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Abstract. Reliable monitoring of coastal waters is not possible without using remote sensing
data. On the other hand, it is quite difficult to develop remote sensing algorithms that allow one
to retrieve water characteristics (like chlorophyll-a concentration) in optically complex coastal
and inland waters (called also Case II waters) as the concentrations of optically active substances
(phytoplankton, suspended matter, and colored dissolved organic matter) vary independently
from each other and the range of variability is often high. Another problem related to developing
remote sensing algorithms for retrieving concentrations of optically active substances in such
complex waters is vertical distribution of these substances. For example, phytoplankton distri-
bution in the water column is often characterized with maxima just below the surface mixed
layer, and some phytoplankton species even have the capability to migrate in the water column
and tend to form layers at depths optimal for their growth. Twenty-three field campaigns were
performed during the spring-summer period in the coastal waters of the southern Caspian Sea
where vertical distribution of phytoplankton was measured by means of chlorophyll-a fluorom-
eter. There results showed that there is usually a chlorophyll-a maximum between 10 and 20 m
where the concentration is about one order of magnitude higher than in the top mixed layer. The
Hydrolight 5.0 radiative transfer model used to estimate if the vertical distribution of biomass
have detectable impact on remote sensing signal in these waters. For that purpose, several sta-
tions with distinctly different chlorophyll-a profiles were selected and two simulations for each
of those measuring stations was carried out. First the Hydrolight was run with the actual chloro-
phyll-a vertical distribution profile and second a constant chlorophyll-a value (taken as an aver-
age of measured chlorophyll-a in the surface layer) was used in the model simulation. The
modelling results show that the “deep” chlorophyll maximum has negligible effect on the remote
sensing reflectance spectra. Consequently, there is no need to take into account the vertical dis-
tribution of phytoplankton while developing remote sensing algorithms for the Caspian Sea
coastal waters. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.7.073550]
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1 Introduction

Coastal waters occupy at the most 8–10% of the ocean surface and only 0.5% of its volume, but
represent an important fraction in terms of economic, social, and ecological value.1 Coastal
waters are also under the greatest anthropogenic pressure. As a result, there is strong need
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to monitor coastal environments. By monitoring changes in water quality we can observe, assess,
and correct long term trends in water quality degradation. It is obvious that the infrequent mea-
surements from research vessels or automated measuring systems on ships of opportunity or
buoys cannot provide the spatial and temporal coverage needed for monitoring such dynamic
environments like coastal waters.2 Remote sensing can provide greater spatial coverage with
finer spatial resolution and often with good temporal frequency. This makes remote sensing
a rich source of data.3

The remote sensing signal is determined by the amount of optically active substances like
phytoplankton (usually measured as concentration of chlorophyll-a), suspended matter, and col-
ored dissolved organic matter (CDOM). In optically simple oceanic waters, the latter two are
well correlated with the phytoplankton as they are phytoplankton degradation products. In opti-
cally complex coastal and inland waters, commonly labelled as “Case II” waters,4 most of the
CDOM and suspended matter originates from the adjacent land. As a result, the concentrations
of these substances vary independently from each other and they may vary across a wide range
(orders of magnitude). Therefore, the developing of reliable remote sensing algorithms for such
waters is very complicated and the algorithms are often local or even seasonal.

Another complicating aspect is vertical distribution of the optically active substances. For
example, CDOM transported into marine environment by rivers may stay on the sea surface as
the fresh water is lighter than the salt water.5 These effects are limited to very near coastal zone.
On the other hand vertical distribution of phytoplankton may have quite significant impact on
remote sensing signal over large areas. Others have shown that the vertical distribution of phyto-
plankton and the deep chlorophyll maximum in oceanic waters has an impact on the remotely
sensed signal.6,7 In turbid coastal waters, the depth of penetration of light (the depth where
remote sensing signal is formed) is often relatively shallow (a few meters to centimeters).
On the other hand Kutser et al.8 have shown that vertical distribution of phytoplankton may
have significant impact on the remote sensing signal. Especially in the case of cyanobacteria
that can regulate their buoyancy and migrate in water column to the depth optimal for their
growth.

There is little information available about the vertical distribution of chlorophyll-a in the
southern Caspian Sea. In the southern Caspian Sea the thermocline starts to form in spring,
sharpens in summer, begins to degrade and then completely degrades in autumn. It is usually
not observed at all in winter.9 The formation and destruction of seasonal thermocline affects the
chlorophyll-a concentration. The aim of our study was to measure the vertical distribution of
phytoplankton (chlorophyll-a) in the southern Caspian Sea during the period when the thermo-
cline is formed and to evaluate whether the vertical distribution of phytoplankton has an impact
on the remote sensing signal complicating development of the chlorophyll-a retrieval algorithms
for the coastal waters of the Caspian Sea.

2 Methods

2.1 Field Measurements

Field sampling was conducted in the southern Caspian Sea waters crossing a full freshwater-
marine water gradient (Fig. 1). Twenty-three cruises were conducted in thirty stations during
spring-summer period of 2011. The vertical profile of chlorophyll-a was measured using a sea-
point chlorophyll fluorometer (SCF) that was interfaced with an Idronaut OCEAN SEVEN 316
CTD multiparameter probe. SCF is a high-performance, low power instrument for in situ mea-
surements of chlorophyll-a. Also, the vertical profile of water turbidity was measured using an
optical probe (Seapoint Turbidity Meter). This instrument measures light scattered by particles
suspended in water generating an output voltage proportional to turbidity or the amount of sus-
pended solids. The results are expressed in Formazine Turbidity Units (FTU), which may be
directly related to the suspended sediment concentration.10

The amount of total suspended solids, TSS, was measured by filtering 1 L water samples
through preweighed 47 mm Millipore GN filters (0.45 μm pore size). Filters were dried in a
desiccator and weighed again. The difference of filter weights before and after filtering the
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water sample, together with the volume of filtered seawater, was used to calculate the TSS
concentration.11

For CDOM, seawater was filtered the same day after returning to laboratory (Central
Laboratory, Faculty of Natural Resources, Tarbiat Modares University) through polycarbonate
track etch membrane filters (PCMembran, 0.2 μm, 47 mm) (Sartorius-stedium). CDOM absorb-
ance was determined between 200 nm and 850 nm using a Perkin Elmer Lambda 25 spectro-
photometer in a 10 cm quartz cuvette. The Milli-Q water was used as reference and a baseline
correction was applied to the data by subtracting the average between 683 nm and 687 nm to the
entire spectrum.12,13 The absorbance values at each wavelength were transformed into absorption
coefficients using

aCDOMðλÞ ¼ 2.303 � ODCDOMðλÞ
l

;

where l is the cuvette path length (0.1 m).
Absorption data were fitted with an exponential function using nonlinear regression between

350 nm and 500 nm12–14 to retrieve aCDOMðλrÞ, the CDOM absorption estimate at a reference
wavelength (375 nm) and S, the slope of the absorption curve:

aCDOMðλÞ ¼ aCDOMðλrÞ � exp½−Sðλ − λrÞ�:

The absorption value at 375 nm, aCDOMð375Þ, was chosen to quantify CDOM.13–15

2.2 Optical Modelling

The HydroLight 5.0 radiative transfer code16 was used to simulate the remote sensing reflectance
spectra. The HydroLight radiative transfer numerical model computes radiance distributions and
related quantities. Users can specify the water absorption and scattering properties, the sky con-
ditions, and the bottom boundary conditions. HydroLight then solves the scalar radiative transfer

Fig. 1 Sampling stations in the southern Caspian Sea. (There are five stations in two transects,
the stations are named according to L1, L2, L3, L4, L5, A1, A2, A3, A4, A5. The distance between
stations is 3 km and between two transects is 10 km).
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Fig. 2 Vertical profile of chlorophyll-a measured in different stations (Cruise Date: 2011-07-31).

Fig. 3 Vertical profile of chlorophyll-a measured in different stations (Cruise Date: 2011-08-17).

Fig. 4 Vertical profile of chlorophyll-a measured in different stations (Cruise Date: 2011-09-15).
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Table 1 The results of field measurements of optically active constituents.

Date Stations Depth (m)
Chlorophyll

(μg∕l)
TSS

(mg∕L)
a CDOM

(375) (1∕m) S

31 July 2011

A1 1.30 1.6 29.40 1.602888 0.0127

A2 25.50 0.3 2.06 0.458297 0.0155

A3 37.80 0.56 2.15 0.607992 0.0167

A4 58.20 0.56 2.19 0.278663 0.0176

A5 98.09 0.42 0.48 0.485933 0.0178

L1 77.00 1.22 14.78 2.547118 0.0135

L2 51.40 0.58 3.77 1.56604 0.0129

L3 36.90 0.92 1.56 1.33574 0.0123

L4 51.40 0.6 2.21 1.19756 0.0112

L5 77.00 0.62 1.37 1.039848 0.0118

17 August 2011

A1 2.20 1.4 71.27 0.511266 0.0168

A2 26.30 0.6 0.64 0.269451 0.0174

A3 37.20 1 0.55 0.267148 0.0173

A4 57.30 0.6 0.64 0.34545 0.0162

A5 98.15 0.6 0.64 0.375389 0.0174

L1 3.40 1.6 35.73 3.518984 0.0109

L2 25.60 0.6 2.01 1.01332 0.0124

L3 35.70 0.4 0.74 0.978775 0.0131

L4 51.40 0.8 0.97 1.001805 0.0129

L5 75.70 1 1.10 1.319619 0.0136

15 September 2011

A1 1.52 3 85.43 1.213681 0.0159

A2 25.90 1.2 12.34 1.011017 0.0156

A3 37.20 0.8 3.89 0.50666 0.0175

A4 57.60 0.6 1.84 0.446782 0.0173

A5 97.70 0.4 1.67 0.467509 0.0173

L1 2.60 1.2 31.44 0.379995 0.0173

L2 25.60 1.2 4.92 0.393813 0.0174

L3 38.30 1 7.02 0.375389 0.0174

L4 51.20 0.6 6.70 0.377692 0.0175

L5 75.60 0.8 7.02 0.416843 0.0173
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equation (RTE) to compute the in-water radiance as a function of depth, direction, and wave-
length. Other quantities of interest, such as the water-leaving radiance and remote-sensing reflec-
tance, are also obtained from the computed radiances. Caspian Sea waters belong to optically
more complex Case II waters where the concentrations of optically active substances vary inde-
pendently of chlorophyll-a.

A Case II water model with three optically active substances (chlorophyll-a, CDOM and
mineral particles) was parameterized for the Caspian Sea study in HydroLight. The mass-
specific absorption and scattering coefficients of optically active substances available in the
HydroLight were used as there is no information about those parameters in the Caspian Sea.
The modelling was carried out over the wavelength range of 350-850 nm with 5 nm intervals.
Wind speed was taken to be 2 m ⋅ s−1. The solar zenith angle was assumed to be 30 deg, which is
typical for the time around midday in the July-August period when the thermocline occurs in the
Caspian Sea.

Eleven measuring stations were selected for the modelling study in order to describe the
whole range of variability in vertical distribution of biomass as it was observed during our
field campaigns. Two different HydroLight runs were made for each of the selected stations.
First we used a measured chlorophyll profile (Figs. 2, 3, and 4) for each station. A second
model run for each station was carried out using a constant chlorophyll-a value for the
whole water column. An average chlorophyll-a of the top first meter was used for the whole
water column.

3 Results and Discussion

Table 1 shows the results of field measurements of optically active constituents in three cruises.
As expected, aCDOMð375Þ of nearer stations to the coast show much higher values compared to
far stations in each cruise, i.e., 0.37 − 3.51 m−1 and 0.37 − 1.31 m−1 respectively. TSS concen-
tration ranged from 14.87 − 85.43 mg∕l in near stations to coast to 0.48 − 7.02 mg∕l in the far
stations from the coast. Chlorophyll showed variations, too. Near stations to the coast show
much higher values compared to far stations in each cruise, i.e., 1.2 − 3 mg∕m3 and
0.4–1 mg∕m3 respectively (Table 1).

Figures 5 to 10 provide some more detailed insight into formation of the reflectance spectra
revealed by the model simulations. Figures 5 and 6 show the total absorption coefficient and its
components and total absorption coefficients just beneath the sea surface for two stations (A1
near to the coast, A5 far from the coast), and Figures 7 and 8 show the corresponding scattering
coefficient and its components for July 2011. The total absorption is dominated by mineral

Fig. 5 Absorption coefficients for the station A1 (near to the coast).
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particles in near stations to the coast and by the water itself in stations far from the coast. The
primary scatters are mineral particles in near stations to the coast and chlorophyll-a in stations far
from the coast, too. However, the water makes only a small contribution to the total scattering.

The irradiance reflectance and remote-sensing reflectance Rrs, the quantity of interest for
“ocean color” remote sensing, is shown in Figs. 9 and 10. As can be seen, R values become
higher as turbidity increases.

In this study, we assumed that the impact of vertical distribution of phytoplankton is detect-
able by remote sensing instruments if the difference between the two modelled spectra is higher
than the signal to noise ratio of different sensors. This kind of methodology has been used to
estimate if potentially toxic cyanobacterial blooms be separated from blooms of other algae,17 if
remote sensing can be used to map benthic habitats in coastal waters18 and determining what
type of coral reef habitats can be separated from each other.19

Figures 11 and 12 illustrate the influence of the vertical distribution of chlorophyll-a on the
remote sensing signal in two stations (A3 & A5). Using the constant chlorophyll-a value through
the water column produces slightly higher reflectance values than using actually measured
chlorophyll-a profiles. This indicates that the vertical distribution of phytoplankton biomass
has a small impact on the reflectance spectra. However, the difference between the reflectance

Fig. 7 Scattering coefficients for the station A1 (near to the coast).

Fig. 6 Absorption coefficients for the station A5 (far from the coast).
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calculated for a homogeneous water column and the reflectance calculated for the actual strati-
fication of biomass is so small that no remote sensing sensor can detect the difference.

This result is not surprising if one considers that the contribution of different water layers to
the total remote sensing signal decreases exponentially with increasing depth. Our estimates
show that the depth of penetration (the layer from which the remote sensing signal originates)
is less than 18 m (based on 2.3∕Kd) in the clearest station of study area (Fig. 13). The deep
chlorophyll maximum is in deeper waters than the depth of penetration in all stations. It means
that the order of magnitude increases in phytoplankton concentration cannot have impact on
theremotesensingsignal since thebiomasspeakisbelowthelayer remotesensingsensorscan“see.”

The field measurements were carried out during the spring-summer period (May–September)
when thermocline should occur in the southern Caspian Sea waters. During the rest of the year,
the top layer of the sea is well mixed and the vertical distribution of biomass is homogenous.

Fig. 9 Irradiance reflectance for the water body.

Fig. 8 Scattering coefficients for the station A5 (far from the coast).
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Therefore, our measurements should describe the range of variability in vertical distribution of
phytoplankton occurring in the southern Caspian Sea.

The results show that the impact of vertical distribution of phytoplankton biomass is
very small in the cases where the nonuniform distributions occur. Remote sensing sensors cannot
detect such a small difference. It means that taking a surface water sample for calibration and
validation of remote sensing algorithms is sufficient in the southern Caspian Sea to characterize
the water mass under investigation. We are planning to validate different chlorophyll-a (and
other water characteristics) retrieval algorithms for the southern Caspian Sea and develop better
regional algorithms if needed. The negligible impact of the deep chlorophyll maximum on the
remote sensing signal suggests that only the concentrations and specific optical properties of
the optically active substances (and not their vertical distribution) have to be taken into account
when developing regional algorithms for retrieval of water characteristics in the southern
Caspian Sea.

Fig. 11 Modelled remote sensing reflectance in Station A3 using the constant chlorophyll-a value
through the water column and actually measured chlorophyll-a profiles.

Fig. 10 Remote sensing reflectance for the water body.
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