be a useful aid in manual map updating
work by showing where changes have occurred in the data. For automated mapping of the
changed objects and for filtering out irrelevant changes, further analysis methods need to be

Fig. 13 (a) ALS data from around a building (side view; all points in white). (b) Classified MLS
points around the same building (buildings are in red, poles in blue, vegetation in green and the
ground surface in orange). (c) Buildings, poles, and the ground from the MLS classification
inserted into the ALS point cloud.
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developed. Multispectral ALS data could also be used in various low-resolution virtual reality
applications, such as digital twin applications, by visualizing the data directly as a point cloud.
The challenges of current sensor technology include nonhomogeneous point spacing and arti-
facts in intensity data. The behavior and calibration of the intensity data are important topics for
further investigation in order to fully understand and utilize multitemporal multispectral data.
A practical limitation of using multispectral ALS for nationwide mapping is also the low flying
altitude required by the current systems. This makes the technique less effective than single-
channel ALS and much less effective than aerial imaging. Generally, however, ALS technology
is likely to develop in the future, and techniques such as single-photon lidar (see, e.g., Ref. 71)
are already available for the effective scanning of large areas with one channel.

Sentinel-2 satellite images enable an easy and affordable way of performing continuous
change detection over large areas. Due to the constant imaging geometry, sun-synchronous orbit

Fig. 14 A side view of poles from two subareas. (a) and (d) ALS data (colors based on elevation).
(b) and (e) MLS data (colors based on elevation; only classified points are included). (c) and
(f) Poles extracted from the MLS data and inserted into the ALS point cloud (inserted poles appear
in blue color).
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and processing operations, the data are well suited for repetitive automated analyses. The spatial
resolution is also higher than in previous, freely available satellite images, which makes new
change detection applications possible. It is still not sufficient for the mapping of topographic
objects, such as buildings or roads, but changes can be detected approximately at city block
level. The method could provide useful information when deciding when and where more
detailed data acquisitions should be carried out. This could possibly save the costs of aerial data
acquisitions and allow for more frequent mapping of rapidly changing areas. Changes automati-
cally detected from Sentinel-2 satellite images could also give hints on the areas that operators
should inspect more carefully when doing practical updating work from higher resolution
datasets. However, to find the smallest changes, such as individual new buildings inside an
old built-up area, visual inspection, or automated analysis of higher resolution data is also
needed.

Considering satellite images, a clear problem in our study area was the cloudiness. Within
about 1 year, only nine cloud-free images were obtained. This would probably be sufficient for
the mapping application discussed in this article, but more real-time change detection applica-
tions are hard to achieve in Finland or other areas with similar weather conditions. Having both
Sentinel-2 satellites operational in orbit increases the possibility of getting useful images. If more
frequent cloud-free images were available, the robustness of the results would also increase. The
time gap between consecutive images would be smaller and the index value differences in
unchanged areas would also be smaller, which would make real changes more obvious. In addi-
tion, it should be noted that in the northern parts of the world, low sun angles in wintertime can
also have a significant influence on image data and this should be considered when using inter-
seasonal data. However, Sentinel-2 data are not even available for this region in the midwinter
period from December to mid-January.

MLS data can be used for detailed mapping and 3-D modeling of objects. In particular, they
are feasible for the mapping of objects along roads in urban areas. As shown in the results, the
technique is also well suited for complementing ALS data in regard to details such as building

Table 8 The advantages, challenges, and main applications of the remote sensing techniques
currently used in nationwide mapping.

Data source Advantages Challenges Main applications

Aerial
images

A high-flying altitude and
the possibility to cover
large areas effectively

Cannot be acquired through
clouds or in darkness

The mapping of the
terrain surface, land
cover and 3-D objects,
often based on visual
interpretationMultispectral data with

very high spatial resolution
Reflectance is dependent on
illumination and viewing geometries
that are more complex than in ALS

Stereo images allow
height measurements

Shadows complicate interpretation,
especially with automated methods

One cannot “see” objects under
trees and a DTM is difficult to derive

Single-
channel
ALS data

3-D information and intensity in
one channel, directly available

The intensity information is
greyscale

The creation of DTMs

Can be acquired in darkness National data can be composed of
data from several different scanners
with different approaches of intensity
measurement and calibration

The mapping of 3-D
objects in cities and
in forests

Can see terrain and objects
under trees, and a high-quality
DTM can be obtained

High point density requires a lower
flying altitude, reducing efficiency;
new ALS techniques, however,
can alleviate this problem

Corridor mapping
applications

Well-suited for automated
analyses
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Table 9 The advantages, challenges, and potential applications of multispectral ALS data,
Sentinel-2 satellite images, and MLS data for nationwide mapping. In this case, the advantages
and challenges are evaluated in comparison to the conventional techniques (Table 8), unless
otherwise mentioned.

Data source Advantages Challenges Potential applications

Multispectral
ALS data

3-D information and intensity
in three channels

New technology – not yet
widely available

A substitute or an addition to
conventional techniques in
the mapping of terrain
surface, land cover and 3-D
objects

High potential for automated
classification and change
detection

A relatively low flying altitude is
required, especially for the
green channel, which reduces
efficiency and increases costs

Detailed characterization and
classification of 3-D objects
and ground-level classes

Change detection can be
performed on the basis of
spectral data, in addition to
geometry

Each channel produces a
separate point cloud

The creation of low-resolution
virtual reality applications for
large areas by visualizing the
data directly as a point cloud

Current sensor technology
does not provide
homogeneous point spacing
The artefacts of intensity data

Sentinel-2
satellite
images

Freely available data Relatively low spatial
resolution compared to aerial
images

Continuous monitoring and
change detection over large
areas, which could be used to
focus more detailed data
acquisitions and map
updating work; rapidly
changing areas could be
mapped more frequently

Regular data acquisitions Relatively low spatial
resolution compared to the
contents of topographic
databases

13 spectral channels Cloudiness may hamper
image acquisition

More stable illumination and
viewing geometry than in
aerial images
High potential for automated
classification and change
detection
Higher spatial resolution than
in previous, freely available
satellite images, allowing
smaller changes to be
mapped and new change-
based applications

MLS data Very detailed 3-D information
and intensity in one or two
channels

Typically, MLS does not
provide full coverage of areas

Highly detailed 3-D mapping
of objects

High flexibility in data
acquisition

Data acquisition over large
areas is laborious

Complementing ALS data

High-quality data can be
acquired based on needs,
e.g., more complex scenes
can be collected with double
density

The point density of the
data is not homogeneous

Replacing aerial data in small
areas, for example, updating
changed areas detected by
satellite image change
detection – this is especially
suited for urban areas

Matching data of various strips
can be challenging when
working in conditions of poor
GNSS coverage

The collection of reference
data to support ALS and
satellite image analyses and
evaluate their quality (for land
cover or other applications)

Multispectral MLS is not yet
available
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facades and poles. Occasionally, MLS might even be used to replace aerial data in map updating
and other applications due to its higher flexibility. Satellite image monitoring could trigger the
use of MLS. When local changes are detected in satellite images, an MLS system could be used
to rapidly acquire detailed data from those areas. The data could be used to check and update
buildings and other objects in the street environment. More extensive mapping could be done at a
few years’ intervals following aerial data acquisitions. The limitation of MLS data, however, is
the visibility of objects further away from roads (see also Ref. 23). Even the complete outlining
of buildings may be challenging if the back of the building is not visible to roads. Occlusion by
other objects such as parked cars can also be a significant problem in MLS data.24 It can be
expected that regular acquisitions of aerial data are thus also important. In some applications,
such as pole mapping in a city, the combination of satellite image monitoring to detect areas of
interest (e.g., new city blocks) and MLS-based mapping of the objects could be a major
approach. However, more information is needed on the potential of the combined use of satellite
images and MLS data for various applications. The results should be compared to those obtained
by using current airborne datasets or multispectral ALS data. MLS data could also be used as
reference data for ALS and satellite image classifications both to help in the analysis and method
development and to evaluate the quality of the classification results.

To summarize our study, in Fig. 15, we depict a possible future map updating process. The
process is an adaptive one, and it could exploit different remote sensing techniques in a flexible
way. Ideally, this could lead to an increasing level of automation and updating frequency. The
central ideas of the process are the following:

1. Openly available satellite images, such as Sentinel-2, could be used for continuous mon-
itoring and the rough detection of changes. This information could then be used to define
areas for more detailed data acquisitions with ALS and MLS techniques.

2. Multispectral ALS data could be used instead of, or in addition to, conventional aerial
images in order to achieve a higher level of automation. When multitemporal multispec-
tral ALS data are available, direct comparison between height and intensity information
becomes possible and helps to map changes in the area.

3. In selected areas, more detailed mapping with ground-level systems could also be
used.

Generally, the diversity of remote sensing techniques is increasing (see, e.g., Ref. 14), the
interest in noncentralized mapping solutions is also increasing, and it is likely that multisource
approaches will become more popular in the future. In Finland, a new National Topographic
Database is under preparation.1 In maintaining the new database, topographic data obtained from

Fig. 15 A possible concept for multisource adaptive map updating.
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municipalities and cooperation with other organizations will have important roles. There are also
techniques not discussed in this article that can become important in practical work. One of these
is unmanned aerial vehicles (UAVs), which could be used instead of aerial and ground-based
techniques to some extent. Both aerial imaging and laser scanning are possible from UAVs. The
advantages of UAVs include higher flexibility compared to conventional aerial systems and eas-
ier coverage of areas compared to ground-based techniques. For example, Nevalainen et al.72

discussed a test in which UAV imagery was acquired and processed in order to produce 3-D
topographic data of an urban area. Taking all these developments into account, it is important
to find optimal approaches for utilizing multisource data with different levels of detail and to
develop practical methods for integrated mapping processes. As an example from forestry, data
assimilation has been suggested as an approach to combine multisource, remotely sensed data
and information obtained from growth models in order to obtain better forest inventory data.13

In the field of mapping, changes of interest have a different and more abrupt nature. However,
the use of statistical methods to combine new types of multisource data and to take their various
information contents into account should also be developed for map updating.

7 Conclusions

Three remote sensing techniques with different levels of detail were analyzed considering their
potential for nationwide mapping, and their possible integration in a future map updating process
was discussed. First, automated change detection from multitemporal multispectral ALS was
developed and tested for the first time. The results show that direct comparisons between height
and intensity data from different dates reveal even small changes related to the development of a
suburban area. A major challenge in future work is to link the changes with objects that are of
interest for mapping and to separate essential changes from unessential ones, especially with
automated methods. In the future, multispectral ALS data could have a central role in nationwide
mapping. Second, a method for continuous change monitoring from Sentinel-2 satellite images
was developed and tested. The results were evaluated on the basis of multispectral ALS data
classifications from two dates, and a good correspondence was found. The major application
potential of satellite image change detection could be the continuous monitoring of large areas
in order to show where important changes have occurred and where more detailed data
acquisitions are needed. The third technique tested in the study was MLS. A high-density point
cloud was acquired and classified automatically into four classes. Comparisons with the multi-
spectral ALS point cloud showed the complementary nature of these two datasets. The MLS can
be used in detailed city modeling and when adding important features, such as building facades
and poles, to an ALS point cloud. Occasionally and for some specific applications, continuous
monitoring from satellite images and flexible data acquisition by MLS might also replace
aerial data acquisitions. This, however, requires further studies. Generally, the diversity of
remote sensing techniques is increasing, which provides flexibility in the selection of data
sources. Ideally, this could increase the level of automation in nationwide mapping and the
frequency of its updates, and it could help to improve the contents of topographic databases.
To fully benefit from this potential, it is important to find optimal approaches for utilizing multi-
source data with different levels of detail and developing practical methods for integrated
mapping processes.
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