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Abstract. A pixel-based cropland classification study based on the fusion of data from satellite
images with different resolutions is presented. It is based on a time series of multispectral images
acquired at different resolutions by different imaging instruments, Landsat-8 and RapidEye. The
proposed data fusion method capabilities are explored with the aim of overcoming the short-
comings of different instruments in the particular cropland classification scenario characterized
by the very small size of crop fields over the chosen agricultural region situated in the plains of
Vojvodina in northern Serbia. This paper proposes a data fusion method that is successfully
utilized in combination with arobust random forest classifier in improving the overall classifi-
cation performance, as well as in enabling application of satellite imagery with a coarser spatial
resolution in the given specific cropland classification task. The developed method effectively
exploits available data and provides an improvement over the existing pixel-based classification
approaches through the combination of different data sources. Another contribution of this paper
is the employment of crowdsourcing in the process of reference data collection via dedicated
smartphone application. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
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1 Introduction

The automatic cropland classification based on the data from spaceborne imagery is one of the
most important sources of valuable information about the composition and the development of a
variety of crops grown in different agricultural regions around the world. A general goal is to be
able to estimate the area of specific crops,1,2 monitor their health, and predict their yield.3,4 A
fundamental task in such applications is to determine the type of crop that is grown on a specific
stretch of land.5–7 The result is that the cropland classification has a significant role in the proper
monitoring and management of land use on a local as well as a global level and represents an
important factor in the overall agricultural policy making.8 Therefore, it is essential to make such
tools more accessible to different parties involved in the agricultural market and offer them the
expertise acquired from the case studies of their deployment and development.

The recent advances in the satellite imaging technology provide researchers and practitioners
with ever more data in both quantitative and qualitative ways. This opens new opportunities for
the extraction of meaningful and useful information, but it also creates new challenges regarding
the choice and the development of appropriate methods for their processing. While satellite
imagery for crop identification and crop-covered area estimation is a practice with more
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than 30 years of tradition,9,10 the sensors have only recently gained resolution that allows for
precision monitoring in the case of agriculture practices based on small land parcels.6,11,12 The
fact that most of these satellite imagery systems are commercial represents one of the obstacles
for their widespread use and produces the need for the effective and efficient use of a vast amount
of freely available data, like the high-quality data already available through the Landsat pro-
gram13 or the data that are planned to be published under similar terms by the upcoming
Sentinel missions.14

In line with these efforts, this paper presents a pixel-based cropland classification study that
utilizes a time series of multispectral images with different properties which were acquired at
different resolutions by different imaging instruments—Landsat-815 and RapidEye.16 It also
explores the capabilities of the proposed data fusion method for their combination with the
aim of overcoming the shortcomings of different instruments in the particular cropland classi-
fication scenario characterized by the specific size of crop fields over the chosen agricultural
region situated in the plains of Vojvodina in northern Serbia (southeastern Europe). It can
be said that this scenario, where agriculture is based on very small areas dedicated to specific
crops, is quite common in different parts of the world. One of the problems that arises is the
presence of crop fields with very small areas and small dimensions compared to the spatial res-
olution of the freely available multispectral imagery. Additionally, if there is no available infor-
mation about the crop field boundaries or cadastral data (such as in this study) which would
enable the application of an object-based classification approach, it is of great significance to
develop methods that effectively exploit available data and provide an improvement over the
existing pixel-based classification approaches through the combination of different data sources.
Therefore, this paper proposes a data fusion method that is successfully utilized in combination
with a robust random forest classifier17 in improving overall classification performance, as well
as in enabling application of satellite imagery with a coarser spatial resolution in the given spe-
cific cropland classification task. A random forest classifier was chosen due to its recent use in
remote sensing and because it has been accepted as an efficient tool in crop classification.18–20

The proposed method exploits different spectral and spatial resolutions of two different data
sources in order to mitigate the described problem. Through feature-level fusion where
composite features are extracted from all available multisensor data,21 a data integration,
which is considered as a low-level data fusion, is employed. It addresses the problem by
using one mosaic multispectral image of the observed area, which is formed by mosaicking
images acquired in the short time interval by the constellation of commercial satellites with
a higher spatial resolution as an addition to the freely available Landsat-8 multispectral time
series with a coarser spatial resolution which is acquired over a longer time interval that covers
the phenological development of all observed crop types. This approach is related to a recent
study,22 which also tried to exploit the advantages of different data sources, but with application
in the detection of vegetation changes. Through data fusion, it extends the applicability of the
pixel-based classification using freely available satellite imagery with a coarser spatial resolution
to the classification scenarios that demand finer spatial resolution due to the agricultural practices
that are characterized by the growth of different crop types on the very small parcels of farmland.

2 Study Area

The analyses presented in this study were conducted over the region of Vojvodina, with an area
of ∼21;500 km2, which is situated in northern Serbia and represents the southern part of the
Pannonian Plain spreading over East-Central Europe. It is by far the most important agricultural
area in the region23 and presents a major contributor to the gross domestic product of the
Republic of Serbia. According to the results of the conducted census of agriculture23 which
included 45 municipalities in Vojvodina as shown in Fig. 1, there were 1,606,896 ha of utilized
agricultural area, from which 1,466,176 ha are arable land, while the rest are pastures and mead-
ows. It is a highly fertile soil (Chernozem) with a moderate continental climate that is suitable for
the production of a variety of crops. However,>93%23 of the arable land in 2012 was utilized for
the production of five selected crop types, which are the subject of the cropland classification
study presented here.

Crnojević et al.: Classification of small agricultural fields using combined Landsat-8 and RapidEye imagery. . .

Journal of Applied Remote Sensing 083512-2 Vol. 8, 2014



In the beginning of 2013, the Provincial Secretariat for Agriculture, Water Economy and
Forestry of Vojvodina decided to support the development of the study that would enable annual
mapping of the most common crop types in Vojvodina using remote sensing and the production
of an appropriate annual cropland data layer. The aim of the study was to investigate current
techniques and their cost, as well as to propose a new low-cost solution that would match the
needs of the local provincial government.

The main problem that came up from the given constraints was that the agricultural practice
that has been employed in this region over a very long period of time (many decades) imposed
the requirement to use the high-resolution satellite imagery as part of a possible solution.
Namely, almost all agricultural holdings in this region are family holdings,23 and the key char-
acteristic of employed agricultural practice is that a significant number of farmlands and fields
have a very small size. Furthermore, on adjacent fields, different crop types are usually grown,
while crop rotation is also present. This agricultural practice is very common across different
parts of Europe and an example from Vojvodina is given in Fig. 2.

The small sizes of the fields and their variability as such should not present a problem for
pixel-based classification, but since high-resolution multispectral images of the described region
were not freely available, the cost factor associated with them became the major issue.
Additionally, the selected crop types have misaligned phenological development, which means
that the multitemporal classification approach that utilizes an image time series is necessary,
making the cost of the classification system even higher. One possible solution was to efficiently
exploit the currently available free satellite imagery, which is provided by the United States
Geological Survey and their recently launched Landsat-815 satellite.

Since the standard length of crop fields in Vojvodina is 400 m, and the spatial resolution of
the Landsat-8 images is 30 m, the use of Landsat-8 time series as the primary and only source of
data would mean that all crop parcels smaller than ∼2.5 ha (60 m width) would be <2 pixels

wide, which would make the classification of such pixels very unreliable. If this situation would
appear only sporadically, this kind of error would be perhaps acceptable. However, as shown in
Fig. 3, which illustrates the distribution of crop fields <3 ha over the municipalities in Vojvodina
(according to the official data available in Ref. 24), there is a significant number of crop fields
that are in this category—on average, ∼5%. Therefore, the issue of an insufficient spatial

Fig. 1 Map of the study area (Vojvodina) with borders of municipalities shown on the chart in
Fig. 3.
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resolution cannot be neglected. As a result, Landsat-8, such as it is, cannot be fully utilized in the
particular case of the described agricultural practices and employment of imagery with higher
spatial resolution is necessary.

Although sensors with high spatial resolution onboard some other commercial satellites, like
RapidEye or SPOT, are more appropriate with respect to small field sizes, spectral characteristics
of the Landsat-8 imaging instruments are better tuned for the applications like cropland clas-
sification. However, this only holds when the fields are large enough. In the given situation with
a huge number of fields <3 ha, it was decided that an additional complementary source of

Fig. 2 Illustration of crop field sizes in Vojvodina as a consequence of agricultural policy—
standard length of fields is 400 m, while the width can be as small as 10 m (image source:
RapidEye, near Kucura, June 2013). The same area is also used for visualization of classification
results in Fig. 5.

Fig. 3 Distribution of crop fields smaller than 3 ha over the 45 municipalities in Vojvodina listed
above. Each bar (red+blue) represents the total agricultural area in the particular municipality in
thousands of hectares, while the red part represents the portion of fields <3 ha, given also in
% above the chart. The chart was produced using the official census data.24
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information in the form of commercial high-resolution multispectral satellite imagery should be
used. However, there were some recent studies25,26 that were aimed at determining the adequate
spatial resolution of multispectral images for supervised crop classification depending on the
desired level of classification accuracy and other performance criteria. Their results showed
that although a small pixel size is favorable in the case of small fields, it can increase
within-class variability.

As has been already said, due to the misaligned phenological phases, multispectral time
series are needed to enable classification of selected crop types (when winter wheat was to
be harvested, corn and soybean were at very early stage—third week of June). The price of
the most affordable satellite products with adequate spatial and spectral resolution, defined
time window of acquisition, and guaranteed percentage of cloud cover in the case of observed
study area was >40;000 euros per acquisition. This would mean that the total price of the time
series would be several times higher, which is often not acceptable for small public services with
constrained budgets. On the other hand, if there are enough cloud free days during the season,
Landsat-8 products alone could be a perfect match for a time series.

Therefore, in this paper, we present a study that utilizes a method for fusion of Landsat-8 time
series with purchased images of higher spatial resolution from RapidEye, which are acquired in a
single data acquisition campaign (one order), i.e., in a single pass of a commercial satellite or in a
very short time interval by a constellation of commercial satellites. The study shows that in this
way, even in the case of small fields, a very high classification accuracy with a satisfactory spatial
resolution can be achieved and that the use of the proposed method is also an affordable way to
extend the application of Landsat-8 imagery to the classification problems that usually require
data with higher spatial resolution.

3 Data

In this study, multispectral satellite images from two different data sources are utilized. The first
consists of a multispectral time series acquired between June and September 2013 over the study
area described in Sec. 2 by the Landsat-815 medium-resolution imaging instruments, and the
second source is a mosaic of several high-resolution multispectral images taken between the
9th and 22nd of June 2013 by the constellation of commercial RapidEye16 satellites. These
two data sources were used separately and combined in the analyzed pixel-based cropland clas-
sification task in order to explore their applicability and enhancements arising from the proposed
data fusion method.

3.1 Satellite Imagery

Similar to Landsats 4, 5, and 7, Landsat-8 has a 16-day repeat cycle, where data are acquired in
185 km swaths and segmented into 185 × 180 km scenes defined in the second World-wide
Reference System of path (groundtrack parallel) and row (latitude parallel) coordinates. It was
launched in February 2013 and it carries two imaging instruments onboard, Operational Land
Imager (OLI) and Thermal Infrared Sensor (TIRS) pushbroom sensors, which acquire images in
visible, near-infrared (NIR), short-wave, and thermal infrared spectrum with 12 bits of precision.
The OLI sensor provides eight different spectral bands with a spatial resolution of 30 m and one
panchromatic band with a resolution of 15 m. In addition to the blue, green, red, and NIR bands
which are also present onboard the RapidEye satellites, it also has four additional spectral bands.
These are deep (coastal) blue, two short-wave infrared (SWIR) bands, and an additional SWIR
band for cirrus cloud detection. The coastal blue band (0.43 to 0.45 μm) is intended for improved
sensitivity to chlorophyll.15 The TIRS sensor provides emitted radiance in two thermal infrared
bands with a spatial resolution of 100 m, but the bands are resampled by cubic convolution to
30 m and coregistered with the 30 m OLI spectral bands. The Landsat-8 images are delivered as
level 1 terrain-corrected products.

In the case of the presented study area, roughly half of the area belongs to the Landsat path
186 (rows 28 and 29), while the other half belongs to the same rows in path 187, with a sig-
nificant overlap between the paths, Fig. 4(a). Since the aim was to use the Landsat-8
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multispectral time series in a supervised classification task, utilization of Landsat sidelaps, as
proposed by Reynold,13 would provide additional time samples in a series. However, a signifi-
cant part of labeled ground-truth data was in the nonoverlapping parts of paths 186 and 187, so
images from these two paths were used separately and independently from each other.
Accordingly, in the rest of the paper, datasets consisting of images from paths 186 and 187
(rows 28 and 29) are designated as path186 and path187, respectively.

The information obtained from both OLI and TIRS sensors, excluding the panchromatic
band, i.e., 10 spectral measurements associated with each spatial pixel, were used in all analyses
involving Landsat data. The number of images with low cloud coverage in the time series
between May (the first month of Landsat-8 providing data for the study area) and September
(the end of the last harvest) varied between the two paths—5 and 4 for paths 186 and 187,
respectively. Acquisition dates of used Landsat-8 images with a low cloud coverage are given
in Table 1. In the case of classifiers based on images from path 186, one extra image acquired in
July leads to a better classification performance when compared to the classifiers based only on
four Landsat-8 images from path 187, Sec. 5. The images were provided through the Landsat
repository maintained by the United States Geological Survey,27 using a very convenient web
service.28

When it comes to data provided by the constellation of five RapidEye satellites,16,29 multi-
spectral images associated with 69 tiles of the same size into which the study area was partitioned
were provided. All partition tiles are shown in Fig. 4(b). The selected imaging time window was
during June, just before the harvest of winter wheat. However, corn and soybean were at the early
stages of phenological development. Due to the bad weather conditions, the duration of the
final image acquisition time interval was five days longer than was initially planned and a
higher number of images was taken in order to achieve <10% cloud cover per tile.
Although the RapidEye constellation is capable of collecting 4 million km2 of Earth every
day, if the time interval between the first and the last image is too long, the spectral signature
of the same crop can vary significantly over the interval.

The data were delivered as level 3A16 orthorectified products in the form of 25 × 25 km tiles
with a spatial resolution of 5 and 500 m wide sidelaps. Using all available images, after an

Fig. 4 Illustrations of Landsat-8 World-wide Reference System of path and row coordinates over
the study area—Vojvodina (a). RapidEye partition of the study area into 69 tiles (b).

Table 1 Acquisition dates of Landsat-8 images used in time series.

Landsat-8 path 186 Landsat-8 path 187

Date June 22, 2013 June 13, 2013

July 08, 2013 —

July 24, 2013 July 31, 2013

August 09, 2013 August 16, 2013

August 25, 2013 September 01, 2013

Crnojević et al.: Classification of small agricultural fields using combined Landsat-8 and RapidEye imagery. . .

Journal of Applied Remote Sensing 083512-6 Vol. 8, 2014



additional preprocessing step involving atmospheric correction of tiles, a mosaic image of the
study area with the guaranteed percent of cloud cover was formed. Parts of the tiles outside the
study area were initially removed from the data.

All RapidEye satellites have the same orbital plane and they are equipped with identical,
equally calibrated imaging instruments. These sensors provide five spectral bands (blue,
green, red, red-edge, and NIR) with the same nominal ground sampling resolution of
6.5 m,29 which is enhanced to 5 m after additional processing. The red-edge channel (0.69
to 0.73 μm)30 is very sensitive to changes in chlorophyll content,31 which can improve classi-
fication performance directly31 or indirectly through the design of new features.32

3.2 Ground-Truth Data Collection Campaign

In order to perform a supervised cropland classification, an appropriately labeled dataset was
made through the conducted data collection campaign. The campaign was mostly carried out
during June 2013 and it consisted of the work on the ground, where different crop types were
manually annotated by the experts from the Extension Service who gathered information in the
fields. A certain part of the campaign was completed through an innovative crowdsourcing
method based on a specially designed user application implemented on a smartphone platform.
Users were sending geo-tagged images of crop in their field via Android application
AgroSense.apk, where each image contains the label designating the crop type selected by
the user. Images are automatically synchronized with the server where, after verification and
parcel plotting, corresponding pixels are added to a reference dataset. In return, contributors
would get free access to the products based on the processed satellite images of the same
field through the geographic information system portal. The ground-truth data collected
from both sources were then consolidated and used for the extraction and labeling of multispec-
tral measurements corresponding to individual pixels, which after this process formed the final
labeled dataset used for training and testing of classifiers in different classification scenarios.

The process of extraction and labeling of pixels from satellite images, in the case of any
of the data sources described in the previous subsection, was performed on the level of
individual fields (parcels), i.e., the information about the association of each pixel with the
particular field was preserved during the data extraction process in order to avoid the situation
that pixels from the same field appear later in both training and test sets. The precise delineation
of labeled fields was performed manually by using the collected global positioning system
coordinates of each field and creating high-resolution georeferenced RapidEye mosaic image
as described in Sec. 3.1.

The total number of annotated fields was 1414, selected in such a way to sample as uniformly
as possible over the whole study area (Vojvodina) in order to take into account the spatial vari-
ability of spectral signatures of the same crop types over the area. During the campaign, parcels
with 24 different vegetation categories were annotated Among them were 20 different crop
types, while the remaining categories were meadows, pastures, and similar land cover types
or other uncategorized cultivated plants. Among the 20 categorized crop types, only 5 had a
significant number of samples over the whole study area and were annotated as corn, wheat,
soybean, sugar beet, and sunflower, while the parcels corresponding to all the remaining cat-
egories were joined together in one separate class and named as “other.” The result is that the
final labeled dataset consisted of six different classes, where 1184 parcels correspond to five
selected crop types. In order to increase the variability of samples in the class other and better
simulate real working conditions, the class other was expanded with 105 additional shapes (poly-
gons) representing vegetation in urban areas and asphalt roads. Categories like forests and vari-
ous water bodies were excluded from the dataset since they can be easily detected in advance
from the high-resolution multispectral images by different methods due to the specific spectral
and texture properties of forest areas and the specific spectral response of water. Similarly, the
final ground-truth dataset in class other does not contain samples of clouds, since both Landsat-8
and Rapideye products are delivered with cloud cover masks15,16 obtained by the prepocessing of
acquired images using some of the supervised classification algorithms: neural networks based
expanded automated cloud-cover assessment (ACCA), proposed by Scaramuzza et al.,33 or
SPARCS,34 which can be used as an alternative to ACCA.
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3.3 Training/Test Sets for Cross-Validation

The evaluation of the performance of the proposed features and the corresponding classifiers
presented in Sec. 4 was, in all cases, performed by the 10-fold cross-validation method utilizing
one partition consisting of 10 randomly created nonoverlapping subsets. Each parcel was attrib-
uted to only one subset of the partition. In each experiment, nine subsets were used as a single
training set, and the remaining subset from the partition was used as the corresponding test set.
The final performance is then obtained as an average of 10 independent classification
experiments.

The reference dataset used in different experimental setups (classification scenarios) was
partitioned in such a way that pixels belonging to the same parcel were always kept together.
In addition, all parcels in the reference dataset were randomly associated with 10 independent
subsets in such a way that the subsets are as uniform as possible regarding the class content at the
parcel level. However, due to the variable sizes of parcels, the obtained partition subsets still have
different total numbers of pixels. Therefore, subsets were additionally equalized in an iterative
manner by exchanging shapes of the same class with the biggest and the smallest number of
pixels between the two chosen subsets that have the largest discrepancy in the total numbers of
pixels, respectively. This equalization procedure is performed until the standard deviation of the
total numbers of pixels per each subset is less than one percent of the average numbers of pixels
per subset. As a result, subsets of the partition at the end contain an almost equal number of
shapes per each class, as well as the total numbers of pixels, but the distribution of the numbers of
pixels between classes is still different among the subsets. This is due to the variable shape sizes
and the chosen subset creation criteria, which is chosen in order to increase the number of sam-
ples from different shapes, i.e., spatial regions, per class in each subset. In this way, a higher
spatial variability of samples is achieved per subset, making them more heterogeneous (difficult)
and, consequently, more appropriate for the evaluation of a pixel-based classifiers’ performance
over the larger spatial region.

4 Methodology

Prior to classification, a preprocessing of satellite images has been performed with the aim of
achieving a reduction in scene-to-scene variability—different physical conditions of the
scenes during acquisitions. Therefore, in the cases of both data sources Landsat-8 and
RapidEye, the original quantized and calibrated pixel values, i.e., digital numbers, were first
converted to the corresponding radiance values and then translated into dimensionless surface
reflectance values through the process of atmospheric correction. Consequently, the variations of
the scattering and absorbing effects of atmospheric gases and aerosols were reduced.
Atmospheric correction was performed with FLAASH procedure based on the MODTRAN radi-
ative transfer model.35

In the case of RapidEye, all 69 image tiles were first atmospherically corrected and sub-
sequently combined into a single mosaic image used in the classifier design. It is this image
that was then used in the classifier design. All Landsat-8 images listed in Table 1 had <10%
of cloud coverage in the study area and were included in experiments. Atmospheric correction
of Landsat-8 images was performed on bands 1 to 7 of the OLI sensor, while bands 8 and 9 were
converted to the top-of-atmosphere reflectance. For paths 186 and 187, described in Sec. 3, two
separate classifiers were created in all classification scenarios. This was the case in experiments
utilizing only Landsat-8 data as well as in experiments based on the proposed method for fusion
of Landsat-8 and RapidEye data. Landsat-8 images from the same path but taken at different
points in time (parts of the same time series) were considered as independent sources of
information.

The usefulness of the Landsat-8 panchromatic band for crop classification was also inves-
tigated through the set of experiments based only on Landsat-8 data in which all 30 m Landsat-8
OLI bands were jointly pan-sharpened to 15 m by using the Gram-Schmidt orthogonalization
algorithm.36 TIRS thermal bands were not pan-sharpened, but only upsampled to 15 m reso-
lution. In addition, the panchromatic band was also used as an input feature, which was not
the case in the experiments with the original 30 m Landsat-8 bands.
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The feature vectors for pixel-based cropland classification using different types of input data
were created in the following way. In the case of classification scenarios including only Landsat-
8 data with the original 30 m resolution, the feature vector is formed through concatenation of 10
multispectral measurements from the time series, which correspond to the same spatial pixel.
This results in a 40-dimensional feature vector in the case of 30 m Landsat path187 and a 50-
dimensional feature vector in the case of 30 m Landsat path186 due to four and five Landsat-8
images in each time series, respectively. When it comes to 15 m pan-sharpened classification
including only Landsat-8 data, the feature vector contains 11 multispectral measurements from
each image in the time series. This results in a 44-dimensional feature vector in the case of 15 m
Landsat path187 and a 55-dimensional feature vector in the case of 15 m Landsat path186. The
values in feature vectors are first ordered according to the position of the corresponding Landsat-
8 images in the time series, and then the values corresponding to individual spectral measure-
ments at different wavelengths (which are extracted from each image in time series) are ordered
in the same way as the spectral bands in the original Landsat-8 image.

In case of a single mosaic RapidEye image, the feature vector consists of 45 spectral
measurements per pixel. These values correspond to five spectral measurements of the center
pixel and its eight closest neighbors (3 × 3 neighborhood), which gives a total of nine
five-dimensional measurements at nine spatially close locations. On the contrary, in the
case of Landsat-8, the same neighborhood approach was not used due to the coarse spatial
resolution.

In classification scenarios based on the fusion of 30 m Landsat-8 and 5 m RapidEye data, one
feature vector was formed for each 5 m × 5 m spatial pixel. This was performed by concatenat-
ing feature vectors described in scenarios involving only the 30 m Landsat-8 time series with the
45-dimensional RapidEye feature vector involving a 3 × 3 neighborhood. In order to combine
data at the same spatial resolution and provide spatial alignment, Landsat-8 images were
upsampled by a factor of 36 using the nearest-neighbor interpolation method, which is the
most appropriate choice in this case. This method maintains the original crop structure without
unnecessary degradation of the field borders that would be introduced by more sophisticated
interpolation methods. By doing so, we created a 85-dimensional feature vector for path 187
and a 95-dimensional feature vector for path 186.

After extensive simulations and numerous experiments, seven experiments are presented here
in total to evaluate the performance of the proposed system.

• two experiments, one for each Landsat-8 path, using only Landsat-8 imagery—30 m spa-
tial resolution;

• two experiments, one for each Landsat-8 path, using only pan-sharpened Landsat-8
imagery—15 m spatial resolution;

• one experiment with RapidEye imagery only—5 m spatial resolution;
• two experiments, one for each Landsat-8 path, combining upsampled 30 m Landsat-8 and

5 m RapidEye imagery—5 m spatial resolution.

We also investigated the possibility of combining 15 m pan-sharpened Landsat-8 with 5 m
RapidEye data using the proposed fusion method, but the results of the experiments showed it to
be inferior to fusion with the 30 m Landsat-8 data.

The classifier that was used in all experiments was random forest.17 It belongs to nonpara-
metric ensemble learning methods, which boost diversity among the models in an ensemble
through random sampling of the data space. Diversity is achieved by random selection of
both samples and features. Random forest uses decision trees as the base classifier. There is no
pruning of the constructed decision trees, so it can be said that the final decision trees are par-
tially overfitted to their own bootstrap sample of the data. The second aspect of the ensemble
diversity is achieved through random selection of features. This means that at each branch in the
particular tree, the decision of which feature to split on is restricted to a random subset of all
features. The size of a random subset is predefined in advance, but a new subset is always formed
for each branching point. The size of the subset is usually taken to be log2ðN þ 1Þ, where N is
the dimensionality of the feature space. The random forest classifier was chosen due to its good
properties18 and widespread application in remote sensing tasks, like land cover37 as well as
cropland18–20,38,39 classification based on different types of data.
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5 Experimental Results and Discussion

Experiments were performed by using MATLAB® programming language and Waikato
Environment for Knowledge Discovery (Weka) library,40 which is an open-source data mining
and machine learning tool. MATLAB®was used for labeling ground-truth data, extraction of the
feature vectors, and creation of training and test sets, while the implementation of random forest
classifier17 from Weka was used in all classification experiments.

Tables 2–8 provide accuracy assessment matrices and performance statistics for different
classification scenarios (the values typeset in bold represent the numbers of correctly classified
instances). The accuracy assessment matrix (confusion matrix) is a representation of misclassi-
fication errors and ideally contains nonzero values only on the main diagonal. The values outside
the diagonal show the number of pixels of a class indicated on the top (reference data) that have
been labeled by the classification algorithm as the class indicated in the left row (classified data).
At the bottom of each table, the overall performance of a classifier is presented by using two
aggregating measures: overall accuracy of the classification and Cohen’s kappa coefficient.41–43

The kappa coefficient is computed by subtracting the agreement expected by chance from the
observed agreement and dividing the result by the maximum possible agreement. In addition,
values given in the right-most column represent the precision (user’s accuracy) per class, while
the bottom row contains hit rates or recalls, i.e., producer’s accuracies. In order to statistically
test the significance of differences in classifcation accuracies expressed by tables representing
different experiments, an appropriate Z test43 based on Z statistics of Coehn’s kappa coefficients
was performed between all pairs of experiments (two set of pairs were constructed, one for each

Table 2 Accuracy assessment matrix for classifier using only 30 m Landsat-8 data, path 186.

Corn Wheat Soybean Sugar beet Sunflower Other Precision

Corn 13,583 41 1315 21 310 401 0.87

Wheat 79 17,551 2 0 25 2903 0.85

Soybean 199 1 8765 4 40 198 0.95

Sugar beet 7 0 21 8451 49 23 0.99

Sunflower 34 1 25 125 5091 75 0.95

Other 221 1211 92 6 85 17,204 0.91

Recall 0.96 0.93 0.86 0.98 0.91 0.83

Accuracy ¼ 0.90 Kappa ¼ 0.88

Table 3 Accuracy assessment matrix for classifier using only 30 m Landsat-8 data, path 187.

Corn Wheat Soybean Sugar beet Sunflower Other Precision

Corn 28,304 261 1771 54 1932 1042 0.85

Wheat 228 18,902 64 3 100 8208 0.69

Soybean 620 13 14,656 499 32 182 0.92

Sugar beet 26 2 207 12,692 28 63 0.97

Sunflower 329 141 112 118 7376 257 0.89

Other 403 4340 173 52 576 27,149 0.83

Recall 0.95 0.80 0.86 0.95 0.73 0.74

Accuracy ¼ 0.83 Kappa ¼ 0.79
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Table 4 Accuracy assessment, classifier using only 15 m pan-sharpened Landsat-8 data, path
186.

Corn Wheat Soybean Sugar beet Sunflower Other Precision

Corn 54,104 209 7285 101 1487 2844 0.81

Wheat 295 69,975 35 24 151 10,550 0.86

Soybean 1126 9 32,424 101 1049 428 0.92

Sugar beet 29 4 89 33,658 2375 133 0.93

Sunflower 135 43 226 478 16,470 417 0.93

Other 655 5050 219 47 850 68,905 0.91

Recall 0.96 0.93 0.79 0.98 0.74 0.83

Accuracy ¼ 0.88 Kappa ¼ 0.85

Table 5 Accuracy assessment, classifier using only 15 m pan-sharpened Landsat-8 data, path
187.

Corn Wheat Soybean Sugar beet Sunflower Other Precision

Corn 110,274 819 9321 339 6965 5673 0.83

Wheat 762 73,877 313 100 1115 31,242 0.69

Soybean 3755 86 55,996 1699 368 827 0.89

Sugar beet 342 16 873 50,950 493 663 0.96

Sunflower 2191 869 753 309 26,989 1273 0.83

Other 2569 19,275 666 410 4289 108,379 0.80

Recall 0.92 0.78 0.82 0.95 0.67 0.73

Accuracy ¼ 0.81 Kappa ¼ 0.77

Table 6 Accuracy assessment matrix for classifier using only RapidEye data.

Corn Wheat Soybean Sugar beet Sunflower Other Precision

Corn 1,025,457 24,584 62,331 1478 8840 39,819 0.88

Wheat 18,284 699,709 36,195 8314 3456 190,985 0.73

Soybean 24,747 33,391 356,499 25,577 50,536 87,399 0.62

Sugar beet 1667 5312 24,770 492,584 28,418 27,422 0.85

Sunflower 4733 1910 57,499 32,416 232,491 43,233 0.62

Other 24,295 123,107 138,801 11,201 48,985 1,041,295 0.75

Recall 0.93 0.79 0.53 0.86 0.62 0.73

Accuracy ¼ 0.76 Kappa ¼ 0.71
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reference dataset—path186 and path187). The results of Z tests with a 95% confidence interval
were positive in all cases, i.e., they confirmed that there are statistically significant differences
between the results of different experiments based on the same reference dataset.

It can be observed that the proposed data fusion method has a similar performance in com-
parison to the classifier based only on the 30 m Landsat-8 time series for path186, while it shows
a significant improvement in the case of path187. However, pure 30 m Landsat-8 has inadequate
spatial resolution for small crop fields, as described in Sec. 2, as>25% of arable land in the study
area is composed of small parcels below its spatial resolution. An attempt to improve the
Landsat-8 resolution through pan-sharpening to 15 m deteriorated its classification performance,
while the achieved resolution is still not comparable with 5 m resolution of the proposed data
fusion method. In addition, results in Table 6 show that classifier based only on a single
RapidEye mosaic image composed of images acquired in a short time interval that is only a very
small part of a total time period covering phenological development of all selected crop types,
exhibits a poor quality and cannot be used as a reliable source of information for further analyses.

When it comes to analysis of classification results for individual crops, all classifiers showed
a similar behavior. Crops that are the easiest to distinguish are sugar beets and corn. The hardest
crops to classify are soybean and sunflowers, which are often confused with each other and with
corn. The class other is one that represents a mixture of a variety of agricultural crops; a good
generalization in the case of this class is hard to achieve. We can see that class other in most
classification scenarios is misclassified as wheat or corn.

Table 7 Classifier based on proposed method using 5 m RapidEye and 30 m Landsat-8, path
186.

Corn Wheat Soybean Sugar beet Sunflower Other Precision

Corn 488,871 1773 44,156 311 10,788 15,458 0.87

Wheat 3322 631,816 552 47 649 11,357 0.84

Soybean 7888 122 318,466 259 1194 6430 0.95

Sugar beet 96 2 171 304,203 961 1535 0.99

Sunflower 1654 67 1243 4214 184,142 4349 0.94

Other 4918 44,675 3109 311 3508 608,889 0.92

Recall 0.96 0.93 0.87 0.98 0.92 0.81

Accuracy ¼ 0.90 Kappa ¼ 0.88

Table 8 Classifier based on proposed method using 5 m RapidEye and 30 m Landsat-8, path
187.

Corn Wheat Soybean Sugar beet Sunflower Other Precision

Corn 1,026,460 4861 64,262 1156 15,003 29,126 0.90

Wheat 6887 744,579 2616 148 1913 191,143 0.79

Soybean 25,608 595 526,108 4028 14,004 8978 0.91

Sugar beet 153 32 6367 476,307 2200 4602 0.97

Sunflower 2044 282 2857 982 301,673 7897 0.96

Other 16,975 104,361 8566 1589 26,691 1,091,675 0.87

Recall 0.95 0.87 0.86 0.98 0.83 0.82

Accuracy ¼ 0.88 Kappa ¼ 0.85
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A visual comparison of classifiers’ performances is shown in Fig. 5. The area that is chosen
for comparison of classifiers is located in the middle of the Vojvodina region (Fig. 2) and con-
tains both very small parcels (central and top-left part of the figure), as well as large parcels (right
and bottom-right part of the image). In the middle-left part of the image, medium-sized parcels
are also present. We can notice that classification with the data from the RapidEye satellite only,
Fig. 5(c), has the finest spatial resolution and shows the best separation of different parcels in the
central part of the image. However, it is very noisy. This phenomenon can be easily noticed in the
part of the area with large parcels. It also shows the worst performance in classifying soybean and
sunflowers, which is expected from the results in Table 6. Classification with a classifier based
on the 30 m Landsat-8 time series, Fig. 5(a), shows the worst results in the part of the area with
small parcels. It is noticeable that neighboring parcels with different crops are merged into one
due to the coarse spatial resolution. On the other hand, it shows rather good results of classi-
fication in the part of the area with large- and medium-sized parcels. The performance of the
classifier based only on the pan-sharpened 15 m Landsat-8 time series is shown in Fig. 5(b). It
illustrates an improvement over Fig. 5(a) in areas with smaller parcels; however, it has a lower

Fig. 5 Visual comparison of classification results, example of crop fields in the vicinity of village
Kucura in the municipality of Vrbas (location inside Landsat path 187): (a) 30 m Landsat-8 clas-
sifier; (b) 15 m pan-sharpened Landsat-8 classifier; (c) 5 m RapidEye classifier; and (d) 5 m clas-
sifier based on the proposed data fusion method for combining 30 m Landsat-8 and 5 m RapidEye
data. Color interpretation: green: corn, orange: wheat, yellow: soybean, purple: sugar beet, blue:
sunflower. Background is the image shown in Fig. 2 and represents the class “other.”

Crnojević et al.: Classification of small agricultural fields using combined Landsat-8 and RapidEye imagery. . .

Journal of Applied Remote Sensing 083512-13 Vol. 8, 2014



classification accuracy, as can be confirmed by comparison of the results in Tables 2–5. Similar
to the classifier based only on 30 m Landsat-8, Fig. 5(a), it also exhibits better performance over
large fields in comparison with the classifier based only on RapidEye data, as well as a better
overall accuracy, which is a consequence of the utilized time series that is not available in the
case of RapidEye data. Classification with the fusion of RapidEye and 30 m Landsat-8 data
shows a very good performance in all three areas and in all analyzed aspects. A good separation
of small parcels is shown in the central part of the image. In the area with large- and medium-
sized parcels, it shows very similar results to the 30 m Landsat-8 classifier, while its spatial
resolution is much higher and is comparable with RapidEye.

Finally, we investigated the significance of individual spectral bands and time samples in the
created trees of different random forest classifiers. The results are shown in Fig. 6, where histo-
grams representing the number of appearances of different components of the feature vectors
(corresponding to some particular spectral band or particular image in time series) in decision
trees of the used random forest classifiers are shown. In this way, we tried to estimate the impor-
tance of certain images in the time series, as well as the importance of individual spectral bands
in different classification scenarios. In the case of classifiers using 30 m Landsat-8 data, each
group of 10 bars with the same color corresponds to 10 spectral measurements of a particular
pixel at some point in the time series, while in the case of the pan-sharpened 15 m Landsat-8
data, there are 11 bars due to the added panchromatic band. In the case of RapidEye data, each
group of five bars with the same color corresponds to five measurements associated with one of
the 5 m pixels in the 3 × 3 neighborhood of that particular pixel. With classifiers based on the
fusion of 5 m RapidEye and 30 m Landsat data, the first 45 features are from the RapidEye data
and the following are data are from the Landsat-8 time series: 50 values in the case of path 186
and 40 in the case of path 187. The order of bars inside the groups in all cases is the same as the
order of the corresponding spectral bands in images (their wavelengths are given in the legend).

When considering the significance of different spectral bands, we can conclude that all
images exhibit almost the same pattern. This means that the NIR band has a significant influence
in classifiers that use the proposed data fusion method, which can be seen in Figs. 6(f)–6(g),
where in the first half of the feature vector (corresponding to RapidEye data), the NIR band is
dominant in each of the groups corresponding to different pixels in the local 3 × 3 neighborhood.
It is also dominant in Figs. 6(b) and 6(c), especially in groups of the bars in the second part of the
histograms, which correspond to images acquired in the later phases of the crops’ phenological
development. It is interesting that the new coastal blue and thermal bands of Landsat-8 have quite
a significant importance. In Figs. 6(b) and 6(c), as well as 6(f) and 6(g), the least importance is
attributed to the spectral band that was designed for the detection of cirrus clouds.

By looking at Figs. 6(a), 6(f), and 6(g), one can see that in the case when RapidEye data are
used, i.e., the 3 × 3 neighborhood of the central RapidEye pixel, the most important pixel that
participates in the classifier’s decision is the central pixel of the 3 × 3 neighborhood—the first
group of bars in the histograms. Also, it is interesting to note that the role of RapidEye com-
ponents significantly changes when they are combined with Landsat-8 data. This can be seen by
comparing Fig. 6(a) with the first half of the histograms in Figs. 6(f) and 6(g).

Histograms in Fig. 6 also show the degree of complexity of different random forest classifiers
through differences in the scales of ordinates in each histogram. Namely, it can be said that
classifiers with a higher complexity are characterized by more complex decision trees,
which result in a higher number of appearances of each of the feature vector’s components.
The described behavior is visible in Fig. 6, where a classifier based only on single
RapidEye mosaic image, Fig. 6(a), has a histogram with several orders of magnitude higher
values compared to histograms that correspond to other classifiers that utilize Landsat-8
data. This can be explained by the fundamental difference in the structures of the used
RapidEye and Landsat-8 data, Sec. 3, since RapidEye mosaic image covers only a very
small fraction of the whole phenological development of selected crops, while Landsat-8
data in all classification scenarios were used as a time series covering a much longer time period.
The result is that the classifier that corresponds to the histogram in Fig. 6(a) has a much harder
task and has a lower generalization capacity compared to others. This also confirms comparison
of the cross-validation results presented in Tables 2–8, where the classifier corresponding to the
histogram in Fig. 6(a) exhibits the worst performance and the classifier corresponding to the
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histogram in Fig. 6(b) has the best performance among the classifiers utilizing 30 m Landsat-8
data due to the longer time series. Also, the classifier with corresponding histogram in Fig. 6(f)
has a smaller complexity and better performance than the classifier that is based on the proposed
data fusion method and is described by the histogram in Fig. 6(g), which is related to the number
of images in the time series. Finally, the classifier from Table 2 and Fig. 6(f) has the best trade-off
between complexity and classification performance, as well as the best overall accuracy, which
further justifies the proposed data fusion method in addition to the crop fields’ size issue.

6 Conclusion

Supervised cropland classification is a very important tool for the efficient monitoring of agri-
cultural production on a regional and state level. Moreover, with the recent fidelity of remote
sensing data sources, it is coming into the notice of different parties, including individual pro-
ducers interested in precision farming. In this paper, a cropland classification study using differ-
ent data sources has been presented. It investigated and analyzed the applicability of different
pixel-based classification approaches in the case of the given study area of the Vojvodina region
in northern Serbia characterized by the very small size of crop fields, which is a common agri-
cultural practice across Europe due to specific agricultural policies. The proposed data fusion
method provides an alternative to the standard approach that would require use of commercial
satellite imagery in the form of a high-resolution multispectral time series, which are, unfortu-
nately, not very affordable, especially for public services with constrained budgets. The pre-
sented solution is based on the utilization of freely available data sources, such as the

Fig. 6 Significance of individual spectral bands and time samples in used random forest classi-
fiers: (a) 5 m RapidEye; (b) 30 m Landsat-8 path 186; (c) 30 m Landsat-8 path 187; (d) 15 m
Landsat-8 path 186; (e) 15 m Landsat-8 path 187; (f) 5 m fusion of RapidEye and Landsat
path 186 data; (g) 5 m fusion of RapidEye and Landsat path 187 data.
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Landsat-8 time series, and the combination of these data with a single commercial high-reso-
lution mosaic image in an attempt to overcoming the problem of inadequate spatial resolution of
freely available satellite imagery. The issue with spatial resolution comes from the fact that
>25% of arable land in the given case are crop fields with a very small size (<3 ha), which
makes the 30 m Landsat-8 data too coarse for reliable classification. On the other hand, temporal
resolution of Landsat-8 enables the capturing of the misaligned phenological development of
selected crop types, which makes it a good choice as a source of time series data.
Classification results from experiments including Landsat-8 and RapidEye data confirm the
applicability of the proposed data fusion method and the possibility of achieving high-resolution
crop classification with limited resources. They also confirm the advantage over pan-sharpened
15 m Landsat-8 data both in resolution and classification accuracy. Further improvements of
classification accuracy are possible by the introduction of ensembles of different classifiers,
which is the scope of future work. Also, a wider use of innovative crowdsourcing for
ground-truth gathering can significantly improve the amount and quality of reference data
and, consequently, the classification results. This presents an ongoing activity that should
lead to higher engagement of end users in the whole process and wider application of remote
sensing in the agricultural community.
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