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Abstract. A qualitative relationship between the statistical behavior of cross-polarized phase
difference ϕhvvh and dominant noise type is examined based on the polarimetric noise model pro-
posed. The noise model focusing on the covariance matrix is able to separate the multiplicative
noise which only affects the amplitude from the additive noise that alters both the amplitude and
phase. In the case of low noise, the phase is not affected by the noise and ϕhvvh distribution is
predicted to be centered at 0 deg in terms of reciprocity theorem. The case of strong noise is much
more complicated as the dominant noise type plays an important role in the statistics of ϕhvvh. The
phase over the area where multiplicative noise dominates is not altered, thus the ϕhvvh distribution
is expected to have similar behaviors to the case of low noise. However, the dominant additive
noise would significantly affect the phase so that an obvious deviation from 0 deg for ϕhvvh

distribution is expected. Experiments with Radarsat-2 full polarimetric imageries further validate
this qualitative relationship. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the
original publication, including its DOI. [DOI: 10.1117/1.JRS.9.090599]
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1 Introduction

Synthetic aperture radar (SAR) has demonstrated its advantages in oceanic applications since it
is independent of weather condition and capable of monitoring natural surface in full day and
night. With the wide availability of polarimetric SAR (PolSAR) data which is configured to
receive both magnitude and phase of backscattered signal, the polarimetric response of targets
can be simultaneously obtained by measuring backscattered signal for all four linear polarization
configurations (hh; hv; vh; vv),1 represented by scattering matrix S,

S ¼
�
Shh Shv
Svh Svv

�
; (1)

where the subscript hv denotes the horizontal transmit and vertical receive. It is the nature of
complex signal that enables us to estimate polarized phase difference (PPD) between two differ-
ent polarization channels. Statistics of co-polarized PPD calculated from hh and vv channels
have been thoroughly studied in the literature.1–4 In Ref. 1, the behavior of co-polarized
PPD over forests is related to the properties of test sites, as experimental results confirmed
that the mean PPD is contributed by a combination of propagation delay, forward scatter by
soil surface, and specular bistatic reflection by stalks. Then the relationship between the prob-
ability distribution function (PDF) of PPD and sensor, speckle, and terrain properties is exam-
ined by considering speckle noise as a multiplicative independent random process.2 Closed
solutions of co-polarized PPD are presented in the form of Legendre function3 and in Ref. 4
by relating its mean and variance to elements of the Mueller matrix. A detailed derivation
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of statistics of PPD for multi-look data is given in Ref. 5 based on the complex Wishart dis-
tribution. The PDF of co-polarized PPD in Ref. 5 is dependent on a complex correlation coef-
ficient with the magnitude determining the PDF height and the phase controlling the position of
the central axis. The statistics of PPD require much deeper investigation due to its wide oceanic
applicability.6,7

Speckle noise is of great importance as it has a significant effect on the quality of SAR
imageries.8 When radar illuminates a rough facet on the scale of the radar wavelength, the
total received signal consists of contributions from many elementary scatterers within a reso-
lution cell. The random distances between these scatterers and the sensor determine that the
reflected waves from these scatterers are not coherent in phase.9 In order to achieve high spatial
resolution, SAR coherently processes the returned signal from successive pulses; as a result,
speckle noise is produced. A complete speckle noise model for single-look PolSAR data
has been presented, which is focused on the noise characteristics of all covariance matrix ele-
ments,10 hereinafter referred to the LM noise model. This model proposes that the noise can be
divided into two types: multiplicative noise which only introduces noise in amplitude and addi-
tive noise which introduces noise both in amplitude and phase. The contributions of these two
noise types to the total speckle noise depend on the complex correlation coefficient,10 which
determines the characteristics of PPD PDF as introduced in Ref. 5.

In the case of spaceborne SAR, it is widely accepted that the reciprocity theorem holds,
which means Shv ¼ Svh. This is expected to be reasonable for most natural distributed targets
so the PDF of cross-polarized PPD ϕhvvh can be predicted to be symmetrical and has a major
single lobe centered at 0 for most natural targets. But real data might not always conform exactly
to this theorem due to various factors such as measurement errors, noise effect, and so on. In this
paper, we are devoted to examining reasons for various behaviors of ϕhvvh PDF under different
conditions. The case of low noise level is found to meet this prediction, while the existence of
strong noise may make the real PDF deviate from this expectation. In the case of strong noise, the
relationship between statistics of cross-polarized PPD and dominant noise type is examined
based on the Radarsat-2 fully polarimetric data and LM noise model. The ϕhvvh distribution
over areas where the dominant noise is multiplicative noise is found to be in good agreement
with the theoretical expectation, while that of the areas where additive noise dominates deviates
from the prediction. Further experiment with Radarsat-2 polarimetric imagery qualitatively aims
at validating this relationship. This paper will help to classify the areas where the reciprocity
theorem does not hold so that further research using cross-polarized channels requires taking the
effect of speckle noise into account.

The present paper is divided as follows. Section 2 contains a brief introduction to the LM noise
model. The experimental results are treated in Sec. 3 and concluding remarks are given in Sec. 4.

2 LM Noise Model

The LM noise model is focused on identifying the speckle noise for all covariance matrices,
defined by target vector k ¼ ½ Shh Shv Svh Svv �T, where the subscript T denotes transpose.
Every element of C can be written as the complex Hermitian product SpqS�rs, where p; q; r; s
belong to a pair of orthogonal polarization states, represented by10

C ¼ kkþ ¼

2
664

jShhj2 ShhS
�
hv

ShvS
�
hh jShvj2

ShhS
�
vh ShhS

�
vv

ShvS
�
vh ShvS

�
vv

SvhS
�
hh SvhS

�
hv

SvvS
�
hh SvvS

�
hv

jSvhj2 SvhS
�
vv

SvvS
�
vh jSvvj2

3
775; (2)

where the symbol · represents the ensemble average and the subscripts þ and * denote the
conjugate transpose and complex conjugate, respectively. Specifically, for the product of
cross-polarized channels expressed as

ShvS�vh ¼ jShvS�vhj exp½jðϕhv − ϕvhÞ� ¼ z expðjϕÞ; (3)

where z is the amplitude and ϕ is the measured phase difference. The statistical property of
ShvS�vh is mainly determined by the complex correlation coefficient5
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ρ ¼ EfShvS�vhgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EfjShvj2gEfjSvhj2g

p ¼ jρj expðjϕxÞ; (4)

where jρj denotes the coherence, ϕx is called the effective phase difference, and Eð•Þ represents
the ensemble average. The average power of the two channels is denoted as

ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EfjShvj2gEfjSvhj2g

q
: (5)

The speckle noise is divided into two types: multiplicative noise nm and additive noise
na ¼ nar þ j nai. Hereinafter, the term noise refers to total speckle noise without any specifics.
The exhaustive derivation of the noise model has been presented in Ref. 10 and the reader is
urged to refer to it for the detailed deduction process. The simplified form of speckle noise model
for

�
SpqS�rs

�
is defined as10

�
ShvS�vh

� ¼ ψNcz̄nnm expðjϕxÞ þ ψðjρj − Ncz̄nÞ expðjϕxÞ þ ψð nar þ j naiÞ; (6)

where the parameter z̄n is the normalized mean amplitude by z̄ ¼ ψ z̄n with z̄ denoting the mean
amplitude of this averaging window and Nc for one-look imagery is given by

Nc ¼
π

4
jρj2F1

�
1

2
;
1

2
; 2; jρj2

�
; (7)

where 2F1ð1∕2; 1∕2; 2; jρj2Þ is a Gauss hypergeometric function.
The first term in Eq. (6) ψNcz̄nnm expðjϕxÞ introduces multiplicative noise, given by nm;,

which has an equal effect on the real and imaginary parts of ShvS�vh. By this, it means that this
term only induces noise in the amplitude since the phase is not affected. The mean and standard
deviation for the real part of this term is expressed as10

Em ¼ ψNc cosðϕxÞ
π

4 2F1

�
−
1

2
;−

1

2
; 1; jρj2

�
; (8)

stdm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ2N2

ccos
2ðϕxÞ

	
1þ jρj2 −

	π
4



2

2F
2
1

	
−
1

2
;−

1

2
; 2; jρj2



r
: (9)

The second term in Eq. (6) is a mean value without noise. The third term, ψð nar þ jnaiÞ,
introduces an additive noise, affecting both amplitude and phase as the nar;and nai are not
equal. It should be pointed that in the process of separating two types of noise, the first
term in Eq. (6) is referred to as the multiplicative noise term while the combination of the
rest of the two terms is taken as the additive speckle noise term. The mean and variance for
the real part are given by10

Ea ¼ ψ cosðϕxÞ
	
jρj − Nc

π

4 2F1

	
−
1

2
;−

1

2
; 1; jρj2




; (10)

stda ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ψ2cos2ðϕxÞð1 − jρj2Þ1.64 þ 1

2
ψ2sin2ðϕxÞð1 − jρj2Þ

r
: (11)

Figure 1 depicts the mean value versus standard deviation of multiplicative noise and additive
noise, respectively, assuming ψ ¼ 1 and cosðϕxÞ ¼ 1. A linear relation between the mean and
standard deviation can be clearly observed as it is very close to an equality relation in Fig. 1(a).
This conclusion is consistent with the results given in Ref. 9, which points out that the standard
deviation is approximately equal to the mean value for one-look SAR imagery with multipli-
cative noise. However, for the additive noise term, there is not a clear relation between the mean
value and standard deviation in Fig. 1(b). This difference will later be used as the key feature to
classify the dominant noise type of experimental data.
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3 Experimental Results

In order to examine the relationship between the dominant noise type and the statistical behavior
of ϕhvvh, we have tested a series of Radarsat-2 quad-pol datasets among which three typical
imageries are included in this experiment. Then, we select five homogeneous areas to analyze
the speckle noise type and ϕhvvh statistics. The detailed information about these areas is given
in Table 1. Further, the parameter noise equivalent sigma-zero (NESZ) in Table 1 is defined as
the scattering cross-section coefficient (σ0) of an area which represents a mean level equal to the
thermal noise.11 The nominal NESZ in Table 1 for each beam mode is an approximate value
estimated from Ref. 11. These three scenes are given in Fig. 2 as well as the five selected sub-
areas. The five subareas are chosen with the rule that strong and low noise levels should both be
taken into account. The subareas marked by SA1, SA2, and SA4 are selected because they are
displayed as dark patches in intensity images and they might be of the same order as thermal
noise. The two other areas are in gray color, which means their values are much higher
than NESZ.

The distribution of σ0 is shown in Fig. 3 and the corresponding ϕhvvh is presented in Fig. 4. To
relate the phase difference to the dominant type of speckle noise, the first step is to determine the
relative noise level with respect to the NESZ. Note that the radar cross section of SA3 and SA5 is
much higher than the nominal NESZ in Fig. 3; as a result, the genuine signal is not primarily
affected by the total speckle noise. Therefore, it is predicted that the ϕhvvh of SA3 and SA5
should be centered at 0 deg and have a single major lobe, which is consistent with the exper-
imental lines in Fig. 4.

Further, we find that the mean values of σ0 over SA1, SA2, and SA4 are of the same order as
the corresponding NESZ. Therefore, it is reasonable to assume that measurement error induces
an equivalent effect on SA1 and SA2, so if the observed phase difference is caused by the meas-
urement error, PDFs over SA1 and SA2 in Fig. 4 are expected to have a similar shape. However,
the experimental results demonstrate that the various phase differences cannot be attributed to
measurement errors. In addition, the PDFs are estimated within an area of 1000 × 600, which is
large enough to neglect the effect of statistical fluctuations. Thus, the effects of speckle noise
need to be taken into consideration. The real part of ShvS�vh is shown in Fig. 5 and for every case,
the scatter diagrams illustrate the behavior of ReðShvS�vhÞ, the multiplicative term and the addi-
tive term, respectively. The scatter diagrams are plotted by employing 7 × 7 pixel nonoverlap-
ping windows. It should be noted that the imaginary part is not displayed here because this term
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Fig. 1 Scatter plot of theoretical mean value versus standard deviation. (a) Multi noise, (b) additive
noise.

Table 1 Experimental datasets.

Scene Area Time (UTC) Centre Lat/Lon NESZ

Scene 1 (FQ 3) SA1 and SA2 2013/02/15 10:13:38 39.00°N/118.13°E −33dB

Scene 2 (FQ 10) SA3 and SA4 2012/08/18 22:12:01 20.70°N/116.70°E −35dB

Scene 3 (FQ 9) SA5 2008/07/30 09:17:22 34.84°N/129.12°E −35dB
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presents a similar behavior as ReðShvS�vhÞ. In combination with the conclusions reached in Sec. 2
(Fig. 2), the mean value versus standard deviation for multiplicative noise is approximately an
equality relation. From Fig. 5, we can see that the dominant noise over SA1 is multiplicative
noise, which only introduces noise in the amplitude. In this case, the speckle noise has no effect
on the individual phases of HV and VH channels; therefore, the ϕhvvh distributions remain cen-
tered at 0 deg, which is in agreement with the theoretical expectation as shown in Fig. 4. There is
no clear relation between mean value of additive noise and its standard deviation as in Fig. 2,
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Fig. 2 Three scenes and selected subareas.
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where the only feature is that the mean value is about 0 deg. According to this pattern, it is clear
in Fig. 5 that the dominant noise type over areas SA2 and SA4 is additive noise which induces
noise both in amplitude and phase. This introduced additive noise results in the ϕhvvh distribution
for SA2 and SA4 being significantly deviating from the 0 degree as shown in Fig. 4. From this
experiment, we could conclude that the reciprocity theorem does not hold in the case of strong
additive noise.

4 Conclusions

A qualitative relationship between statistics of ϕhvvh and dominant noise type is treated based on
Radarsat-2 fully polarimetric data. In the case of low noise level, the mean σ0 is much higher than
the NESZ and the genuine signal is not significantly corrupted by speckle noise, therefore, the
cross-polarized PPD distribution is centered at 0 deg as expected in terms of the reciprocity
theorem. However, in the case of high noise level, the correlation between ϕhvvh distribution
and dominant noise type is evident. As the experiments demonstrate, ϕhvvh distribution over
the areas where the multiplicative noise is dominant centers at 0 deg, while that over the
area of additive noise is observed to have an obvious deviation from 0 deg. This behavior is
due to the fact that the multiplicative noise only affects the amplitude while the additive
noise introduces noise both in amplitude and phase. However, we realize that more effort is
required to figure out a quantitative relationship between the noise type and degree of deviation
for further oceanic applications.
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