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Abstract. The objective of this paper is to present a case study to derive land use/land cover
(LULC) maps and investigate the long-term effects of LULC change on surface runoff in the
fast urbanizing Beijing city. The LULC maps were derived from Landsat TM/ETM+ imagery
(acquired in 1992, 1999, 2006, and 2009) using support vector machine method. A long-term
hydrologic impact assessment model was applied to assess the impact of LULC change on
surface runoff. Results indicated that the selected study area experienced rapid urbanization
from 1992 to 2009. Because of urbanization, from 1992 to 2009, modeled runoff increased
30% for the whole area and 35% for the urban portion. Our results also indicated that the runoff
increase was highly correlated with urban expansion. A strong relationship (R2 ¼ 0.849) was
observed between the impervious surface percent and the modeled runoff depth in the study
area. In addition, a strong positive relationship was observed between runoff increase and per-
centage of urban areas (R2 ¼ 0.997 for the whole area and R2 ¼ 0.930 for the urban portion).
This research can provide a simple method for policy makers to assess potential hydrological
impacts of future urban planning and development activities. © The Authors. Published by SPIE
under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1
.JRS.8.084596]
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1 Introduction

Land use/land cover (LULC) changes have direct impacts on the hydrological cycle and stream
quality. There are also indirect impacts on climate and the subsequent impact of the altered
climate on the waters.1 Therefore, LULC changes have been treated as one of the most important
and sensitive factors for global environmental change. Urbanization is a major force that is driv-
ing LULC changes. Although urbanization due to urban sprawl provides social and economic
benefits to the community, the detrimental consequences of urbanization to the urban environ-
ment are widespread, especially in most developing countries. Increased impervious surface per-
centage in urbanized areas can reduce the time of runoff and increase the peak discharges of
stream flow, resulting in large and more frequent incidents of flooding.1,2 In addition, because of
the pollutants in runoff and sediments, the increase of impervious surfaces also degrades stream
quality.2,3 Therefore, urbanized areas are increasingly susceptible to flooding under high pre-
cipitation conditions.4
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In recent decades, with a constant increase in urban population, urbanization has become
a significant urban environmental and ecological concern, especially in most developing
countries. Therefore, it is of great significance to accurately map LULC changes in urbanized
areas and to evaluate its impacts on surface runoff and stream quality for urban planning
policy makers and water/land resource management. Due to their relatively low cost and
suitability for large area mapping, satellite remote sensing (RS) images have been widely
applied for detecting urban growth and accurate and timely mapping of LULC changes
over a long period.5 Furthermore, based on the RS, LULC changes mapping also allows
for a rapid assessment of its impacts on surface runoff and water quality.2,3 Recently, numer-
ous researchers have assessed the impact of LULC changes induced by urbanization on sur-
face runoff.6–9 Ng and Marsalek10 used hydrologic simulation program fortran (HSPF) model
to simulate the effects of urbanization on stream flow for the Waterford River Basin near
St. John’s, Newfoundland, Canada. Kang et al.11 investigated the effect of urbanization
on runoff from the On-Cheon Stream watershed in Pusan, Korea, using the linear reservoir
model; results revealed that the peak discharge increased and the mean lag time decreased
owing to urbanization. Brun and Band12 also used HSPF to assess the effects of land use
change on urbanizing watershed behavior. Brun and Band determined a runoff ratio relation-
ship indicating the existence of a threshold percent of impervious cover (∼20%) above which
the runoff ratio changes dramatically. Weng1 used the soil conservation service (SCS) model
for estimating the effects of urban growth on surface runoff with the integration of RS and
geographic information system (GIS). The results revealed that urbanization lowered poten-
tial maximum storage and thus increased runoff coefficient values. Shuster et al.13 presented
a literature review about impacts of impervious surface on watershed hydrology and found
that impervious surfaces have a major effect on watershed hydrology. Shi et al.4 also used
SCS model to assess the effect of LULC change on surface runoff in Shenzhen region,
China. The results showed that urbanization intensified the flood process. Li and Wang2

used a long-term hydrologic impact assessment (L-THIA) model to evaluate the effect of
LULC change on surface runoff in Dardenne Creek watershed, St. Louis, Missouri.
Results indicated that the runoff increase is highly correlated with urban expansion.
Franczyk and Chang14 used the ArcView Soil and Water Assessment Tool hydrological
model to evaluate the impacts of climate change and urbanization on the runoff in a fast
urbanizing region. Hamdi et al.15 used an urban soil-vegetation-atmosphere-transfer
model to examine how the surface runoff of the Brussels Capital Region responded to
historical urbanization (1960 to 1999).

To simulate the land use change impacts on watersheds, many hydrologic and water quality
models have been developed and integrated with a GIS, such as the United States Department of
Agriculture (USDA) Technical Release 55 (TR-55),16 EPA Storm Water Management Model,17

and Soil and Water Assessment Tool.18 Although some of these models can be used to assess the
long-term impacts of LULC changes on hydrology and stream quality, they require extensive
data inputs and parameters that are usually not available to land-use planners.2 Therefore, there
has been a need for a much simpler-to-use model to assess relative hydrological impacts of
LULC change at the watershed scale. The L-THIA model was developed and integrated
with GIS to estimate direct runoff from very basic input data, such as daily rainfall, land
use, and the hydrologic soil group.19,20

In China, rapid urban sprawl has had a profound influence on runoff and resulted in larger
and more frequent incidents of flooding in many urban areas. Over the past three decades,
Beijing has been one of the fastest-growing urban areas in China and has undergone intense
urbanization that has significantly impacted the urban surface runoff. The objective of this
paper is to derive LULC classification maps and further quantitatively assess the effects of
LULC change on surface runoff in Beijing. The LULC maps are derived from Landsat TM/
ETM+ imagery (acquired in 1992, 1999, 2006, and 2009) using a support vector machine
(SVM) method. To estimate the effects of LULC change on runoff, the L-THIA model is
used. The rest of this paper is organized as follows. Section 2 describes the study area and
the datasets used. Section 3 discusses methodology. The results and analysis are presented
in Sec. 4. Section 5 presents the conclusions.

Sun et al.: Long-term effects of land use/land cover change on surface runoff in urban areas. . .

Journal of Applied Remote Sensing 084596-2 Vol. 8, 2014



2 Study Area and Datasets

2.1 Description of Study Area

Beijing, the capital of China, was selected as the study area to evaluate the impact of urbanization
on surface runoff (Fig. 1). It is located within 39.28°N to 41.05°N and 115.25°E to 117.35°E,
covering ∼16;386.30 km2. There are five large water systems, including Juma River, Rongding
River, Beiyun River, Chaobai River, and Jiyun River. With a warm temperate-zone semihumid
continental monsoon climate, it is hot and rainy in the summer, cold and dry in the winter, and
short seasons in the spring and autumn. Average annual temperature is 10 to 12°C, the temper-
ature in January is from −7 to −4°C, and the temperature in July is 25 to 26°C. The average
annual precipitation is 600 mm, and rainfall in the summer season from June to August com-
prises 75% of the annual total. According to the soil horizontal zonality, the main soil types
are cinnamon soil, moisture soil, and brown soil. The study area contains a number of
LULC types, including central business district (CBD), high-density residential, low-density
residential, agricultural land, forest, exposed soil, and water bodies. Forest covers 50% of
the land area. Over the past three decades, with economic development, Beijing has been
one of the fastest-growing urban areas in China and has undergone intense urbanization.
Beijing’s development pattern is a typical concentric expansion, showing a ring-shaped pattern
as you move from the inner city to the outskirts.

2.2 Datasets and Preprocessing

Four Landsat TM/ETM+ scenes, 13 WorldView scenes, soil-type classification data, daily pre-
cipitation data, and daily runoff data were used in this research. Their major characteristics
are summarized in Table 1.

2.2.1 Remotely sensing imagery

LULC data were derived from the multispectral Landsat TM/ETM+ imagery (acquired in 1992,
1999, 2006, and 2009). These images were rectified to a Universal Transverse Mercator (UTM)
coordinate system, with the pixel size of 30 m. Thirteen WorldView scenes (acquired on
February 11, 2009) with a spatial resolution of 0.5 m were registered to the TM image
(UTM) and used for LULC accuracy assessment. The high-resolution WorldView scenes did
not contain snow, ice, or cloud.

The digital number of the TM scenes was converted to unitless planetary reflectance follow-
ing the method proposed by Chander and Markham.21 We assumed homogeneous atmospheric
conditions within the scene, so atmospheric corrections were not performed.

Fig. 1 Location map of Beijing region. In the study area, there are two weather stations and one
gauge station.
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2.2.2 Soil data

The soil-type classification map (1:200,000) of the study area was obtained from the Soil and
Fertilizer Workstations of Beijing. Curve number (CN) values were used to determine soil
hydrological input data. According to four hydrologic soil groups defined by the U.S. Soil
Conservation Service (SCS),16 the soil-type classification data were reclassified to output the
soil hydrological map using ARCVIEW software [Fig. 2(a)]. For the purpose of overlaying
with same pixel data, the soil hydrological map was rectified to a UTM coordinate system,
with a spatial resolution of 30 m.

2.2.3 Hydrological data

There are two weather stations and one gauge station in the selected area (Fig. 1). Thirty-two
years (1978 to 2009) of daily precipitation data were obtained from the meteorological depart-
ment [Fig. 2(b)]. In addition, the observed daily runoff data were obtained from the Beijing
gauge station. These data were used for the L-THIA model parameter calibration.

3 Methodology

With the development of RS, GIS, and hydrological modeling, it is possible to investigate long-
term impacts of LULC change on urban surface runoff. It is difficult for the distributed hydro-
logical models to assess the long-term impacts of LULC change on hydrology because they
require extensive data inputs and parameters (e.g., meteorological data, hydrological data, geo-
logical data, terrain data, soil data, and so on) that are usually not available for land-use planners.
In our research, the simpler-to-use L-THIA model integrated with GIS and RS was used to assess
the impacts of LULC changes on surface runoff in an urbanizing area. The L-THIA model
requires very basic input data, such as daily precipitation data, LULC, and hydrologic soil
group data. LULC classification maps were derived from long-time-series Landsat TM/ETM
+ imagery. Figure 3 shows the data processing framework of research on hydrological response
to LULC changes. In Fig. 3, the left dashed box is the data processing flow chart of LULC
change, while the right dashed box is the processing flow chart of L-THIA model simulation.
In our research, the robust algorithm, SVM, was selected to perform a supervised classification
and further to evaluate the temporal change of LULC in the study area. In the following section,
a description of the SVM algorithm and L-THIA model is provided.

3.1 Support Vector Machine

The concept of the SVM originated from a nonparametric machine learning methodology based
on Vapnik’s22 structural risk minimization (SRM) principle. The basic idea of SVM is to map

Table 1 Datasets used in this research.

Datasets Acquisition date

Landsat TM September 7, 1992

Landsat ETM+ August 2, 1999

Landsat ETM+ September 6, 2006

Landsat TM June 3, 2009

WorldView February 11, 2009

Soil type data 1985 (1:200,000)

Daily precipitation data 1978 to 2009

Daily runoff data 2006, 2009
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Fig. 2 (a) Soil hydrological map of Beijing. A: high infiltration rate soil; B: moderate infiltration rate
soil; C: low infiltration rate soil; D: very low infiltration rate soil.16 (b) Thirty-two years (1978 to 2009)
of precipitation data derived from the meteorological department.
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data into a high-dimensional space and to find the hyperplane of the different classes with
the maximum margin between them. SVMs have been used for image classification,23–26

soil moisture estimation,27 image retrieval,28 and impervious surface estimation29,30 for remote
sensing studies in recent years. The theory of SVM has been extensively described in the
literature.31,32 Therefore, only a brief description of the concept of SVM in the framework
of classification is given here.

Suppose that training data ðXi; yiÞ (Xi ∈ RK belongs to aK-dimensional space, i ¼ 1; : : : ; L,
L is the number of the training samples), where (yi ∈ fþ1;−1g) is the class label of the training
vector Xi for a two-class problem and can be linearly separated by a hyperplane [Eq. (1)].

W•Xþ b ¼ 0; (1)

where W is a weight vector and b is a scalar, often referred to as a bias.
To describe the separating hyperplane, let us use the following form:

�
W•Xi þ b ≥ þ1 for yi ¼ þ1; i ¼ 1; 2; · · · ; L
W•Xi þ b ≤ −1 for yi ¼ −1 : (2)

The separating hyperplane that creates the maximum margin is called the optimal separating
hyperplane (OSH). The goal of the learning process based on SVM is to find the OSH to separate
the training data by solving the following quadratic optimization problem:

min
W;ξi;b

�
1

2
jWj2 þ C

XL
i¼1

ξi

�
(3)

subject to the following constraints:�
yi½W•Xi þ b� ≥ 1 − ξi
ξi ≥ 0; i ¼ 1; 2; : : : ; L

; (4)

Fig. 3 The data processing framework of research on hydrological response to land use/land
cover (LULC) changes.
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where C denotes a penalty parameter on the training error and ξi is called the slack variable.
By converting the problem with Karush–Kuhn–Tucker conditions into an equivalent Lagrange
dual problem, the optimization problem becomes

Maximize∶ LðαÞ ¼
XL
i¼1

αi −
1

2

XL
i;j¼1

αiαjyiyjKðXi;XjÞ (5)

Subject to∶
XL
i¼1

αiyi ¼ 0; 0 ≤ αi ≤ C; i ¼ 1; 2; · · · ; L: (6)

The final decision function is given by

fðXÞ ¼
XN
i¼1

αiyiKðXi;XjÞ þ b: (7)

In Eqs. (6) and (7), αi denotes Lagrange multipliers; the parameter N (usually N ≪ L) stands
for the number of the selected points or support vectors; and the symbol KðX;XiÞ is the kernel
function that measures nonlinear dependence between the two input variables X and Xi. Three
admissible kernel functions include the polynomial kernel function, the radial basis kernel
function (RBF), and the sigmoid kernel function.

In the theoretical development, the SVM has been developed for a two-class problem.
Strategies are needed to adapt this method to multiclass cases. For example, one against all
or one against one (OAO) algorithms have been proposed to adapt the SVM to multiclass prob-
lems.33 However, support vector classification predicts only class labels but not probability infor-
mation. In our research, percent impervious surface was obtained from the RS imagery using an
SVM method. Therefore, it is essential to briefly describe how we extend SVM for probability
estimates. More details of SVM have been extensively described in the literature.34,35

Given k classes of the data, for any X, the goal is to estimate

pi ¼ pðy ¼ ijXÞ; i ¼ 1; 2; · · · ; k: (8)

Following the setting of the OAO approach for multiclass classification, the pairwise class
probabilities can be estimated with the following equation:35

rij ≈ pðy ¼ ijy ¼ i or j;XÞ ≈ 1

1þ eAf
∧
þB

; (9)

where A and B are estimated by minimizing the negative log-likelihood function.
Then, the probabilities pi can be derived from all rij’s by solving the following optimization

problem:34

min
P

1

2

Xk
i¼1

X
j∶j≠i

ðrjipi − rijpjÞ2 (10)

subject to the following constraints:

Xk
i¼1

pi ¼ 1; pi ≥ 0; ∀ i: (11)

As described above, the steps in SVM modeling are (1) selecting a suitable kernel function
and kernel parameter (kernel width G) and (2) specifying the penalty parameter C. In our paper,
an RBF kernel is used for constructing the classifier. In addition, specifying parameters G and C
is the key step in the SVM because their combined values determine the boundary complexity
and thus the classification performance.36 In our research, the kernel width G was set to 0.15 and
the penalty parameter was set to 100.30 For the implementation of the training and modeling
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procedure, we employed the existing SVM library LIBSVM presented by Chang and Lin.35 The
LIBSVM represents integrated software for SVM classification, regression, distribution estima-
tion, and multiclass classification. In order to keep the classification runtime low, the maximum
number of training and testing samples for a given class did not exceed 3,000 and 5,000,
respectively.

3.2 L-THIA Model Description

The L-THIA model was developed to estimate direct runoff using the CN method from daily
rainfall depth, LULC, and hydrologic soil group data.19 It provides a quick and simple impact
analysis for initial plan review and for community awareness of potential long-term problems.37

For runoff calculation, L-THIA uses the CN method developed by the USDA SCS (now Natural

Fig. 4 The data processing flow chart of the long-term hydrologic impact assessment model.20,38

Fig. 5 The percentages of LULC types in the study area for the four time periods.

Sun et al.: Long-term effects of land use/land cover change on surface runoff in urban areas. . .

Journal of Applied Remote Sensing 084596-8 Vol. 8, 2014



Resources Conservation Service), which is a core component of many hydrology models.38

The runoff equation is

Q ¼ ðP − IaÞ2
ðP − IaÞ þ S

; (12)

where Q is the runoff (inches), P is the rainfall (inches), S is the potential maximum retention
after runoff begins (inches), and Ia is the initial abstraction (inches), which can be approximately
estimated by

Ia ¼ 0.2S: (13)

Using Eq. (13), Eq. (12) can be rewritten as

�
Q ¼ ðP−0.2SÞ2

Pþ0.8S ; P ≥ 0.2S
Q ¼ 0; P < 0.2S

: (14)

S, in mm, is related to the soil and LULC conditions and can be described by CN through

S ¼ 10000

CN
− 100; (15)

Fig. 6 The LULC maps of the Beijing region in 1992, 1999, 2006, and 2009.
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Table 2 Estimated curve number values.

Land use/land cover types

Land surface infiltration categories

A B C D

Water body 100 100 100 100

High-density urban 90 93 94 95

Arable land 67 78 85 89

High-density residential 77 85 90 92

Low-density residential 61 75 83 87

Bare land 72 82 88 90

Forest land 30 55 70 77

Fig. 7 The curve number value distribution of the study area in 1992, 1999, 2006, and 2009.
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where the CN value is the main parameter of the L-THIA model and is used to describe the
relationship between rainfall and runoff. CN is determined through the combination of
LULC and soil (hydrological soil group) information for each cell. Theoretically, CN values
are between 0 and 100. However, practically, CN values change between 30 and 100. Then,
L-THIA model uses daily rainfall series and the CNs to calculate the mean annual total surface
runoff in terms of depth and volume.38 Figure 4 shows the data processing flow chart of the
L-THIA model.20,38

As illustrated in Eq. (14), the L-THIA model requires long-term daily precipitation data,
soils, and LULC data. Daily precipitation series for the period of 1978 to 2009 were obtained
from the meteorological department. Soils GIS data are required as a hydrological soilgroup.
The soil data were obtained from the Soil and Fertilizer Workstations of Beijing. The LULC
data were derived from Landsat TM/ETM+ imagery (acquired in 1992, 1999, 2006, and 2009)
using SVM method.

4 Results and Discussions

4.1 LULC Change

In our research, we grouped the LULC types into seven categories: (1) high-impervious surface
(>90%, high-density urban, including CBD, roads, squares, and so on), (2) medium-impervious

Fig. 8 The simulated annual average runoff for 1992, 1999, 2006, and 2009.
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surface (50 to 90%, high-density residential land), (3) low-impervious surface (<50%, low-den-
sity residential land), (4) arable land (agricultural land), (5) forest land, (6) bare land, and
(7) water body. Because we focused on urbanization, only urban-related classes, including
high-/medium-/low-impervious surfaces, were utilized for accuracy assessment. Sun et al.
proved that the estimation accuracy of impervious surfaces was superior to Landsat TM/
ETM+ imagery (acquired on June 3, 2009) using an SVM method.30 Figures 5 and 6 illustrated
the percentages and spatial distributions of LULC classes in the Beijing region from 1992 to
2009. Forest and arable lands dominated in the whole area but decreased with the continuous
increase of urban areas, especially agricultural land. The urbanization level (high-impervious
surface), the proportion of urbanized area to the total land area, was 4.28, 6.03, 8.34, and
12.78% in 1992, 1999, 2006, and 2009, respectively. The proportion of residential area to
the total land area was 3.21, 3.15, 3.83, and 6.66% in 1992, 1999, 2006, and 2009, respectively.
Urban areas increased from 4.28% in 1992 to 12.78% in 2009, and residential areas increased
from 3.21% in 1992 to 6.66% in 2009, while agricultural land areas decreased from 27.20% in
1992 to 11.44% in 2009.

From Fig. 6, we can observe that Beijing’s development pattern is a typical concentric expan-
sion, showing a ring-shaped pattern. In the LULC maps of 1992 [Fig. 6(a)], forest and arable
lands dominated in the whole area, and there was a little change in urban areas. The LULC map
in 1999 [Fig. 6(b)] indicated that urban areas started to expand around the city. In the LULC map
of 2006 [Fig. 6(c)], urban areas dominated in the Beijing region. Large areas, especially arable
lands, were converted to urban areas. In the LULC map of 2009 [Fig. 6(d)], urban areas con-
tinuously increased, becoming the dominant LULC type and continuously extending around
the city.

In summary, the selected areas experienced rapid LULC change, especially urbanization,
from 1992 to 2009. Temporally, the urbanization rate was relatively low in the beginning of
1990s and accelerated after 1999.

Fig. 9 The statistical relationship between the impervious surface percent and runoff depth.
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4.2 Parameter Determination of the L-THIA Model

According to the L-THIA model, the CN value is determined by the combination of LULC types
and soil (hydrological soil group) information for each cell. The LULC types were derived from
Landsat TM/ETM+ imagery as described earlier. According to soil classification categories in
the L-THIA model, the soil data obtained from the Soil and Fertilizer Workstations of Beijing
were reclassified to create the soil hydrological map using ARCVIEW software. Based on CN
values of the L-THIA model calibrated by the observed daily runoff data, local soil infiltration
properties, and other published results, CN values in the Beijing region were estimated and are
presented in Table 2. Figure 7 shows the CN value distribution of the study area in 1992, 1999,
2006, and 2009.

Land surface infiltration categories:16 (a) high infiltration rate, (b) moderate infiltration rate,
(c) low infiltration rate, and (d) very low infiltration rate.

4.3 Modeled Runoff Variations

In our research, the L-THIA model was used to simulate annual average runoff from daily
rainfall data, soil data, and LULC data derived from long-term TM/ETM+ imagery (1992, 1999,
2006, and 2009). Figure 8 shows the simulated annual average runoff using the L-THIA model
for 1992, 1999, 2006, and 2009, respectively. From the figure, we can observe that urban area
corresponds to the highest runoff depth and bare land tends to higher runoff depth, while forest
land corresponds to the lowest runoff depth followed by agricultural land. With the expansion of

Fig. 10 Spatial distribution of modeled runoff change in 1999, 2006, and 2009 compared to the
reference in 1992.

Sun et al.: Long-term effects of land use/land cover change on surface runoff in urban areas. . .

Journal of Applied Remote Sensing 084596-13 Vol. 8, 2014



urban areas, the runoff depth significantly corresponded to urban area increase from 1992 to
2009. In order to analyze the relationship between impervious surface percent (ISP) and runoff
depth, 4,000 sample points were randomly selected from the ISP image and modeled runoff
depth acquired in 2009 (Fig. 9). Figure 9(a) shows the ISP derived from Landsat TM/ETM+
using SVM method; Fig. 9(b) shows the simulated annual average runoff using the L-THIA
model; and Fig. 9(c) illustrates the statistical relationship between the ISP and runoff depth.
From the figures, a strong relationship (R2 ¼ 0.849) was observed between the ISP and the
modeled runoff depth in the study area.

To further evaluate the effects of urbanization on surface runoff, using the simulated runoff
for 1992 as the reference, a runoff change ratio γ for a certain year (such as 1999) can be

Fig. 11 (a) Runoff increase percentage of 1999, 2006, and 2009 compared to 1992.
(b) Relationship between runoff increase and the percentage of urban areas.
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calculated using the runoff simulated for that year divided by the runoff simulated for 1992.
This runoff change ratio can be used to assess the spatial distribution of runoff variations
due to the LULC change.2 Then, the ratios were divided into four categories: (1) no runoff
increase (γ ≤ 1.0); (2) small runoff increase (1.0 < γ ≤ 2.0); (3) moderate runoff increase
(2.0 < γ ≤ 3.5); and (4) significant runoff increase (γ > 3.5).

Figure 10 shows the spatial distribution of modeled runoff change in 1999, 2006, and 2009
compared to the reference in 1992. Because of the temporal difference, bare land could not be
differentiated from the vegetation area in the optical imagery. Bare land corresponded to higher
runoff depth, while vegetation corresponded to lower runoff depth. Therefore, LULC changes
(bare soil and forest land) resulted in significant runoff changes in the north of the study area
[Figs. 10(a) and 10(c)]. In Fig. 10(b), because of short temporal difference, LULC change was
small in vegetated areas. Therefore, runoff depth change was very small, and no runoff change
and small runoff change were prevalent in forested land. The temporal difference had no influ-
ence on the urban area, so we could observe the following from the urban portion (as shown in
Fig. 10): (1) Compared to the modeled runoff for 1992, spatial variation of runoff change in 1999
was limited; however, a moderate-to-significant runoff increase became apparent around the
urban area [Fig. 10(a)]. (2) In 2006, with the expansion of the urban area, runoff change sig-
nificantly increased around the city, and a moderate-to-significant runoff increase dominated
gradually in the urban portion [Fig. 10(b)]. (3) In 2009, runoff change increased continuously,
and areas of moderate-to-significant runoff increase had dominated in the whole urban portion
[Fig. 10(c)]. (4) By comparing the spatial variations of runoff for 1999, 2006, and 2009, we can
see that runoff depth increases with urban expansion. Therefore, the runoff increase was highly
correlated with urban expansion.

Figure 11(a) expressed the modeled runoff increase percentage for 1999, 2006, and 2009
compared to 1992. In this figure, modeled runoff increased 30% from 1992 to 2009, while mod-
eled runoff increased 35% for the urban portion (Fig. 1). The runoff increase was relatively
low (<5%) from 1992 to 1999 and much higher (>20%) after 1999. Figure 11(b) illustrates
the relationship between the runoff increase and the percentage of urban area. From the figure,
we can see a strong positive relationship. The whole area produced a correlation coefficient
R2 ¼ 0.997, while the urban portion produced a correlation coefficient R2 ¼ 0.930. Our results
indicated that the runoff increase was highly correlated with urban expansion.

5 Conclusions

This paper presented a case study to investigate the long-term impacts of LULC change on
surface runoff in the fast urbanizing Beijing city, China. First, the LULC maps were derived
from Landsat TM/ETM+ imagery (acquired in 1992, 1999, 2006, and 2009) using an SVM
method. Then, a simpler-to-use L-THIA model was applied to simulate surface runoff varia-
tions in the study area from 1992 to 2009. Finally, the long-term impacts of urbanization on
surface runoff were assessed using LULC classification maps and modeled surface runoff
variations.

Our results indicated that the study area experienced rapid urbanization from 1992 to 2009.
Urban areas increased from 4.28% in 1992 to 12.78% in 2009 and residential areas increased
from 3.21% in 1992 to 6.66% in 2009, while agricultural land areas decreased from 27.20% in
1992 to 11.44% in 2009. To analyze the relationship between ISP and runoff depth, 4000
sample points were randomly selected from the ISP image and modeled runoff depth acquired
in 2009. A strong relationship (R2 ¼ 0.849) was observed between the ISP and the modeled
runoff depth in the study area. As a direct result of the urbanization from 1992 to 2009, the
long-term surface runoff increased 30% for the whole area, while modeled runoff increased
35% for the urban portion. Our results also indicated a strong positive relationship between
runoff increase and the percentage of urban areas. For the whole area, the correlation coef-
ficient R2 is 0.997, while for the urban portion, the correlation coefficient R2 is 0.930.
Therefore, the runoff increase was highly correlated with urban expansion. This research pro-
vides a simple method for policy makers to assess potential hydrological impacts of future
planning and development activities.
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