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Abstract. Speckle noise can reduce the image quality of synthetic aperture radar (SAR) and make
interpretation more difficult. Existing SAR image despeckling convolutional neural networks
require quantities of noisy–clean image pairs. However, obtaining clean SAR images is very dif-
ficult. Because continuous convolution and pooling operations result in losing many informational
details while extracting the deep features of the SAR image, the quality of recovered clean images
becomes worse. Therefore, we propose a despeckling network called multiscale dilated residual
U-Net (MDRU-Net). The MDRU-Net can be trained directly using noisy–noisy image pairs with-
out clean data. To protect more SAR image details, we design five multiscale dilated convolution
modules that extract and fuse multiscale features. Considering that the deep and shallow features
are very distinct in fusion, we design different dilation residual skip connections, which make
features at the same level have the same convolution operations. Afterward, we present an effective
L_hybrid loss function that can effectively improve the network stability and suppress artifacts in
the predicted clean SAR image. Compared with the state-of-the-art despeckling algorithms, the
proposed MDRU-Net achieves a significant improvement in several key metrics. © The Authors.
Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduc-
tion of this work in whole or in part requires full attribution of the original publication, including its DOI.
[DOI: 10.1117/1.JRS.14.026518]

Keywords: synthetic aperture radar; image despeckling; dilated convolution; residual skip
connection.

Paper 190981 received Dec. 10, 2019; accepted for publication May 19, 2020; published online
Jun. 3, 2020.

1 Introduction

Synthetic aperture radar (SAR)1 is an active Earth observation system deployed on aircraft,
satellites, or other flight platforms. Compared with the optical and infrared systems, SAR can
provide all-time, all-weather, high-resolution, and wide-swath observation. It also has a certain
ability to penetrate the Earth’s surface and discover underground targets. Therefore, the SAR
has advantages in disaster monitoring,2 environmental monitoring,3 ocean surveillance,4 re-
source exploration,5 surveying, and military applications.

However, due to the imaging mechanism of SAR, a large amount of speckle noise exists in
the observed SAR images.6 Speckle noise7 is a kind of random multiplicative noise, which is
formed by the mutual interference of radar echo phase. The speckle noise in SAR images appears
as granular noise or black-and-white noise. The speckle noise in single-look SAR images follows
a Gaussian distribution with zero mean,8 while the speckle noise in multilook SAR images
follows a gamma distribution with unit mean and variance 1∕

ffiffiffiffi
L

p
,9 and in the 1∕

ffiffiffiffi
L

p
, the L

is the number of looks. The existence of speckle noise reduces the resolution of SAR image
and masks the detailed structure of targets. Because the image details are masked, the accuracy
of SAR image classification,10 segmentation,11 and change detection12 is reduced. In addition,
speckle noise will also bring great difficulty to the phase unwrapping in SAR interferometry,
which will affect the accuracy of interferometry.13 Therefore, removing speckle noise is a
significant research in SAR image field.
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To remove the speckle noise from SAR images, many approaches have been proposed. The
spatial filters14–17 are first applied to remove the speckle noise in SAR images, but the edges of
the filtered image are smooth. To solve this problem, the spatial filters are improved in two
aspects. One is to use different filters for different scenes.18,19 The other is to design adaptive
sliding window filters.20,21 The transform domain filters (TDFs) mainly include wavelet domain
filters22,23 and post-wavelet domain filters.24–26 Although the despeckling performance of the
TDFs is significantly higher than spatial filters, the complexity of TDF is very high. The filters
based on the Markov random field model27 can remove the speckle noise in the spatial and
transform domains, but they require a lot of prior knowledge of SAR images and speckle noise.
Owing to simple ideas and superior performance of nonlocal mean (NLM) filters,28–31 NLM
filters have been widely used to reduce speckle noise. But the filtered images will contain
artificial textures because of the block effect.

With the development of convolutional neural networks (CNNs), some researchers32–35 have
tried to use CNN to complete image despeckling tasks. However, these CNN methods still have
some problems. First, CNN-based despeckling methods require a large number of the noisy–
clean image pairs, where clean images are used as labels. But the clean SAR images are difficult
to obtain. To construct the noisy–clean image pairs, they32–35 usually add simulated speckle noise
to the optical images. The predicted clean SAR images contain optical interference. In fact, they
do not use the real SAR images, and all training data are generated by optical images. This
approach cannot be applied to actual work. Second, to preserve more image details, they33,34

cropped a large SAR image into many small patches. But the cropping operation will destroy
the structure, texture, and other information of the image. Therefore, to address these problems,
inspired by noisy-to-noisy paradigm,36 we propose a network called multiscale dilated residual
U-Net (MDRU-Net). The MDRU-Net is an improved version of U-Net.37 The MDRU-Net can be
trained directly by using noisy–noisy image pairs. Unlike the previously mentioned despeckling
CNN methods,32–35 which use small patches (i.e., 40 × 40) as input, the input size of the MDRU-
Net is 256 × 256.

Our main contributions are listed as follows:

• To solve the problem of lack of clean SAR images, we put forward MDRU-Net. The
network does not require clean SAR images during training, and its input is noisy–noisy
SAR image pairs.

• We design a multiscale dilated convolution (MDC) module that uses multiple dilated con-
volutions to extract and fuse multiscale features for protecting more SAR image details.

• To reduce the difference between the shallow and deep features in fusion, we plan five
different dilation residual skip (DRS) connections to narrow the distinctness.

• We propose an effective loss function called L_hybrid loss function to suppress artifacts and
improve the stability of the network.

• We do extensive experiments on the UC Merced land-use (UCML), SEN-1, and SEN-2
datasets. The experimental results show that the proposed MDRU-Net can obtain good
SAR image despeckling effect without clean data.

The remainder of this paper is structured as follows. The related work is briefly reviewed in
Sec. 2. In Sec. 3, the proposed methods are illustrated in detail. Experiment settings and results
are presented in Sec. 4. Conclusions are given in Sec. 5.

2 Related Work

2.1 Convolutional Neural Network for Synthetic Aperture Radar Image
Despeckling

With the gradual maturity of CNN, intelligent applications of SAR are made possible. However,
speckle noise is a major obstacle affecting the intelligent interpretation of SAR images. How to
use CNN to effectively and quickly remove speckle noise becomes the primary task of intelligent
interpretation. Chierchia et al.32 first proposed a despeckling CNN for SAR images (SAR-CNN).
The SAR-CNN was inspired by the denoising CNNs,38 which worked very well in reducing
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additive white Gaussian noise. However, the SAR-CNN adopted a coupled logarithm and expo-
nential transforms in the process of removing speckle noise. So it is not an end-to-end learning
network. To solve this problem, Wang et al.33 designed an image despeckling CNN (ID-CNN),
which consisted of eight convolutions and a division residual layer. Zhang et al.34 presented an
SAR image despeckling network with dilated residual structure (SAR-DRN). They adjusted the
dilation rate of the dilated convolution to increase the network receptive field and capture more
image details. Francesco et al.35 utilized U-Net to remove the speckle noise of SAR images and
they demonstrated the performance of the skip connection.

2.2 Dilated Convolution

In the image semantic segmentation task, to aggregate multiscale context information without
losing image resolution, Yu and Koltun39 developed a convolutional network module called
dilated convolution. The dilated convolution can increase network receptive field without
increasing the weight. Figure 1 illustrates the operation of the dilated convolution on the feature
map. The size of the feature map is 9 × 9 and the red dots represent the original weight of
the kernel. The yellow blank blocks represent the expanded weight with the value of 0.

Liu et al.40 planned a multibranch residual module with dilated convolutions to extract multi-
scale features so that the classification and identification of spacecraft electronic load signals can
be solved. Yang et al.41 designed an end-to-end dilated inception network (DINet) to predict
visual saliency maps. The dilated inception module of the DINet used dilated convolutions with
different dilation rates in parallel, which not only can significantly reduce the computational load
but also can enrich the diversity of the receptive field in the features. Zhang et al.42 presented
a multiscale single-image super-resolution network with dilated convolutions. This network
effectively increased the receptive field of the network by adjusting the dilation rate. In the
SAR image despeckling task, the SAR-DRN34 only utilized seven dilated convolutions and
its despeckling performance exceeds the SAR-CNN32 with 17 traditional convolutions.

2.3 Skip Connection

In CNN, continuous convolution and pooling operations are used to extract deep features. As a
result, much detail information of the image is lost. To solve this problem, many methods32–35

obtain small patches through the cropping operation, and these small patches are used as training
data. However, the cropping operation can destroy the structure, texture information of the
image. The raised skip connection43 can enforce the networks to reconsider low-level features,
which are going to fade away when the low-level features feed forward. Qi et al.44 proposed a
convolutional encoder–decoder network with skip connections to improve the predictive perfor-
mance of the saliency maps. They used a skip connection between the encoder and the decoder to
transfer the hierarchical features. Tong et al.45 designed a dense skip connection in a very deep
network. The dense skip connection not only alleviated the problem of gradient disappearance
but also accelerated the efficiency of super-resolution image reconstruction. Ronneberger et al.37

presented a U-Net to obtain very accurate segmentation results. Francesco et al.35 conducted a
skip connection ablation experiment on the SAR images. They found that the greater the degree

Fig. 1 The operation of the dilated convolution on the feature map: (a) the dilation rate is 1 and
the kernel size is 3 × 3; (b) the dilation rate is 2 and the kernel size is enlarged to 5 × 5; and
(c) the dilation rate is 3 and the kernel size is broadened to 7 × 7.
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of compression of the input image, the more important the skip connections are, and the more
obvious the despeckling effect of the SAR image is.

2.4 Loss Function

The selection of the loss function affects the convergence speed and the optimization degree.
Zhao et al.46 demonstrated the effect of the loss function in detail. In the SAR image despeckling
task, most research studies32,34,35 use the mean squared error (MSE) as the loss function. The ID-
CNN33 used a mixture loss function, which includes the MSE and the total variation (TV) loss
function.47

The MSE loss function is a differentiable convex function that enables the network to achieve
the global optimality. But it has the following drawbacks. First, MSE can penalize the noise
outliers too much, which will easily cause the CNN exploding gradient problem. Second,
if MSE is used as the loss function, the predicted clean image will have artifacts. Assume that
the noisy–clean image pairs are fxi; yigN , i ¼ 0;1; 2; · · · ; N − 1, where N expresses the total
number of training image pairs. The xi and yi are the noisy image and the clean image, respec-
tively. The size of xi and yi is W ×H. Here xi can be written as

EQ-TARGET;temp:intralink-;e001;116;531xi ¼ yi × ni; (1)

where ni is the speckle noise. The predicted image of the despeckling CNN can be expressed as

EQ-TARGET;temp:intralink-;e002;116;488x̂i ¼ Fðxi;ΦÞ; (2)

where Fðxi;ΦÞ is the despeckling CNN and the Φ is the weight of the despeckling CNN.
Therefore, the MSE loss function of the noisy–clean method can be written as follows:

EQ-TARGET;temp:intralink-;e003;116;433Lc
MSE ¼ 1

N

XN−1

i¼0

�
1

W ×H

XW−1

w¼0

XH−1

h¼0

ðx̂iw;h − yiw;hÞ2
�
; (3)

where x̂iw;h and yiw;h represent the pixel value in the ðw; hÞ position, respectively. The x̂i and yi are
i’th predicted image and clean image, respectively.

The mean absolute error (MAE) loss function is a nonconvex function and its optimization
process is a suboptimization. Compared with the MSE, it is less penalizing the noise outliers.
The MAE loss function of the noisy–clean method can be given as

EQ-TARGET;temp:intralink-;e004;116;321Lc
MAE ¼ 1

N

XN−1

i¼0

�
1

W ×H

XW−1

w¼0

XH−1

h¼0

jx̂iw;h − yiw;h j
�
: (4)

It can be seen from Eq. (4) that the derivative of MAE at 0 is not unique, which can affect
the stability of the network.

The TV loss function47 is a regular term loss function that reduces the difference between
adjacent pixels to ensure the smoothness of the image. It can be formulated as follows:

EQ-TARGET;temp:intralink-;e005;116;222LTV ¼
XW−1

w¼0

XH−1

h¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ðx̂iÞ þ q2ðx̂iÞ

q
; (5)

where p and q are computed as

EQ-TARGET;temp:intralink-;e006;116;160

pðx̂iÞ ¼ x̂iwþ1;h
− x̂iw;h ;

qðx̂iÞ ¼ x̂iw;hþ1
− x̂iw;h ; (6)

where x̂iwþ1;h
and x̂iw;hþ1

are the neighboring pixel values of the x̂iw;h .
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3 Proposed Method

3.1 Noisy-to-Noisy Training

Lehtinen et al.36 had demonstrated that denoising networks can be learned by mapping a noisy
image to another noisy image. The performance of a denoised network trained with noisy–noisy
image pairs is similar to that of noisy–clean image pairs. This study is significant for the speckle
noise suppression in SAR images.

The previous despeckling CNN methods use MSE and MAE. Equations (3) and (4) represent
MSE and MAE, respectively. The noisy-to-noisy training requires the following loss functions:

EQ-TARGET;temp:intralink-;e007;116;621Ln
MSE ¼ 1

N

XN−1

i¼0

�
1

W ×H

XW−1

w¼0

XH−1

h¼0

½F ðyi × ni1;ΦÞw;h − ðyi × ni2Þw;h�2
�
; (7)

EQ-TARGET;temp:intralink-;e008;116;558Ln
MAE ¼ 1

N

XN−1

i¼0

�
1

W ×H

XW−1

w¼0

XH−1

h¼0

j½Fðyi × ni1;ΦÞw;h − ðyi × ni2Þw;h�j
�
; (8)

where ni1 and ni2 are two independent noise samples. Whether it is noisy–clean training or
noisy–noisy training, their optimization process is to minimize the loss function.

When the proposed MDRU-Net is trained, the input of the network is a pair of noisy–noisy
SAR images. The first noisy image is a real SAR image, and the second noisy image is
a corrupted SAR image. The corrupted SAR image is simulated by adding 4-look speckle
noise to the real SAR image. When MDRU-Net is tested, only one real SAR image is needed
(see Sec. 4.1, for detailed usage of our model on different datasets).

3.2 Multiscale Dilated Residual U-Net Architecture

Figure 2 displays the architecture of the MDRU-Net in detail. The MDRU-Net consists of an
encoder (left side), a decoder (right side), and multiple DRS connections (middle). The encoder
acts as a feature extractor, which extracts deep semantic features of the SAR image through
continuous convolutions, MDC modules, and max-pooling operations. The decoder is respon-
sible for fusing the deep and shallow semantic features and using the fused features to gradually
restore a clean SAR image. The DRS connection is used between the encoder and the decoder.
The DRS connection copies the low-level features of the encoder to the decoder. The number of
network features is listed in Table 1, where w, h, and c represent the width, height, and channel of
the feature map, respectively.

The encoder of the MDRU-Net consists of two convolutions, five MDC modules, and five
max-pooling layers. The two convolutions, Conv1_1 and Conv1_2, are 3 × 3 × 64 convolutions.

Fig. 2 The detailed architecture of the MDRU-Net.
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The five max-pooling layers, p1–p5, are to sample the SAR image and obtain hierarchical fea-
tures step by step. The output of p5 is the deep semantic features of the SAR image. The kernel
size of each max-pooling layer is 2 × 2 and the stride is 2. The five MDC modules, M1–M5, are
the proposed MDC module for extracting and fusing multiscale semantic features. The output of
the encoder is the 8 × 8 deep semantic feature maps.

The decoder of the MDRU-Net is composed of five upsampling layers, five concat layers,
four MDC modules, and three convolutions. The upsampling layers, U1–U5, are bilinear inter-
polation. The upsampling layer is used to extend the feature map. The scaling factor of each
upsampling layer is 2. The five concat layers, C1–C5, are used to fuse the shallow and deep
semantic features in the channel dimensions. The shallow features come from the encoder and
are passed to the decoder by the DRS connections. The deep features come from the output of the
last layer (M5) in the encoder. The four MDC modules, M6–M9, are used to blend deep and
shallow semantic features of SAR images. The three convolutions are Conv2_1, Conv2_2, and
Conv2_3. The Conv2_1 and Conv2_2 are traditional convolutions and the size of their kernel is
3 × 3. The last layer, the Conv2_3, is the output of the MDRU-Net. Its output is a predicted clean
SAR image with the size of 256 × 256.

In MDRU-Net, five DRS connections are used. The DRS connection is used to reduce the
difference between the different level features in the network and to copy the shallow features of
the encoder to the decoder.

Note that the M1–M9 are the proposed MDC module and will be demonstrated in Sec. 3.3.
The detail description of the DRS connection can be seen in Sec. 3.4. Except for Conv2_3, the
traditional convolutions and dilated convolutions in MDRU-Net are followed by a rectified linear
unit layer.

3.3 Multiscale Dilated Convolution Modules

Many methods have been used to make full use of the image information or features to improve
the performance, such as increasing network depth,48 increasing network width,49 or applying
the new loss function.46 However, they did not take into consideration that objects in the image
were similar in different regions. Furthermore, in most image denoising CNNs, they use

Table 1 The features of input and output for each layer.

Layers Input (w × h × c) Output (w × h × c)

Conv1_1 256 × 256 × 1 256 × 256 × 64

Conv1_2 256 × 256 × 64 256 × 256 × 64

M1 128 × 128 × 64 128 × 128 × 160

M2 64 × 64 × 160 64 × 64 × 256

M3 32 × 32 × 256 32 × 32 × 192

M4 16 × 16 × 192 16 × 16 × 256

M5 8 × 8 × 256 8 × 8 × 256

M6 16 × 16 × 480 16 × 16 × 256

M7 16 × 16 × 320 32 × 32 × 192

M8 32 × 32 × 256 64 × 64 × 256

M9 64 × 64 × 320 128 × 128 × 160

Conv2_1 256 × 256 × 224 256 × 256 × 64

Conv2_2 256 × 256 × 64 256 × 256 × 32

Conv2_3 256 × 256 × 32 256 × 256 × 1

Zhang et al.: Learning synthetic aperture radar image despeckling without clean data

Journal of Applied Remote Sensing 026518-6 Apr–Jun 2020 • Vol. 14(2)



traditional convolution to extract the semantic features of an image. Once the network structure is
determined, the receptive field of the network is fixed. Therefore, we design the MDC module to
address these problems. The MDC module consists of multiple dilated convolutions with differ-
ent dilation rates and a sum-fusion layer. The multiple dilated convolutions are used to extract
multiscale features and the sum-fusion layer is used to fuse multiscale features. The fusion
method splices on the channel dimension. It is worthy to note that the MDC module improves
the receptive field of the network without increasing the network parameters. At the same time,
different dilation rates can be set where the large dilation rate allows the network to capture
global features and the small dilation rate is used to capture local features.

In the MDRU-Net, nine MDC modules are used. We design five different structures. The five
structures of the MDC modules are displayed in Fig. 3. The configuration of the MDC modules
is listed in Table 2, where m, r, and channels mean the number of the dilated convolutions,
dilation rates, and channels of the dilated convolution, respectively. In the MDC modules, as
the SAR image features become smaller and smaller, the smaller dilation rate is used to focus
on the local features.

Fig. 3 The detailed structure of the MDC modules in the MDRU-Net.

Table 2 The detailed configuration of the MDC modules in the MDRU-Net.

Name Structure m r Channels

Encoder M1 Type V 5 1, 2, 3, 4, 5 32, 32, 32, 32, 32

M2 Type VI 4 1, 2, 3, 4 64, 64, 64, 64

M3 Type III 3 1, 2, 3 64, 64, 64

M4 Type II 2 1, 2 128, 128

M5 Type I 1 1 256

Decoder M6 Type II 2 1, 2 128, 128

M7 Type III 3 1, 2, 3 64, 64, 64

M8 Type VI 4 1, 2, 3, 4 64, 64, 64, 64

M9 Type V 5 1, 2, 3, 4, 5 32, 32, 32, 32, 32
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3.4 Dilation Residual Skip Connections

The skip connection not only pass the detailed information of the image44 but also speed up the
training.45 In many literatures with skip connection,37,43–45,48 they directly combine shallow and
deep features and do not consider the difference between the two features. To reduce the differ-
ence, we design a new skip connection structure called DRS connection. The DRS connection
consists of dilated convolution and residual block, which are called dilated residual (DR) block.
The DR block is composed of a 3 × 3 traditional convolution and a 3 × 3 dilated convolution.
The dilation rate of the dilated convolution is α. The value of α is an positive integer and can be
set to any value. Note that the value of α is limited by the input feature size of the dilated con-
volution. For example, if the input feature size of dilated convolution is 11 × 11 and the original
kernel size of dilated convolution is 3 × 3, the value of the dilation rate ranges from 1 to 5. The
dilation rate can be written as

EQ-TARGET;temp:intralink-;e009;116;585α ¼ int

�
Kd − 1

Ko − 1

�
; (9)

where int represents the round operation, Kd is the dilated kernel size, and Ko is the original
kernel size. If the value of α exceeds 5, the dilated convolution loses its effectiveness.

When α is 1, the dilated convolution is the same as traditional convolution, so the dilated
convolution cannot increase the receptive field of the network. As α increases, the receptive field
of the network will gradually increase. As the receptive field increases, the network can cover
more image information. In this way, the networks can pay more attention to the global features
of the image, and the despeckling performance of the network can increase.

There are five DRS connections in the MDRU-Net, which are called S1–S5. Each DRS con-
nection contains one or more DR blocks. The detailed configuration of the five DRS connections
is shown in Table 3, where Conn.1 is the input of the DRS connection and Conn.2 represents the
output of the DRS connection in the MDRU-Net. The blocks represents the number of DR
blocks in the DRS connection. In all DR blocks, the number of convolutional channels is 32.
Figure 4 displays the framework of the S1 connection in detail, where α is 1, 2, 3, 4, and 5 in
the five DR blocks. The S1 is used between the encoder and the decoder in the MDRU-Net.
By performing a continuous convolution operation on the input noise image, the S1 connection
can effectively reduce the difference between the shallow features and the deep features.

3.5 L_hybrid Loss Function

We have discussed the MSE, MAE, and TV loss function and knew their strengths and weak-
nesses. The two noisy SAR images are xi1 and xi2, the clean SAR image is yi, and the predicted
clean SAR image is Fðxi1;ΦÞ. The proposed L_hybrid loss function can be given as

EQ-TARGET;temp:intralink-;e010;116;274Lhybrid ¼
�

1
2
CMSE þ CTV; CMAE ≤ η

ηCMAE þ CTV; otherwise
; (10)

where CMSE, CMAE, and CTV can be written as

Table 3 The detailed configuration of the DRS connections in the MDRU-Net.

Skip layer Conn.1 Conn.2 Blocks α

S1 Noisy image C5 5 1, 2, 3, 4, 5

S2 p1 C4 4 1, 2, 3, 4

S3 p2 C3 3 1, 2, 3

S4 p3 C2 2 1, 2

S5 p4 C1 1 1
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EQ-TARGET;temp:intralink-;e011;116;552CMSEðxi1; xi2Þ ¼
1

W ×H

XW−1

w¼0

XH−1

h¼0

½F ðxi1;ΦÞw;h − xi2w;h �2; (11)

EQ-TARGET;temp:intralink-;e012;116;499CMAEðxi1; xi2Þ ¼
1

W ×H

XW−1

w¼0

XH−1

h¼0

jFðxi1;ΦÞw;h − xi2w;h j; (12)

EQ-TARGET;temp:intralink-;e013;116;452CTVðxi1Þ ¼
1

W ×H
LTV½F ðxi1;ΦÞ�; (13)

where LTV is given in Eq. (5). The η is a variable. The value of η can be set as

EQ-TARGET;temp:intralink-;e014;116;415η ¼ 1

n

Xn−1
k¼0

�
1

W ×H

XW−1

w¼0

XH−1

h¼0

jFðxk1;ΦÞw;h − xk2w;h j
�
; (14)

where n represents the batch size and xk1 and xk2 are the k’th image pair in each batch size. The
L_hybrid loss function can improve the stability and generalization ability of the network.

4 Experimental Evaluation

In this paper, the experiments have been performed on a personal computer with Ubuntu 16.04.
The hardware is an Intel Xeon(R) CPU E5-2620v3, an NVIDIAQuadro M6000 24GB GPU, and
48 GB of RAM. The software tool is PyCharm, the version of Python is Python 3.6, and the deep
learning framework is TensorFlow 1.10.

4.1 Datasets

Three public datasets, UCML,50 SEN-1,51 and SEN-251 datasets, are used to demonstrate the
performance of the proposed methods.

The UCML dataset50 is composed of the optical remote sensing images. UCML is released
by the UC Merced computer vision laboratory. The dataset is obtained from the large-scale
U.S. Geological Survey national map urban area imagery series, and the dataset contains
21 scene data for research purposes. Each scene has 100 images and the size of each image
is 256 × 256 × 3.

The SEN1-2 dataset51 consists of SEN-1 and SEN-2 datasets and it is the optical-SAR image
pairs generated from the Sentinel-2 and Sentinel-1 satellites. It has 282,384 images. These
images are land scenes in spring, summer, autumn, and winter. We divide the SEN1-2 dataset
into a real SAR image subdataset (SEN-1) and an optical image subdataset (SEN-2). The two
subdatasets have 141,192 images, respectively. The image size of the SEN-1 is 256 × 256 × 1

Fig. 4 The detailed framework of the S1 connection. The gray 3 × 3 is a traditional convolution.
The yellow 3 × 3 is the dilated convolution with rate ¼ α.
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and the image size of the SEN-2 is 256 × 256 × 3. In our experiments, to ensure the fairness of
the experiment, 2100 images are randomly extracted from the SEN-1, named mini SEN-1
(mSEN-1). Meanwhile, 2100 images are randomly extracted from the SEN-2, named mini
SEN-2 (mSEN-2).

Next, according to the noisy–noisy training method, the training image pairs are
constructed.

4.1.1 Training data of the simulated synthetic aperture radar images

We use two datasets, UCML and mSEN-2, as the simulated SAR images to demonstrate
the despeckling performance of the proposed methods. First, we process the images of the
UCML dataset into grayscale images. Then, we randomly divide 2100 images of the UCML
dataset into 1400 images as the training set, 200 images as the validation set, and 500 images
as the testing set. Finally, we add two kinds of simulated speckle noise to each image of the
training set and obtain the training image pairs fxi1; xi2gN . The xi1 and xi2 are all noisy images.
The xi1 is the input image and the xi2 is the ground-truth image (the noisy image). The mSEN-2
has the same processing method as UCML dataset. An example of training image processing
samples for UCML and mSEN-2 datasets is shown in Fig. 5.

4.1.2 Training data of the real synthetic aperture radar images

We used the mSEN-1 dataset as the real SAR images to verify the despeckling performance of
the proposed methods. First, we randomly selected 1400 images from the 2100 images in the
mSEN-1 dataset as the training set, 200 images as the validation set, and 500 images as the
testing set. Then, we corrupted the training set and generated the noisy–noisy image pairs for
training. The real SAR training image pairs are fxi1; xi2gN . The xi1 represents the real SAR
image and is used as the input image of the networks. The xi2 implies the corrupted image
of the mSEN-1 dataset and is used as the ground-truth image (the noisy image) of the networks.
In our experiments, the corrupted method is to add simulated speckle noise to real SAR images.
As shown in Fig. 6, an example of the processed mSEN-1 dataset is listed. The reference image
of the mSEN-1 is the grayscale image of the mSEN-2.

Fig. 5 An example of the samples after processing on the mSEN-2 and UCML datasets.
(a)–(d) The optical, grayscale, simulated input (x i1), and simulated ground-truth (x i2) images
on the mSEN-2 dataset, respectively. (e)–(h) The optical, grayscale, simulated input (x i1), and
simulated ground-truth (x i2) images on the UCML dataset, respectively.
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4.2 Quality Assessment Criteria

To evaluate the despeckled SAR images, we choose the signal-to-noise ratio (SNR), the peak
signal-to-noise ratio (PSNR), the structural similarity index (SSIM),52 the despeckling gain
(DG),53 the equivalent number of looks (ENL)34 and the edge preservation index (EPI) as assess-
ment criteria.

The SNR is the ratio of signal strength to noise intensity. Assume that xi and yi are the noisy
image and the clean (reference) image, respectively. The output of the despeckling network is
Fðxi;ΦÞ. Let Fðxi;ΦÞ ¼ x̂i mean that x̂i is the despeckled image. SNR is defined as

EQ-TARGET;temp:intralink-;e015;116;475SNR ¼ 1

M

XM−1

i¼0

�
10 log10

P
W−1
w¼0

P
H−1
h¼0 x̂

2
iw;h

W ×H × CMSEðx̂i; yiÞ
�
; (15)

where CMSEð·Þ is given in Eq. (11), and the M is the number of testing set.
The PSNR is the most widely used objective measure of image quality. It represents the ratio

between the maximum signal power and the noise power. The PSNR measures the similarity
between the despeckled image and the reference image. The PSNR is written as

EQ-TARGET;temp:intralink-;e016;116;377PSNR ¼ 1

M

XM−1

i¼0

�
10 log10

MAX2
yi

CMSEðx̂i; yiÞ
�
; (16)

whereMAXyi is the largest pixel value in the image yi. For example, the maximum pixel value of
the grayscale image is 255.

The SSIM52 measures the similarity of the image structure between the despeckled image and
the reference image. It is not affected by changes in contrast and brightness. The value range of
the SSIM is [0, 1]. The SSIM is expressed as

EQ-TARGET;temp:intralink-;e017;116;266SSIM ¼ 1

M

XM−1

i¼0

SSIMi; (17)

where SSIMi can be written as

EQ-TARGET;temp:intralink-;e018;116;204SSIMi ¼
ð2μx̂iμyi þ C1Þð2σx̂iyi þ C2Þ

ðμ2x̂i þ μ2yi þ C1Þðσ2x̂i þ σ2yi þ C2Þ
; (18)

where μx̂i , σx̂i , μyi , and σyi represent the mean and standard deviation of the images x̂i and yi,
respectively. The σx̂iyi is the covariance of the images x̂i and yi. The C1 and C2 are constants, and
the role of C1 and C2 is to avoid SSIM calculation errors when the mean and standard deviation
of the image are both 0.

The DG53 is a new paradigm for the objective assessment of SAR despeckling methods and
its calculation requires a noisy image, a despeckled image, and a reference image. The DG can be
given as

Fig. 6 An example of the training data after processing on the mSEN-1 dataset: (a) the reference
image, (b) the real SAR image, and (c) the corrupted image, respectively.
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EQ-TARGET;temp:intralink-;e019;116;735DG ¼ 1

M

XM−1

i¼0

�
10 log10

CMSEðxi; yiÞ
CMSEðx̂i; yiÞ

�
: (19)

From the calculation formulas of the above four assessment criteria, they all need a reference
image. However, the mSEN-1 dataset is a real SAR image dataset. It lacks clean image as the
reference image when calculating the indices. Therefore, in order to objectively evaluate the
despeckling performance of the real SAR images, the clean grayscale images of mSEN-2 are
used as the reference images for mSEN-1.

The ENL34 is a common indicator, and it is used to evaluate the speckle noise intensity of
SAR images. The ENL can be defined as

EQ-TARGET;temp:intralink-;e020;116;609ENL ¼ 1

M

XM−1

i¼0

μ2x̂i
σ2x̂i

: (20)

The EPI is used to evaluate the edge preservation ability of the despeckled image in the
horizontal or vertical directions. The value range of EPI is [0, 1]. The higher the EPI value,
the stronger the edge preservation ability of despeckling network is. The EPI can be written as

EQ-TARGET;temp:intralink-;e021;116;522EPI ¼
P

M−1
i¼0 jðDNV1 − DNV2Þjx̂iP
M−1
i¼0 jðDNV1 − DNV2Þjxi

þ
P

M−1
i¼0 jðDNH1 − DNH2Þjx̂iP
M−1
i¼0 jðDNH1 − DNH2Þjxi

; (21)

where j · j represents the absolution operation. The DNV1 and DNV2 are the pixel values of
adjacent pixels on the vertical direction, respectively. The DNH1 and DNH2 are the pixel values
of adjacent pixels on the horizontal direction, respectively.

4.3 Implementation Details

We use the prepared noisy–noisy image pairs to train network and use the Adam algorithm54 as
an update algorithm for network parameters. The Adam algorithm is a stochastic optimization
method proposed by Diederik and Jimmy,54 which is integrated in many deep learning platforms
such as TensorFlow, Caffe, and PyTorch. In Adam algorithm, there are three main parameters,
which are β1, β2, and ϵ. In our experiments, we used default values of three parameters provided
by Adam algorithm.54 The default values are β1 ¼ 0.9, β2 ¼ 0.999, and ϵ ¼ 10−8.

The learning rate is not fixed and has a smooth reduction in our experiments. Assume that the
maximum number of training iterations is I and the current number of iterations is t. The current
learning rate (cur_lr) is represented as

EQ-TARGET;temp:intralink-;e022;116;293cur_lr ¼
�
lr
n
0.5þ cos

h
t−Ið1−ξÞ

2ξI π
io

2
; t ≥ Iξ

lr; t < Iξ
; (22)

where lr is the initial learning rate. The ξ is a constant with a range [0, 1], and ξ controls the
starting position where the learning rate start to decrease.

In our experiments, I is 50,000, lr is set to 0.0001, ξ is set to 0.3, and the batch size (n) is 4.
The explanation for choosing these values of the above parameters is as follows. When we train
the despeckling network, I is set to 100,000, and a model is saved for every 5000 iterations.
By testing each model, we find that the network has converged at 50,000 iterations, and the test
results are optimal. Therefore, the maximum number of iterations is set to 50,000.

In the selection of the lr, we test 0.01, 0.001, and 0.0001. When lr is 0.01, the loss value of
network appears NaN (Not a Number). When lr is 0.001, the loss value oscillates shapely.
When lr is set to 0.0001, the loss value can quickly converge.

With the deepening of the network training, the optimization of the network requires a
smaller learning rate. The ξ is a parameter that controls the start position where the learning
rate starts to decrease. By observing the change of the loss value, the loss value begins to
oscillate up and down slightly at 15,000 iterations, and the loss value does not decrease.
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Therefore, we set ξ to 0.3. After 15,000 iterations, the learning rate starts to decrease and the loss
value starts to decrease.

The n is set based on the GPU memory size. When n is set to 5, there is insufficient memory
during network training. When n is set to 4, the network can train normally. It is worth noting
that the larger the n, the better the despeckling performance of the network is.

4.4 Experimental Results and Analysis

4.4.1 Despeckling performance of the U-Net

To prove that the U-Net37 can use the noisy–noisy training method to remove speckle noise in the
simulated and real SAR images, we first calculate the values of the SNR, PSNR, SSIM, and ENL
of the reference image and the input image. These values are the result of the model “No.” As
shown in Eqs. (19) and (21), the calculation of the DG and EPI indicators requires a despeckled
image. Therefore, the values of DG and EPI are not given in model “No.” Then, in order to adapt
to the three datasets, we make three major modifications to the original U-Net.37 The first one is
to modify the input image size of the original U-Net from 572 × 572 to 256 × 256. The second
one is to change all convolutions from unpadded to padding. The third one is to remove the
cropping operation. It is worth noting that the U-Net mentioned later represents the modified
U-Net. Finally, we use the constructed noisy–noisy image pairs fxi1; xi2gN to train the U-Net and
obtain the despeckling models. The experimental results of the U-Net on the three testing sets are
shown in Table 4, where ↑ means that the larger the value, the stronger the despeckling ability of
the network is. The No means directly calculate the values of input image and reference image
without using any despeckling method. From the experimental results, it can be seen that the
U-Net using noisy–noisy training method can effectively remove the speckle noise and improve
the quality to some extent in the simulated and real SAR images.

4.4.2 Ablation experiment of the multiscale dilated convolution modules

We have demonstrated that the U-Net can indeed remove the speckle noise without clean SAR
data in simulated and real SAR images. However, the despeckling performance of the U-Net is
limited. To improve the despeckling performance of the U-Net and verify the proposed MDC
module, we replace the convolutions in U-Net with the MDC modules. It is worthy to note that
the first and last convolutions in U-Net are reserved. The MDCmodules are illustrated in detail in
Sec. 3.3. The experimental results on the three testing sets are shown in Table 5. The bold black
body is the better experimental results and the MDCs represent that MDC modules are used in
U-Net. It can be seen from the experimental results that the MDC modules used in the U-Net can
greatly improve the despeckling performance. Compared to the U-Net, the PSNR of the three
testing sets increased by 5.602, 1.441, and 5.002 dB, respectively. The other assessment criteria
have increased too.

Table 4 The experimental results of the U-Net on the UCML, mSEN-1, and mSEN-2 datasets.

Dataset Model SNR ↑ PSNR ↑ SSIM ↑ DG ↑ ENL ↑ EPI ↑

UCML No 17.883 20.321 0.434 — 4.068 —

U-Net 19.976 25.140 0.665 6.412 14.405 0.683

mSEN-1 No −0.010 9.663 0.034 — 3.897 —

U-Net 7.263 15.830 0.237 6.167 10.135 0.589

mSEN-2 No 15.428 20.529 0.465 — 4.063 —

U-Net 18.708 26.374 0.760 6.736 14.135 0.652
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4.4.3 Ablation experiment of the dilation residual skip connections

To demonstrate the despeckling performance of the DRS connection, we replace the skip con-
nections in U-Net with the DRS connections. The proposed DRS connections have been intro-
duced in Sec. 3.4. The experimental results on the three testing sets are shown in Table 6. The
DRSs represent that DRS connections are used in U-Net. By comparing the experimental results,
it can be seen that the DRS connections significantly improve the despeckling ability of the
U-Net in simulated and real SAR images. The main reason is that the proposed DRS connection
allows each level of semantic features to experience the same number of convolution operations.
The DRS connection can improve the fusion efficiency when fusing features and increase
the despeckling performance of the despeckling networks. Therefore, the DRS connection can
effectively decrease the difference between deep and shallow semantic features and help the
despeckling network models to improve the ability of removing speckle noise. Compared with
the experimental results of the U-Net, the UCML dataset increased 5.679 dB, the mSEN-1 data-
set increased 1.335 dB, and the mSEN-2 dataset increased 4.957 dB on the PSNR.

Table 6 The experimental results of the DRS connections on the UCML, mSEN-1, and mSEN-2
datasets.

Dataset Model SNR ↑ PSNR ↑ SSIM ↑ DG ↑ ENL ↑ EPI ↑

UCML No 17.883 20.321 0.434 — 4.068 —

U-Net 19.976 25.140 0.665 6.412 14.405 0.683

DRSs 25.626 30.819 0.866 10.886 16.391 0.790

mSEN-1 No −0.010 9.663 0.034 — 3.897 —

U-Net 7.263 15.830 0.237 6.167 10.135 0.589

DRSs 8.598 17.165 0.321 7.502 13.114 0.683

mSEN-2 No 15.428 20.529 0.465 — 4.063 —

U-Net 18.708 26.374 0.760 6.736 14.135 0.652

DRSs 22.768 31.331 0.892 10.792 15.889 0.658

Table 5 The experimental results of the MDC modules on the UCML, mSEN-1, and mSEN-2
datasets.

Model SNR ↑ PSNR ↑ SSIM ↑ DG ↑ ENL ↑ EPI ↑

UCML No 17.883 20.321 0.434 — 4.068 —

U-Net 19.976 25.140 0.665 6.412 14.405 0.683

MDCs 25.972 30.742 0.864 10.420 16.230 0.775

mSEN-1 No −0.010 9.663 0.034 — 3.897 —

U-Net 7.263 15.830 0.237 6.167 10.135 0.589

MDCs 8.704 17.271 0.328 7.608 12.882 0.666

mSEN-2 No 15.428 20.529 0.465 — 4.063 —

U-Net 18.708 26.374 0.760 6.736 14.135 0.652

MDCs 22.807 31.376 0.892 10.837 15.882 0.634

Bold values represent better experimental results.

Zhang et al.: Learning synthetic aperture radar image despeckling without clean data

Journal of Applied Remote Sensing 026518-14 Apr–Jun 2020 • Vol. 14(2)



4.4.4 Despeckling performance of the L_hybrid loss function

To explain the improvement brought by the L_hybrid loss function, we first use MSE and MAE
loss functions to train the U-Net, respectively. Then, we replace the MAE and MSE loss with the
L_hybrid loss function. The detailed analysis of the L_hybrid loss function can be found in Sec. 3.5.
The experimental results obtained on the three testing sets are shown in Table 7. We find that
the MAE loss function has better despeckling performance than the MSE, while L_hybrid loss
function has higher despeckling performance than the MAE.

4.4.5 Despeckling performance of the multiscale dilated residual U-Net

In this section, we verify the despeckling performance of the proposed MDRU-Net for simulated
and real SAR images. The training data of the MDRU-Net are noisy–noisy image pairs.

Table 7 The experimental results of the L_hybrid loss function on the UCML, mSEN-1, and mSEN-
2 datasets.

Dataset Model SNR ↑ PSNR ↑ SSIM ↑ DG ↑ ENL ↑ EPI ↑

UCML No 17.883 20.321 0.434 — 4.068 —

MSE 19.976 25.140 0.665 6.412 14.405 0.683

MAE 21.129 26.327 0.714 6.006 14.376 0.678

L_hybrid 25.816 31.022 0.871 10.702 15.299 0.690

mSEN-1 No −0.010 9.663 0.034 — 3.897 —

MSE 7.263 15.830 0.237 6.167 10.135 0.589

MAE 7.872 16.139 0.220 6.476 10.452 0.531

L_hybrid 8.912 17.479 0.337 7.816 11.872 0.664

mSEN-2 No 15.428 20.529 0.465 — 4.063 —

MSE 18.708 26.374 0.760 6.736 14.135 0.652

MAE 19.907 27.474 0.771 6.937 14.657 0.686

L_hybrid 22.748 31.315 0.892 10.776 16.872 0.633

Table 8 The experimental results of the MDRU-Net on the UCML, mSEN-1, and mSEN-2
datasets.

Model SNR ↑ PSNR ↑ SSIM ↑ DG ↑ ENL ↑ EPI ↑

UCML No 17.883 20.321 0.434 — 4.068 —

U-Net 19.976 25.140 0.665 6.412 14.405 0.683

MDRU-Net 26.329 31.616 0.883 11.295 16.152 0.774

mSEN-1 No −0.010 9.663 0.034 — 3.897 —

U-Net 7.263 15.830 0.237 6.167 10.135 0.589

MDRU-Net 9.109 19.376 0.467 9.013 13.822 0.767

mSEN-2 No 15.428 20.529 0.465 — 4.063 —

U-Net 18.708 26.374 0.760 6.736 14.135 0.652

MDRU-Net 23.331 31.900 0.902 11.361 17.822 0.735
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The image size is 256 × 256. The detailed architecture of the MDRU-Net has been introduced in
Sec. 3.2. The MDRU-Net uses the L_hybrid loss function. The experimental results of MDRU-Net
on the three testing sets are shown in Table 8. By comparing the experimental results, the PSNR
values improved 6.476, 3.546, and 5.526 dB in the three testing sets, respectively.

4.5 Compared with the State-of-the-Art Despeckling Methods

To compare the despeckling performance with the MDRU-Net, we select the refined Lee filter10

(RLF), the improved sigma filter17 (ISF), the probabilistic patch-based (PPB) filter,30 the three-
dimensional block matching (BM3D) filter for SAR image despeckling (SAR-BM3D),28 the
SAR-CNN,32 and the SAR-DRN.34 Note that the RLF, ISF, PPB, and SAR-BM3D are the tradi-
tional despeckling algorithms and are widely used to filter SAR images. The SAR-CNN and
SAR-DRN are the state-of-the-art despeckling CNNs for SAR images and their training data
are the noisy–clean image pairs.

Table 9 The comparative experimental results of airplane, highway, and buildings.

Method Scene PSNR ↑ SSIM ↑ ENL ↑ EPI ↑

RLF Airplane 24.23 0.723 18.387 0.614

ISF 25.46 0.750 19.112 0.621

PPB 24.98 0.743 — —

SAR-BM3D 27.17 0.800 — —

SAR-CNN 27.89 0.801 — —

SAR-DRN 28.01 0.819 — —

MDRU-Net (N2C) 31.72 0.846 19.533 0.749

MDRU-Net (Ours) 31.82 0.848 19.528 0.747

RLF Buildings 29.18 0.795 17.499 0.647

ISF 29.78 0.811 17.993 0.667

PPB 29.50 0.871 — —

SAR-BM3D 31.36 0.902 — —

SAR-CNN 31.63 0.901 — —

SAR-DRN 31.78 0.901 — —

MDRU-Net (N2C) 32.38 0.903 19.591 0.732

MDRU-Net (Ours) 32.39 0.904 19.596 0.751

RLF Highway 24.56 0.714 18.152 0.608

ISF 24.86 0.733 18.321 0.631

PPB 24.90 0.764 — —

SAR-BM3D 26.41 0.834 — —

SAR-CNN 26.48 0.834 — —

SAR-DRN 26.53 0.836 — —

MDRU-Net (N2C) 32.79 0.849 22.186 0.850

MDRU-Net (Ours) 32.87 0.852 22.185 0.851

Zhang et al.: Learning synthetic aperture radar image despeckling without clean data

Journal of Applied Remote Sensing 026518-16 Apr–Jun 2020 • Vol. 14(2)



To ensure the fairness of the experiment, according to the method of selecting training data by
SAR-DRN,34 we randomly select 400 images from the UCML dataset50 as training data, and
then perform data augmentation on the selected images. The final training data are 1600 images
by rotating, flipping, and mirroring. To construct the noisy–noisy training image pairs, we add
simulated speckle noise to the clean images. The difference from SAR-DRN34 is that the training
image pairs of the MDRU-Net are noisy–noisy image pairs and the image size is 256 × 256.
After training, the SAR image despeckling model is obtained. During the testing phase, we use
the airplane, highway, and buildings as our testing set. The testing set is the same as that used in
SAR-DRN.34 We only compared the case where the speckle noise level is 8. In the selected three
scenes, we add simulated speckle noise to them. The experimental results of airplane, highway,
and buildings are shown in Table 9. The meaning of MDRU-Net (N2C) is that the input of the
training network is noisy–clean image pairs, and the MDRU-Net (Ours) is the method proposed
in this paper to use noisy–noisy image pairs during training.

From the experimental results, it can be found that even if the noisy–noisy image pairs are
used to train the MDRU-Net, the despeckling performance is significantly higher than other
algorithms. On the PSNR, the MDRU-Net obtained 31.82, 32.34, and 32.87 dB in airplane,
buildings, and highway scenes, respectively. Compared with the SAR-DRN,34 the MDRU-
Net (Ours) increased approximately 3.81, 0.56, and 6.34 dB on the three scenes, respectively.

In addition, by comparing the experimental results of MDRU-Net (N2C) and MDRU-Net
(Ours), the despeckling performance of MDRU-Net (N2C) and MDRU-Net (Ours) is very close.
Therefore, the MDRU-Net (Ours) is recommended to remove the speckle noise in real SAR
images.

5 Conclusion

In this paper, the despeckling network MDRU-Net for SAR images is proposed. The MDRU-Net
can use the noisy–noisy image pairs to train in the absence of clean SAR images.

The MDRU-Net consists of an encoder, a decoder, and multiple DRS connections. The
encoder acts as a feature extractor, which extracts deep semantic features of the SAR images.
The decoder is responsible for restoring a clean SAR image. To protect more details of SAR
images for extracting deep semantic SAR features, the MDC module is designed. MDC module
is used in the encoder and decoder. The MDC module has five types and contains multiple
dilated convolutions. However, there is a great difference between shallow and deep semantic
features in fusion. To reduce the difference between the two semantic features, the DRS con-
nection is raised. The DRS connection not only reduces the difference but also protects more
important details. To make up for the drawbacks of MAE and MSE, we propose the L_hybrid loss
function. The L_hybrid loss function not only improves the stability of the despeckling network
but also suppresses the artifacts in predicted clean SAR images. We do extensive experiments on
the simulated and real SAR images. The experimental results illustrate that the proposed method
achieves state-of-the-art despeckling performance in several key metrics.
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