
Evaluation of the graphics processing
unit architecture for the implementation
of target detection algorithms for
hyperspectral imagery

Blas Trigueros-Espinosa
Miguel Vélez-Reyes
Nayda G. Santiago
Samuel Rosario-Torres



Evaluation of the graphics processing unit architecture
for the implementation of target detection algorithms

for hyperspectral imagery

Blas Trigueros-Espinosa, Miguel Vélez-Reyes, Nayda G. Santiago, and
Samuel Rosario-Torres

University of Puerto Rico Mayaguez Campus, Laboratory for Applied Remote Sensing
and Image Processing, Electrical and Computer Engineering Department, P.O. Box 3535,

Mayaguez, Puerto Rico 00681-3535
E-mail: m.velez@ieee.org

Abstract. Recent advances in hyperspectral imaging sensors allow the acquisition of images of a
scene at hundreds of contiguous narrow spectral bands. Target detection algorithms try to exploit
this high-resolution spectral information to detect target materials present in a scene, but this
process may be computationally intensive due to the large data volumes generated by the hyper-
spectral sensors, typically hundreds of megabytes. Previous works have shown that hyperspec-
tral data processing can significantly benefit from the parallel computing resources of graphics
processing units (GPUs), due to their highly parallel structure and the high computational
capabilities that can be achieved at relative low costs. We studied the parallel implementation
of three target detection algorithms (RX algorithm, matched filter, and adaptive matched
subspace detector) for hyperspectral images in order to identify the aspects in the structure
of these algorithms that can exploit the CUDA™ architecture of NVIDIA® GPUs. A data set
was generated using a SOC-700 hyperspectral imager to evaluate the performance and detection
accuracy of the parallel implementations on a NVIDIA® Tesla™ C1060 graphics card, achieving
real-time performance in the GPU implementations based on global statistics. © 2012 Society of
Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JRS.6.061506]
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1 Introduction

Remote detection and identification of objects or materials have attracted considerable interest
over the last few years and have become a desirable ability in many civilian and military
applications. The use of hyperspectral imaging (HSI) techniques for remote detection and clas-
sification of materials has been widely studied in many areas like defense and homeland security,
biomedical imaging, or Earth sciences.1–4 Hyperspectral imagers can collect tens or hundreds of
images of the same scene, taken at different narrow contiguously spaced spectral bands. This
high-resolution spectral information can be used to identify materials by their spectral properties
but algorithms that exploit HSI data have usually high computational requirements due to the
potentially large volume sizes of these images, typically hundreds of megabytes. This can be an
important limitation in remote sensing applications that require real-time processing, such as
surveillance or explosive detection. Fortunately, many algorithms designed for hyperspectral
data processing show an inherent structure that allows parallel implementations. Previous
works have shown that HSI data processing can significantly benefit from parallel computing
resources of hardware platforms like computer clusters, field-programmable gate arrays (FPGA),
or graphics processing units (GPU).5–9 Specifically, GPUs have proven to be promising candi-
dates as hardware platforms for accelerating hyperspectral processing tasks due to its highly
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parallel structure and the high computational capabilities that can be achieved at relative low
costs.10,11 However, since the GPU architecture is optimized for data-parallel processing,
(i.e., tasks where the same computation is repeated many times over different data elements),
only hyperspectral algorithms that show this data-parallel structure can significantly benefit from
GPU-based implementations.

This work focused on studying different state-of-the-art hyperspectral target detection algo-
rithms in order to analyze the aspects in the structure of these algorithms that can take advantage
of the parallel computing resources of GPUs based on the NVIDIA® CUDA™12 architecture.
This paper describes the GPU implementation of the RX algorithm, the matched filter (MF), and
the adaptive matched subspace detector (AMSD). Section 2 presents a brief description of the
target detection algorithms studied in this work. Section 3 presents an introduction to the CUDA
parallel architecture and describes the GPU implementation of each detector. Section 4 describes
the methodology used and presents the experimental results. Finally, Sec. 5 presents the
conclusions of this research and final remarks for future work.

2 Target Detection Algorithms

In this work, we have studied the GPU implementation of three target detection algorithms: the
RX anomaly detector, the matched filter, and the adaptive matched subspace detector. The first
two algorithms are full-pixel detectors. These detectors assume that the pixels in the image
contain information of only one class (target or background), i.e., the pixel does not contain
mixed spectra. In contrast, the adaptive matched subspace detector belongs to the family of
sub-pixel detectors which assume that the target may occupy only a portion of the pixel
area and the remaining part is filled with background (i.e., a mixed pixel).

Plaza et al. proposed two algorithms for target detection in HSI and their corresponding GPU
implementations in Ref. 11 The first algorithm, called automatic target detection and classifica-
tion algorithm (ATDCA), is based on the orthogonal subspace projection approach.13 The second
algorithm is a GPU-based implementation of the RX algorithm. In this implementation, the
inverse of the covariance matrix is computed in parallel on the GPU using the Gauss-Jordan
elimination method and is globally estimated using the entire image. We proposed an alternative
implementation of this algorithm that computes the Cholesky decomposition of the covariance
matrix on the CPU and the resulting triangular systems are solved in parallel on the GPU. We
also investigated an adaptive GPU implementation of the RX algorithm that uses a moving win-
dow to locally estimate the mean and covariance matrix. A GPU-based implementation of the
RX algorithm, recently proposed by Winter et al., can also be found in Ref. 14 Another GPU-
based implementation of a target detection algorithm for real-time anomaly detection in HSI has
recently been proposed by Tarabalka et al.15 The proposed anomaly detection algorithm is based
on a multivariate normal mixture model of the background.

2.1 RX Algorithm

The RX algorithm for anomaly detection, developed by Reed and Yu,16 is given by

DRXðxÞ ¼ ðx − μ0ÞTΓ−1
0 ðx − μ0Þ: (1)

In this detector, the variability of the background is modeled using a multivariate normal
distribution, where x is the pixel spectrum, μ0 is the mean of the background distribution,
and Γ0 is the covariance matrix. The output of the RX algorithm corresponds to theMahalanobis
distance17 from the test pixel to the center of the background distribution. The test pixel is
considered an anomaly if the resulting distance [Eq. (1)] is greater than a given threshold
(the pixel spectrum deviates too much from the background distribution).

The parameters of the background distribution, μ0 and Γ0, can be globally estimated using
training samples from the data. Other approach commonly used for the RX algorithm is to
locally estimate these parameters by using a 2D spatially moving window centered at the test
pixel in combination with a guard window as shown in Fig. 1.18 The mean and covariance
matrix can be estimated using the samples from the region between the two windows (the pixels
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contained in the guard window are excluded to avoid bias in the estimates). This is the technique
used in this work but other approaches use different regions for estimating the mean and
covariance matrix by defining an additional window.19

2.2 Matched Filter Detector

In the matched filter20 (MF) detector, both the background and target spectral variability are
modeled using a multivariate normal distribution with different means but the same covariance
matrix Γ. This detector is given by

DMFðxÞ ¼ cTMFðx − μ0Þ ¼ κðμ1 − μ0ÞTΓ−1ðx − μ0Þ; (2)

where μ0 and μ1 are the mean of the background and target classes, respectively, and κ is a
normalization constant. The idea of the matched filter is to project the pixel vector onto the
direction cMF that provides the best separability between the background and target classes.
In the implementation described in this work, the normalization constant was selected to produce
an output DMFðxÞ ¼ 1 when x ¼ μ1, as proposed by Manolakis et al.20 With this selection, the
MF detector takes this final form:

DMFðxÞ ¼
ðμ1 − μ0ÞTΓ−1ðx − μ0Þ
ðμ1 − μ0ÞTΓ−1ðμ1 − μ0Þ

: (3)

The output of the detector is finally compared to a preselected threshold to decide if the target is
present or not. The statistical parameters μ0, μ1, and Γ are estimated using training samples taken
from the original image.

2.3 Adaptive Matched Subspace Detector

The adaptive matched subspace detector21 (AMSD) is a sub-pixel target detector based on a
structured background model, i.e., the spectral variability is described using a linear subspace
instead of a statistical distribution. The two competing hypotheses generated to decide if the
target is present or not are

H0∶ x ¼ Bab;0 þ w ðtarget absentÞ
H1∶ x ¼ Sas þ Bab;1 þ w ¼ Eaþ w ðtarget presentÞ :

B is a L ×M matrix whose columns span the background subspace and is estimated from the
data. ab;0 is aM × 1 vector representing the position of the pixel within the background subspace
under the hypothesis of target absent. S is a L × P matrix whose columns span the target
subspace. The dimensionality P of the target subspace represents the available a priori variability
information about the target spectrum. a ¼ ½asab;0�T is a ðM þ PÞ × 1 vector representing the
position of the pixel within the union of the background and target subspaces, spanned by
E ¼ ½ S B �. Finally, w is an additive Gaussian noise with zero mean and covariance
Γw ¼ σ2wI, representing both modeling and measurement errors.

test pixel

guard window

training region

Fig. 1 Structure of the 2D spatially moving window for background parameter estimation in RX
algorithm.
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Based on the previous model, the AMSD is given by21,22

DAMSDðxÞ ¼
xTðP⊥

B − P⊥
EÞx

xTP⊥
Ex

; (4)

where P⊥
B and P⊥

E are the orthogonal projection matrices to the subspaces spanned by B and E,
respectively, and P⊥

A is defined as P⊥
A ¼ AðATAÞ−1AT .

In the implementation of this detector, two methods for estimating the matrix B of
background basis vectors were evaluated: singular value decomposition (SVD)23 and Maximum
Distance (MaxD).24 In the SVD approach, the basis vectors are selected as first M left singular
vectors of the matrix X representing the image in bands × pixels format. In this case, the number
of basis vectors is selected to enclose a given percentage of variability.23 MaxD is an endmember
selection method proposed by Schott et al.24 The basis vectors selected by this method, which are
pixels from the original image, are the set of vectors that best approximate a simplex defining the
background subspace. The steps involved in the MaxD method can be summarized as follows:

1. The largest magnitude pixel vector (v1) and the smallest magnitude pixel vector (v2)
from the image are selected as the first two endmembers.

2. All pixel vectors are projected onto the subspace orthogonal to v1 − v2. Thus, both v1
and v2 project to the same point v12.

3. The projected pixel with maximum distance to v12 is selected as the third
endmember v3.

4. All projected points are again projected onto the subspace orthogonal to v12 − v3.
5. The process is repeated until the desired number of endmembers is selected.

The performance of the SVD and MaxD methods as basis-vector selection techniques for target
detection was previously studied by Bajorski et al.23 Other works comparing different techniques
for background subspace generation, including SVD and MaxD, were recently presented by
Peña-Ortega and Velez-Reyes.25,26

3 GPU-Based Parallel Implementation

All three target detection algorithms have a general structure that shows an inherent parallelism.
The detection statistic is calculated independently for every pixel of the image. Therefore, if there
are N pixels, the calculation of the detection output for the entire image can be decomposed into
N parallel tasks without communication between each other. This algorithm structure, which is
known as an embarrassingly parallel problem,27 can be exploited by data-parallel architectures
like the CUDA™ architecture of NVIDIA® GPUs.12 CUDA, which stands for Compute Unified
Device Architecture, is a parallel computing architecture developed by NVIDIA®. CUDA adds a
set of extensions to the C programming language that allows the programmer to define portions
of the original code to be run in parallel on the GPU. These portions of the code are enclosed in a
special type of functions called kernels, which are executed in parallel by many GPU threads.
This allows the programmer to offload parallel and compute-intensive sections by moving these
computations to the GPU while still making use of the CPU when necessary. Figure 2 shows a
typical CUDA program flow. First, the CUDA application allocates the necessary GPU memory
and copies the data to be processed from the system memory to the GPU memory. Second, the
data is processed in parallel on the GPU by calling one or more kernels functions. Finally, the
results are copied back from the GPU memory to the system memory.

Fig. 2 CUDA program flow for data-parallel processing.
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For each detection algorithm, a CUDA kernel function was defined. The kernel functions are
configured to be run in parallel by as many GPU threads as pixels in the image, so each thread is
responsible for computing the detection output for a different pixel. The image data was trans-
ferred to the GPU memory in band sequential format (contiguous words in memory correspond
to contiguous pixels in the image for the same band). This storage scheme improves the memory
bandwidth when accessing global memory by allowing coalesced memory transaction.12 The
band interleaved by line format may also lead to coalesced memory transaction but the use
of the band sequential scheme reduces the pointer arithmetic for indexing data elements
when reading the image.

Figure 3 shows the proposed GPU implementation for the RX algorithm and MF detector.
First, the statistical parameters of the background and target distributions are estimated from
training data samples. These are preprocessing steps, performed on the CPU, which produce
the input parameters needed for the RX and MF detectors: Γ0, μ0, and μ1. The two algorithms
have in common the computation of the inverse of the covariance matrix Γ−1

0 . In the implemen-
tation proposed by Plaza et al.,11 the inverse of the covariance matrix is computed in parallel on
the GPU using the Gauss-Jordan elimination method. This method is parallelized by applying
the pivoting operation at the same time to many rows and columns. In our proposed implementa-
tion, instead of computing the inverse directly, the covariance matrix is factorized using the
Cholesky decomposition Γ0 ¼ LLT , taking advantage that this matrix is symmetric and positive
definite. Expressing the output of the RX detector for the pixel i in terms of the lower triangular
matrix L, we get

yRXi ¼ ðxi − μ0ÞTΓ−1
0 ðxi − μ0Þ ¼ ðxi − μ0ÞTðLLTÞ−1ðxi − μ0Þ ¼

ðL−1ðxi − μ0ÞÞTðL−1ðxi − μ0ÞÞ ¼ bTi bi
; (5)

where bi ¼ L−1ðxi − μ0Þ is the solution of the triangular system Lbi ¼ xi − μ0. In our proposed
implementation, the computation of the Cholesky decomposition is performed on the CPU using
the function SPOTRF from Intel® MKL library. The main reason is that the dimension
(bands × bands) of the covariance matrix does not allow enough amount of parallelism to
take advantage of the CUDA architecture. The resulting upper triangular matrix L is transferred
to the GPU global memory to be shared by all GPU threads. Then, each thread computes the
value bi ¼ L−1ðxi − μ0Þ by solving a triangular system through forward substitutions. The back-
ground mean μ0 is stored in the GPU constant memory space. Since this vector does not change
its values throughout the computation, storing it in the GPU constant memory improves the
memory bandwidth by using the constant memory cache. The matrix L cannot be stored in
the constant memory because this memory space is limited to 64 KB. In order to reduce the
latency when reading the values of L from the GPU global memory in the forward substitutions,
these values are temporarily stored in the shared memory space. Since the entire matrix L does
not fit into the GPU shared memory space (it is limited to 16 KB), only one row of the matrix is

Fig. 3 Implementation of RX and MF detectors.

Trigueros-Espinosa et al: Evaluation of the graphics processing unit architecture for the implementation : : :

Journal of Applied Remote Sensing 061506-5 Vol. 6, 2012



stored in the shared memory at every iteration of the forward substitution loop. Following a
similar procedure for the MF detector, we get

yMF
i ¼ κðμ1 − μ0ÞTΓ−1

0 ðxi − μ0Þ ¼ κðΓ−1
0 ðμ1 − μ0ÞÞTðxi − μ0Þ ¼

κcTðxi − μ0Þ ¼ κcT x̃i
; (6)

where c ¼ Γ−1
0 ðμ1 − μ0Þ is the solution of the linear system Γ0c ¼ μ1 − μ0. By performing the

Cholesky decomposition of Γ0, as in the RX implementation, the linear system can be solved
through forward and back substitutions. Since the vector c ¼ Γ−1

0 ðμ1 − μ0Þ does not depend on
the pixel value xi, it can be computed on the CPU and transferred to the constant GPUmemory to
be shared by all threads. The MF detector also needs the computation of the normalization
constant κ, which can be computed as

κ−1 ¼ ðμ1 − μ0ÞTΓ−1
0 ðμ1 − μ0Þ ¼ ðμ1 − μ0ÞTc: (7)

This step is also computed on the CPU since it has to be performed only once and its computa-
tion is relatively fast.

Figure 4 shows a GPU implementation of the adaptive RX algorithm. In this approach, the
statistical parameters of the background distribution are locally estimated using the double slid-
ing window technique illustrated in Fig. 1. In this implementation, the parameter estimation, the
Cholesky decomposition and the detection output computation steps are all performed within the
CUDA kernel function. Each GPU thread will compute the mean μi0 and covariance matrix Γi

0 by
using training samples from the region between the two windows centered at the working pixel
xi. Then, each thread computes the Cholesky decomposition Γi

0 ¼ LiLiT , solves the triangular
system LiLiTpi ¼ x̃i, and computes the detection output yRXi . The Cholesky decomposition is
performed in a kernel function using a CUDA-adapted version of the C algorithm proposed by
Teukolsky et al.28 Since each thread has its own copy of the mean μ0i and covariance Γ0i, these
parameters are stored in the thread local memory space. The amount of local memory per thread
is limited to 16 KB in devices of compute capability 1.x and 512 KB in devices of compute
capability 2.x (Fermi). This imposes a limitation in the number of spectral bands in the original
hyperspectral image, which determines the size of the covariance matrix. This matrix can be
stored on the local memory if the number of bands is less than 64 for devices 1.x and less
than 362 for devices 2.x. The limitation in devices 1.x forces the use of a band reduction
step on the input data before RX processing.

Figure 5 shows the proposed GPU implementation of the AMSD algorithm. The structure of
the background subspace (dimensionality and basis vectors) is estimated from the data using two
different approaches: singular value decomposition (SVD) and MaxD. In the SVD implementa-
tion, the left singular vectors are computed as the eigenvectors of the image correlation matrix
R ¼ XXT . The matrixR and the corresponding eigenvectors are computed on the GPU using the
function SGEMM for matrix-matrix multiplication and the function SSYEV for eigenvalues/
eigenvectors computation of a real symmetric matrix, both from the CULA™ library, respec-
tively. In the MaxD method, the process of selecting the largest and the smallest magnitude pixel
vector from the image is performed on the GPU through a kernel that computes in parallel the
magnitude of each pixel. The projection steps are performed on the GPU using the function
SGEMM from CULA™ and the update of the projection matrix at each iteration is performed
through the function SGER from CUBLAS™, which performs the operation A ¼ αxyT þ A.
Once the matrix of basis vectors B has been computed, the rest of the computations are
based on an implementation approach of this detector proposed by Manolakis et al.21 that
uses the identities P⊥

E ¼ P⊥
BP

⊥
ZP

⊥
B and P⊥

B − P⊥
E ¼ P⊥

BPZP⊥
B, where Z ¼ P⊥

BS, i.e., the part of
the target subspace orthogonal to the background subspace. In the kernel that computes the out-
put of the AMSD, each GPU thread is responsible for computing the numerator kPZP⊥

Bxik2,
denominator kP⊥

ZP
⊥
Bxik2, and the detection output yAMSD

i of the AMSD for a given pixel
xi. Since the projection matrices are shared by all threads, we can take advantage of the shared
memory space to perform the matrix products using a similar approach as in the global full-pixel
detectors.
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4 Experimental Results

The GPU-based implementations of the algorithms were developed using CUDA 3.2 and tested
on a NVIDIA® Tesla™ C1060 graphics card. The Tesla® C1060 card contains 240 processor
cores and 4 GB of DDR3 memory. The theoretical single-precision peak performance and mem-
ory bandwidth for this GPU are 933 Gflops and 102 GB∕ sec, respectively. The Tesla™ C1060
is installed on a workstation equipped with an Intel® Xeon® E5520 2.27 GHz CPU, 12 GB of
RAM memory and running Ubuntu™ 10.10 64 bits as operating system.

For each detection algorithm, a CPU-based implementation was developed to use as baseline
to estimate the speedups of the GPU-based implementations. The CPU implementation was built
with GCC 4.4.5 compiler using C++. In the GPU implementation, the CUBLAS™29 and
CULA™30 R10 libraries were used for linear algebra computations (matrix multiplications,
Cholesky decomposition, and eigenvectors computation). In the CPU-based implementations,
these computations are performed using the Intel®MKL 10.3 library (http://software.intel
.com/en-us/articles/intel-mkl/) in combination with the OpenMP™31 interface to exploit CPU
parallelism.

In order to evaluate the running times and detection accuracy of the implemented algorithms,
a phantom image simulating traces of different materials on clothing was generated (Fig. 6).
The image was collected using a SOC-700 visible hyperspectral imager from Surface Optics
Corporation® (http://www.surfaceoptics.com). The SOC-700 imager acquires a 640 by
640 pixel image, 120 bands deep, in the visible-near infrared region (0.43 to 0.9 μm). This instru-
ment takes 1 s to scan 100 lines, thus, the total time needed to complete an image cube is 6.4 s.

For the experiments, a 360 × 360 pixels spatial subset of the original data cube was selected.
The scene consists of a T-shirt surface containing traces of vegetable oil and ketchup. The
ketchup was considered as the target material in the algorithms and the remaining pixels, repre-
senting the T-shirt surface and the oil traces, were considered as the background clutter. For the
evaluation of the running time and speedup of the implemented algorithms, the image subset was
duplicated in a tiled fashion in order to generated six different image sizes: 59.3, 118.6, 237.2,

Fig. 4 Implementation of the adaptive RX algorithm.

Fig. 5 Parallel implementation of AMSD algorithm.
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474.4, 948.8, and 1897.6 MB. In the adaptive RX implementation, the bands of the input image
were downsampled to reduce the number from 120 to 60 due to the local memory limitations of
the C1060 graphics card, as mentioned in Sec. 3.

Figure 7 shows the speedup of the GPU implementations over the corresponding CPU imple-
mentations for the different data sizes and Table 1 shows the resulting running times for the
largest data size (1897.6 MB). The running times were measured using the function gettimeofday
from the GNU C header file “sys/time.h” and averaged over 10 benchmark executions. The
speedups were estimated as the ratio between the averaged running time of the CPU-based
and the GPU-based implementations. In the RX implementation, the speedups achieved vary
from 11.25 to 24.76. In the MF implementation, the CPU implementation is faster (37 ms)
than the GPU-based (79 ms) for the first image size (59.3 MB). For the rest of the input
sizes, the GPU implementation runs faster than the CPU-based but the differences in the running
times are not significant, reaching a maximum speedup of 3.9 for the largest input size. This

Fig. 6 Phantom image generation for the experiments: a hyperspectral image of a scene
simulating traces of different materials on clothing was collected using a SOC-700 imager.

Fig. 7 Speedup of the GPU implementations over the CPU implementations for different image
sizes.

Table 1 Processing times (ms) and speedups of the GPU implementations over the correspond-
ing CPU implementations for an image size of 1897.6 MB. The table also shows the processing
times and speedups for the two methods for basis selection (SVD and MaxD).

Algorithms CPU processing time (s) GPU processing time (s) Speedup

RX 49.46 1.98 24.76

MF 1.74 0.45 3.90

Adaptive RX 8029.90 571.65 14.05

AMSD 322.62 6.92 46.64

SVD 7.71 3.56 2.17

MaxD 16.27 2.12 7.67
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limitation in the speedup of the MF implementation is due to reduced number of arithmetic
operations performed in the kernel. Therefore, most of the running time of this GPU implemen-
tation is spent in the memory transfers between the CPU and GPU. In the adaptive RX
implementation, the speedups vary from 10.99 for the smallest input size to 14.05 for the largest
input size. For the largest input size, the implementation on the CPU takes 8029.90 s (2.23 h) to
complete the execution, whereas the implementation on the GPU takes 571.65 s (9.52 min). In
this implementation, the speedup does not increase considerably with the input size, which may
be due to the high local memory dependency of this algorithm resulting in a poor memory
throughput. In the AMSD implementation, the speedups achieved vary from 18.54 to 47.87.
This was the kernel that achieved the best speedup improvement. The GPU implementation
of the two methods evaluated for estimating the background subspace in the AMSD, SVD
and MaxD, only outperforms the corresponding CPU implementations for large data sizes.
The GPU implementation of SVD is faster than the CPU implementation for image sizes larger
than 474.4 MB, reaching a maximum speedup of 2.17, as shown in Table 1. This shows that the
computation of the autocorrelation matrix and the corresponding eigenvectors do not take advan-
tage of the GPU parallel architecture. The GPU implementation of the MaxD algorithm is faster
than the CPU implementation for image sizes larger than 118.6 MB, reaching a maximum
speedup of 7.67 for the largest image size. The MaxD algorithm achieves better performance
on the GPU than the SVD approach, although the speedup is still limited specially for image
sizes below 237.2 MB.

Since the scanning rate of the SOC-700 imager is 15 MB∕ sec, we can analyze the real-time
performance of the GPU-based implementations by comparing their processing rates to this
value. The processing rate of the implementations was estimated as the ratio of the input image
size in MB to the total execution time in seconds needed to process the data. All the implementa-
tions exceed the processing rate of 15 MB∕ sec except for the adaptive RX algorithm, which
achieves a processing rate of around 3.3 MB∕ sec. Therefore, the GPU-based implementation
of the adaptive RX algorithm was the only implementation that does not achieve a real-time
processing rate.

The ground truth used for estimating the detection statistics is shown in Fig. 8, where the full-
pixels are represented in red, the sub-pixels in yellow, and the guard-pixels in green. Figures 9
and 10 show the resulting detection maps for the RX, the MF, and the AMSD algorithms. Table 2
shows the detection statistics (detection accuracy and percentage of false alarms). The target
contains 568 full-pixels, 197 sub-pixels, and 255 guard-pixels. The best detection accuracy

Fig. 8 Ground truth for the target traces showing the full-pixels (red), sub-pixels (yellow), and
guard-pixels (green).

Fig. 9 Detection results: RX with global statistics (left), MF detector (center), adaptive RX (right).
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was achieved by the matched filter (98.4% of targets detected for a false alarm rate of 0.07%).
The detection accuracy of the adaptive RX algorithm is very limited by the size of the 2D moving
window. For a window size of 51 × 51, only five small targets were detected (8% detection
accuracy). The adaptive RX assumes small targets, hence the reason for this poor performance.
The percentage of detected targets for the AMSD algorithm, using SVD as background subspace
estimation method, and the RX algorithm, using global background statistics, were both 93.3%,
but the percentage of false alarms in the RX algorithm was slightly higher. In addition, the
detection accuracy of the AMSD algorithm was reduced when using MaxD as background
subspace estimation method.

5 Conclusions

In this work, the GPU implementation of three target detection algorithms for hyperspectral
images was studied. The first two algorithms were detectors for full-pixel targets: the RX
algorithm and the MF detector. Two different implementations were studied for the RX detector.
In the global implementation, the mean and covariance matrix were globally estimated from
training samples as a preprocessing step on the CPU. In the adaptive implementation, these
parameters were locally estimated using a moving window centered at the test pixel. The third
algorithm studied was the AMSD, a detector for sub-pixel targets based on structured modeling
of the background. The detection algorithms were implemented on a NVIDIA® Tesla™ C1060
graphics card. In addition, a CPU implementation of each target detector was developed to be
used as a baseline to estimate the speedups of the GPU implementations. The computational
performance of the implementations and the detection accuracy of the algorithms were evaluated
using a set of phantom images of a scene simulating traces of different materials on clothing and
collected using a SOC-700 hyperspectral imager. In the design of the GPU implementations,
we have analyzed three important aspects: computation decomposition, data layout, and the
computation mapping to the GPU memory hierarchy. The computation is decomposed in a
one-thread-per-output basis. Since the output value of the detectors is computed independently
for each pixel of the image, the task of computing the output value for a single pixel can be
assigned to a single processing unit, i.e., a GPU thread in the CUDA architecture. The data layout

Fig. 10 Detection results: AMSD with SVD as background subspace estimation method (left),
AMSD with MaxD as background subspace estimation method (right).

Table 2 Detection accuracy of different target detection algorithms.

Target detectors Detection accuracy (%) False alarms (%)

RX 93.3 0.09

MF 98.4 0.07

Adaptive RX 8.4 1.1

AMSD (SVD) 93.3 0.03

AMSD (MaxD) 90.2 0.01
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is related to how input image is stored in the GPU memory. In the GPU-based implementations
described in this document, the band sequential storage scheme was used since it leads to coa-
lesced memory transactions since threads with consecutive ID numbers will access contiguous
memory positions when reading or writing a single band. Finally, different memory spaces were
used for storing the data elements of the algorithms in order to exploit the GPU architecture.
Parameters that do not change their values throughout the computation, like the background
mean μ0, are stored in the GPU constant memory space to improve the memory throughput.
Other parameters, like the covariance matrix of the full-pixels detectors and the projection
matrices of the AMSD algorithm, although they remain constant, cannot be stored in the constant
memory space due to their size. In this case, the rows of the matrices are temporarily stored in the
shared memory space in order to increase the memory throughput. The GPU implementations
of the global RX and AMSD algorithms showed best performance improvement achieving
maximum speedups of 24.76 and 46.64 respectively. The performance of the MF algorithm
was limited by the low number of arithmetic operations performed by this detector in the kernel,
achieving speedups below five. The parallel portion of this algorithm only consists of a dot
product, which is relatively fast. Therefore, most of the total running time is spent in transferring
data from the CPU to the GPU and vice versa. The performance of the adaptive RX algorithm was
also limited, but in this case, due to high dependency on local data which limits the memory
throughput. In addition, in the adaptive RX implementation the number of bands had to be
reduced to 60 since the local memory space per thread is limited to 16 KB in the C1060
card. Experimental results also showed that the method evaluated for estimating the background
subspace, SVD and MaxD, are only accelerated on the GPU for large data sizes. In terms of
detection accuracy, the MF showed the best detection results for the data set evaluated.

Future research plans would be the analysis of further optimizations in order to take
advantage of the new Fermi architecture of NVIDIA® GPUs. Fermi provides new features
like configurable memory caches, more amount of local memory per thread, more amount
of shared memory, concurrent kernel executions, etc. These new features open new possibilities
in the optimization of the algorithms, specially, in the adaptive RX algorithm which is limited by
the local memory throughput. Since the local memory per thread in Fermi is 512 KB, this will
allow the use of a number of bands up to 362. In addition, other GPU libraries, like MAGMA
(http://icl.cs.utk.edu/magma/) or LibJacket (http://www.accelereyes.com/products/libjacket/),
could be evaluated as alternatives to the CULA library for linear algebra computations.
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