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Abstract. Floods seem to appear with increased frequency from one year to another. They create
great damage to property and in some cases even result in lost lives. However, a quick and
effective response by rescue services can greatly reduce the consequences. Machine learning
techniques can reduce the time necessary for flood mapping. We test various machine learning
methods to find the one with the highest classification accuracy. We also present the most impor-
tant points for quick and effective machine learning procedures on remote sensing data. First, the
data must be prepared correctly. We use satellite images, digital terrain models (DTMs), and the
river network. The data in its primary form (e.g., bands of multispectral satellite images or
DTMs) is insufficient. We also need certain derived attributes, such as the vegetation index
or the slope derived from the DTM. Second, we must select suitable training samples and a
suitable machine learning method. This approach to determining floods is presented in a
case study of flash floods in the Selška Sora river valley. Machine learning techniques have
proven successful in quickly determining flooded areas. The best results are produced by
the J48 decision tree algorithm. The success of the ensemble machine learning methods is com-
parable to the J48 algorithm, while the JRip classification is not as good. © The Authors. Published
by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.7.073564]
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1 Introduction

Natural disasters occur all over the world. They can happen anywhere at any time. In Europe,
floods are the most frequent type of natural disaster and account for 75% of all insurance
claims arising from natural disasters.1 Administration organizations work before, during, and
after the crisis events to issue alerts, monitor events, and estimate the impact. Real damage
evaluations carried out after the disaster allow for the verification and improvement of model
calculations. Satellite images have increased the ability to assess and predict natural hazards,
and this helps prevent the loss of property, infrastructure, and human lives. Since 2000, a
number of spaceborne satellites and sensors have changed the way we assess and predict
natural disasters. These sensors can quantify geophysical phenomena associated with natural
hazards. Significant improvements in the near real-time assessments of natural hazards have
been made due to increased data acquisition rates, higher sensor resolution, the improvement
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of change detection algorithms, and the integration of remote sensing systems.2 However,
natural disasters will never become completely predictable. They keep occurring, the affected
areas must be detected, and damage assessment still must be performed.

In recent years, Slovenia has been hit by numerous floods. The largest flood events occurred
in September 2007 and September 2010. The first one devastated the area covered by the munici-
palities of Železniki, Bohinj, Cerkno, and Idrija.3 The second devastated a third of Slovenia;4

central Slovenia and the capital of Ljubljana were hit the worst.
This paper deals with the 2007 event. The weather front that passed over the impact area in a

matter of hours yielded enough rainfall to cause severe flash floods in several parts of Slovenia.5

Since the flash flooding was most intense in the area surrounding the town of Železniki, our
analysis focused on this part of the flooded valley. The event caused colossal material damage.
Several villages were completely cut off, and several people died.

In such cases, rescue teams need to know the current situation in the field. This information
can be best mediated if the affected area is mapped in real time. Our procedure assures rapid and
accurate mapping using machine learning techniques. Having readily available input data from
various sources for machine learning is a precondition for fast mapping. Satellite images, digital
terrain models (DTMs), and the river network were used in our example. The output is a clas-
sification model for detecting flooded areas. A number of models were built using different
machine learning algorithms, all of which were tested in various conditions (data input resolution
and training set samples). The effectiveness of each algorithm was tested with randomly gen-
erated testing points and stratified cross-validation. The model with the best classification results
was chosen for use on a broader area.

2 Data

Satellite images provided the main data for flood area detection with machine learning pro-
cedures. These are appropriate for flood observations, because they can cover large areas
quickly. However, their limitations could be found in their spatial and temporal resolution
(a rapid image sequence is desirable) and sometimes in their inadequate spectral bands.
For best results, satellite data should be supplemented with other sources, such as DTMs
and hydrology. This data will offer numerous additional attributes that can be used to improve
flood determination. In our experiments, we used the mentioned data as attributes in machine
learning (Table 1).

SPOT 5 satellite images were obtained in panchromatic mode at 2.5-m resolution and in
multispectral mode at 10-m resolution. Images were acquired within the frame of
International Charter Space and Major Disaster,6 which, in the event of any natural or man-
made disaster, provides access to free satellite images and products in the shortest possible
time. The SPOT 5 images were acquired three days after the disaster, i.e., on 21 September
2007, when the clouds moved away from the affected area. Because the flash flooding was
triggered by torrential rain that fell over a very short period (approximately two hours), it was
hard to observe with any satellite system. It would be difficult to obtain images in such a
short time, and therefore only the consequences of the floods and wet areas can be observed.
The resolution of the multispectral image was increased from 10 m to 2.5 m by pan-sharp-
ening. To initiate the process, multispectral images of both resolutions were used (Table 1).
Various combinations of satellite image bands (red, near infrared, and shortwave infrared)
were used to calculate indexes; we selected normalized difference vegetation index (NDVI),
normalized difference built-up index (NDBI), and new built-up index (NBI) for machine
learning.7 Since rapid mapping was given priority over accuracy, the images were not cali-
brated or radiometrically corrected. Consequently, the indexes do not represent their true
value. Anyway, in a case where the index values are limited to a single study, such behavior
is acceptable. We are currently developing an automatic image processing chain (including
geometric and radiometric corrections) that will enable us to assure operability of the pro-
cedure on any image.8 The indexes were calculated as
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NDVI ¼ near IR − R

near IRþ R
Normalized difference vegetation indexðNDVIÞ

NDBI ¼ SWIR − near IR

SWIRþ near IR
Normalized difference built-up indexðNDBIÞ

NBI ¼ R × SWIR

near IR
New built-up indexðNBIÞ (1)

The NDVI was used to separate flooded areas from vegetation. The two other indexes were
used to detect built-up areas. Height, slope, and aspect were derived from DTMs at two different
resolutions: the national DTM at 12.5 m and the laser scanning (lidar)-based DTM at 0.5 m.
Lidar points were recorded only for the area that was most damaged by the floods, and con-
sequently the area under analysis was decreased to this area (marked by the black border
on Fig. 1).

Table 1 Attributes of the input data used for machine learning processes.
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Hydrology was used to calculate the distances from the rivers. The digital topographic map of
the river network with a 1:25,000 scale was used.

3 Methodology

It is hard to identify flooded areas from satellite images. Cloud cover often affects or even limits
the use of optical imagery. On the other hand, radar waves can penetrate cloud cover, and their
temporal resolutions do not lag too far behind the resolution of optical imagery. The latest con-
stellation of satellites equipped with SAR sensors, (e.g., COSMO-SkyMed) enable repeat obser-
vations several times a day,9 and TerraSAR-X enables observations every two days.10 Both radar
satellites provide high-resolution SAR imagery with a resolution of up to 1 m. In our case,
ENVISAT and RADARSAT images were acquired for the flooded area of Železniki, but
they proved unsuitable, because the rough terrain makes some parts of the valley invisible
to the sensor (i.e., the bottom is affected by shadows). Another problem was the fast water out-
flow after the event and the need to recognize mud and other material deposits. Similar electro-
magnetic properties measured by satellite sensors in different types of land produce
misclassifications. For example, the SPOT panchromatic band does not distinguish between
fields and pastures, and none of the SPOT multispectral bands distinguish with certainty between
flooded and built-up areas.11 Therefore, we tried to improve the detection of flooded areas with
the use of additional data and different machine learning algorithms, including ensembles. As a
result of the machine learning process, we came up with a model. This very complex model fits
the training data perfectly. However, overfitted models set to the training data are not good. The
model should be robust enough to be applicable to a broader area. To extract flooded areas, we
tested different methods involving two machine learning software packages: Weka12 and Clus.13

3.1 Testing the Impact of Training Sets

Two different sizes of training sets with the same attributes were tested. Some experience in
learning with different numbers of training points has already been gained. However, the num-
ber of training points and the treated area were increasing proportionally in our case, so the
correctness of the classification did not increase with the number of training points.14 The
learning process did not benefit from additional points, because they did not contribute
any new information about the flooded area. This time we used 255 learning points arranged
throughout the entire area (Fig. 2), as well as 145 learning points arranged across a smaller part
of the studied area (Fig. 1). The smaller area coincides with the area covered by DTM 0.5. In
both areas, the training points were arranged randomly. However, a few points in the smaller
training set were displaced slightly in order to achieve higher representation. Algorithm J48
and DTM 12.5 were used to test the influence of the different numbers of learning points. The
accuracy of the classification was 85.6% when the smaller area with 145 training points was

Fig. 1 Sample of 145 training points arranged on a smaller area.
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used and 80.8% when the entire area with 255 training points was used. This shows that the
sampling points should be chosen with great care. The point density was higher in the training
examples of the smaller area. A higher density of points and their arrangement in hetero-
geneous surfaces with different types of land cover assure that the different characteristics
of the area are included in the training data set. In this way, the flooded area is better repre-
sented, especially when we are dealing with a heterogeneous landscape. In our case, the points
were located in urban areas, flooded fields, flooded meadows, forests, etc. The selection of
training points in heterogeneous areas was assured by digital orthophoto. The definition of
flooded and unflooded training points was based on the visual interpretation of the satellite
images, hydraulic measurements, and field observations immediately after the torrential rain.
The importance of the sample data sets can be illustrated by the example of buildings. The
points located on the roofs of buildings have to be explicitly determined as unflooded; other-
wise, disturbances between flooded and built-up areas can occur, due to their similar reflection
of radiation in SPOT multispectral bands.9

Additionally, we have used the object-based approach and replaced the training points with
training segments (Fig. 3). These segments are groups of pixels with common spectral, geomet-
rical, and textural characteristics that represent real geographical objects.4 In our case, the seg-
mentation rate was very small, so each segment does not represent an individual object. In the
case of segments, the attributes are computed as an average value for a segment area.

The comparison of classification with points and segments was performed for a smaller area.
The test with 100 points did not confirm that learning based on segments would add anything to

Fig. 2 Sample of 255 training points arranged throughout the entire treated area. Dark points
represent flooded locations.

Fig. 3 Training sample with segments. We used 256 segments for the entire area and 143 seg-
ments for the smaller part. Only segments that were used for learning are shown here.
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the classification. When the learning data set consisted of 145 training points, 95% of the testing
points were classified correctly, while 91% accuracy was achieved when 143 training segments
replaced the 145 training points.

3.2 Testing the Influence of DTM Resolution

In the next step, the training set of 145 training points (Fig. 1) was tested in relation to DTM 0.5
and DTM 12.5 m. All samples consisted of attributes derived from the same data sets: satellite
images, DTMs, and the river network (see Sec. 2). The only difference during testing was the
DTM resolution. Heights, slopes, and aspects were derived from the DTM with resolutions of
0.5 m and 12.5 m. The learning with attributes derived from DTMs with both resolutions was
performed with the J48 algorithm, with which we determined the difference in classification.
This showed that a higher DTM resolution does not contribute significantly to an improved
classification of flooded areas. The detection rates for flooded areas are similar in both examples;
95% of the testing points were classified correctly in the first example, and 92% were classified
correctly in the second example. Figure 4 shows that only slope was included in the model built
by DTM 0.5 (a), while no attribute derived from DTM 12.5 was included (b). Other attributes
(height and aspect) evidently do not contribute to the classifications. This relates to the character-
istics of the studied alpine valley. Its lower part sweeps gently down to the end, and areas with very
different heights and aspects are flooded. The upper parts of the decision trees are identical in the
DTM 0.5 and DTM 12.5 classifications. In the lower part, the SPOT panchromatic band replaces
the slope attribute derived from DTM 0.5, and two additional nodes are added to the model on the
right (Fig. 4). This makes the classification chart on DTM 12.5 larger and more complex.

3.3 Testing Classification Algorithms

In our next test, we investigated several classification algorithms (Table 2), including some that
cannot be used to create classification models. One of them was the Naive Bayes classifier,

Fig. 4 Decision trees produced by Weka’s J48 learning algorithm on 145 training points using
different-resolution DTMs: DTM 0.5 (a) and DTM 12.5 (b). All learning attributes were equal except
those derived from DTMs.
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which is a probabilistic classifier. The Naive Bayes probability model cannot be used in our case,
because we have a small number of outcome classes (two) and a large number of features (16),
which can take on a lot of different values. In the end, we tested those machine learning methods
that seemed to be the most suitable for the classification of flooded areas with two classes
(flooded and unflooded areas). In relation to the small testing area, the classification methods
using DTM 0.5 and 145 training points were used. In Weka, the following classifier algorithms
were examined: the J48 decision tree algorithm,15,16 the JRip rule induction algorithm,17 and the
Bagging meta-learning algorithm,18 which generated a diverse ensemble of classifiers. The
Bagging ensemble method in Weka was compared to the Random Forest19 method in the
CLUS machine learning software. Ensembles with different numbers of trees were produced.

Following successful machine learning, the classification models were prepared, and maps of
flooded areas were produced.

4 Results

4.1 Comparison of Classifications with Different Data Input

Classifications with different numbers of training points and different DTM resolutions have
proven that the sample of 145 training points and attributes derived from DTM 0.5 produce
the best results. The results derived from the attributes obtained by DTM 0.5 were slightly better
than those obtained by DTM 12.5. The classification tree in the case of DTM 12.5 is also larger
and too complex to use in the classification of a broader area.

4.2 Evaluation of Machine Learning Classifiers

Table 3 shows the accuracy evaluation results for each method. The training success with each
machine learning method is presented with the percentage of correctly classified training points.
Ten-fold cross validation was used to define the percentage of correctly classified training points.

Table 2 Machine learning algorithms tested for flood detection. Algorithms marked with an aster-
isk were proven to be the most suitable for flood classification in our case study.
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Table 4 Accuracy of flooded area detection with the use of the Random Forest method (CLUS).
Comparison of classifications with different numbers of trees.

Ensemble size
(number of trees)

Accurately classified
training points

Accurately classified
testing points

5 90% 86%

10 89% 92%

20 90% 92%

30 90% 94%

40 89% 93%

50 90% 93%

60 91% 93%

Fig. 5 Map of the flooded area detected by Weka’s J48 learning algorithm on 145 training points.
(a) Flooded areas are shown in dark. (b) The classification tree is shown on the right part of the
figure. The slope attribute was derived from DEM with a resolution of 0.5 m.

Table 3 Accuracy of flood detection using various machine learning methods. Among ensembles
with different numbers of trees, those with 10 trees are presented in the table, because they were
shown to be optimal.

Method:

Correctly classified instances

Training Testing

J48 88% 95%

JRip 86% 85%

Bagging J48 (10 trees) 90% 92%

Random Forest C45 (10 trees) 89% 92%
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Randomly generated testing points were used to assess the accuracy of the final maps of the
flooded area.

The decision tree is a practical form of the model in which we deal with a binary classifi-
cation in which only two classes are possible: flooded and unflooded areas. The highest clas-
sification accuracy measured by randomly generated testing points was obtained by the single
tree J48 algorithm (95%). Classification accuracy of 92% was obtained by ensemble algorithms
(Bagging, Random Forest), while 85% classification accuracy was obtained by the JRip rules
algorithm.

Similar algorithms were used to build an ensemble of models. We expected an improvement
in the classifications, but this did not happen. The accuracy of the ensemble methods did not
exceed the accuracy of the single model. An ensemble of size 10 already reaches a high accuracy
value, which cannot be significantly increased by increasing the number of trees (Table 4).

Fig. 6 Map of flooded area detected by Weka’s J48 algorithm (top), along with the classification
tree constructed with the J48 algorithm and the arrangement of 145 training points. DTM 12.5 was
used for the learning process, as well as the final classification.
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The higher accuracy of testing points (when compared to training points) is a conse-
quence of the locality of training points, some of which were arranged in areas that are
hard to classify (e.g., points located on rooftops are unflooded). However, it could be difficult
to extract these unflooded areas from the flooded areas surrounding them. Similar examples
are points lying on a riverbank overgrown by trees and shrubs. These points should be
denoted as flooded if water could be detected through the plants or unflooded if the canopy
covers the surface completely. Such selection of training points makes it possible to produce
a good classification, although randomly generated testing points can achieve even higher
accuracy.

4.3 Mapping of the Flooded Area

Figure 5 shows the flooded area detected by the J48 algorithm (a). The maps generated by
other models are not presented, because they are visually similar. This figure clearly indicates
that the misclassifications occur mostly in built-up areas and fields. Both areas are presented in
similar tones in Fig. 5. Misclassifications were a result of similar reflections of radiation from
flooded and unflooded built-up areas or fields. The classification model is shown on the right
side of the figure; it was built on training data of 145 points and consists of four nodes and
five leaves. The attributes that take part in this classification are the green and near IR
bands of the SPOT pan-sharpened image, distance from water, and slope. It is seen that the
three indexes calculated from different bands of SPOT multispectral image were not included
in the model. However, the green and near IR bands could replace the NDVI index to detect
vegetation. NDBI and NBI were evidently incapable of recognizing built-up areas in the
treated area.

The produced model should be robust enough to be applied to any flood event in an area with
similar characteristics. For this reason, the model generated in the training area was applied for
classification in a larger area (Fig. 6). The training area, the number of training points, and their
attributes were the same as in the previous example, but DTM 0.5 was replaced by DTM 12.5.
The accuracy test showed that 85.6% of the 125 testing points arranged over the whole area were
classified accurately. This confirms that our model could be used successfully outside the train-
ing area and is applicable to similar or next flood events.

5 Conclusions

In this study, we have tested machine learning techniques used in the process of flood detection.
The results have proved that the machine learning algorithms could be used for detecting flooded
areas with high accuracy. To achieve accurate results, both good-quality data and an effective
machine learning algorithm are essential.

At first, the attributes of the training points were collected. This step is extremely impor-
tant, because the success of the learning phase is highly dependent on it. High temporal and
spatial data resolution are the key factors when dealing with flood monitoring. In particular,
Earth observation data (satellite images) must be accessible as soon as possible after the dis-
aster, and the spatial resolution has to be appropriate in order to observe the required flood
details. The boundaries of the flooded areas can be detected only if the spatial precision of the
data is high enough.

To compare the classification accuracies, we used several machine learning algorithms.
Among the tested set of classifiers, the J48 algorithm has proven the most successful (Table 3).
This is the optimal choice for binary classifications, in which only two classes are possible:
flooded or unflooded areas. Ensemble methods were also used to obtain better predictive per-
formance. However, they did not lead to a better classification.

The machine learning approach has proven very successful for flood detection and has pro-
vided accurate classification models. The percentage of accurately classified training points
reaches almost 90%, and the accuracy of the final classification surpasses 90% (Table 3).
However, additional input data and machine learning algorithms still need to be tested if
we wish to find the best combination for detecting flooded areas. Especially problematic are
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built-up areas or fields, where it is hard to distinguish between flooded and unflooded areas. This
aspect needs to be addressed in the future.
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