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Abstract. Water temperature is an important parameter of water quality. It influences the sur-
vival and growth of animal and plant species in river ecosystems. Current in situ measurements
do not allow for the spatial coverage that is necessary for continuous monitoring. Hence, the
ability of remote sensing temperatures from aerial and artificial satellite datasets to accurately
identify and investigate water temperature and inflows is evaluated for a case study of the Upper
and Middle Rhine River. Water surface temperatures acquired by an aerial survey and the results
of two correction methods were evaluated: the difference to in situ measurements could be
reduced to 0.04� 0.21°C with a calibration based on in situ measurements and to 0.14�
0.33°C based on atmospheric parameters modeled with MODTRAN®5.3.2. Inflows and mixing
processes of water bodies with differing temperatures could be identified successfully with the
change point analysis method and based on the standard deviation of the distributed longitudinal
profile even for smaller dischargers. With the artificial satellite datasets, the ability to detect
inflows decreases mainly with the noise of the dataset, also leading to a higher number of false
positive change points. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
the original publication, including its DOI. [DOI: 10.1117/1.JRS.9.095067]
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1 Introduction

In a river ecosystem, water temperature is an important parameter for water quality1 and
influences the growth and decline of species living in and near the aquatic habitat.2 At most
rivers, the water temperature is measured at water quality measurement stations which are wide-
spread along the river course. Water discharges with differing temperatures in between meas-
urement stations may go unnoticed as they mix with the river water before the measurement
station is reached and the original temperature difference is somewhat diminished. In other
cases, the measurement station does not capture the temperature difference as its location is
inappropriate for this task. To monitor the water temperature and discharges along the river,
additional, spatially distributed data are necessary.

Thermal infrared (TIR) remote sensing is an established method for the retrieval of sea sur-
face temperatures.3,4 TIR data from satellite sensors have also been used for the investigation of
inland water bodies, e.g., time series and longitudinal profiles of stream temperatures,5–7 thermal
water pollution and river plumes in estuaries and lagoons,8,9 lake surface temperatures,10 and
groundwater inflow and thermal anomalies.11 For smaller water bodies, the resolution of satellite
sensors may be insufficient and airborne thermal remote sensing is necessary to observe the
desired processes. Applications of airborne TIR remote sensing include investigating the stream
temperature variation12 and fine-scale thermal features such as tributaries and groundwater
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inputs,13 quantification of groundwater discharge and its detailed spatial patterns,14 assessing
stream temperatures affected by land use,15 and thermal heterogeneity of floodplains related
to fish distributions.16,17

The aim of this paper is to test the applicability of TIR for the investigation of river water
temperatures and the effects of dischargers in German waterways. Spatially distributed temper-
ature data for inland waterways in Germany can be provided by satellite imagery acquired in the
TIR wavelength region of a sufficient spatial resolution (e.g., Landsat 5, 7, and 8; ASTER), but
also by aerial surveys. Both data sources have their own advantages, specifically the low cost of
the satellite data and the high spatial resolution and flexibility of the aerial survey. The spatial
resolution often decides whether the dataset can be used for inland waterways, helping to detect
inflows and to identify the temperature difference between the inflowing and the river water.
The accuracy and applicability of TIR remote sensing to observe spatial patterns with different
resolutions has also been assessed by several studies.18–20 At least three pixels over water across
the stream are necessary to resolve the river water surface temperature.18 In this paper, we will
first evaluate the ability of airborne TIR data acquired over the Rhine River to predict water bulk
temperatures by comparing the original and corrected water surface temperatures from the
survey to in situ measurements. Bulk temperature, not the skin temperature acquired by remote
sensing, is the interesting indicator for water quality and ecological models. Second, we used
the change point analysis and standard deviation of the temperature across the river to detect
inflows with different water temperatures and evaluate mixing processes along the longitudinal
river profile of the Rhine River. These methods were tested with the original aerial survey and
artificial satellite datasets similar to Landsat data to evaluate the effects of spatial resolution and
noise on the detection method.

2 Research Area

For this study, the research area is the Rhine River from Rhine kilometer (Rh-km) 334 in
Iffezheim to Rh-km 571.2 in Boppard (see Fig. 1). The river stretch includes part of the

Fig. 1 The research area along the Rhine River from Iffezheim (Rh-km 334) to Boppard (Rh-km
571.2) with the location of major tributaries, water quality measurement stations, and temperature
data loggers (data sources: BfG, Federal Ministry for the Environment, Nature Conservation,
Building and Nuclear Safety, WSV, DWD).
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Upper Rhine in the Rhine Rift Valley between Iffezheim and Bingen (250 to 500 m river width)
and the first part of the Middle Rhine Valley with a narrower river valley from Bingen to Boppard
(150 to 400 m river width). The main tributaries in this river section are the Neckar, Main, and
Nahe, but industrial enterprises, power plants, and treatment plants also discharge water into the
river. In Karlsruhe and Mainz, the cooling water from power plants is the main source of
anthropogenic heat discharge.21,22 Downstream of a discharge source, the inflow can form
plumes for kilometers with differences in water temperatures of over 1°C.21 The influence of
the known inflow sources on the water temperature has been modeled and shows a large effect
directly at the discharge source with decreasing impact downstream.23 This alters the temperature
regime in certain river areas where, for example, the shipping traffic can profit from the reduced
ice drift. However, it can also enforce ecosystem changes and the local introduction of new
species and the displacement of existing species compared to the regular plant and animal com-
munities. Since the late 1970s, the mean annual water temperatures in the Rhine River have been
rising, with an increase of 1.3°C in Mainz and 1.2°C in Koblenz (1978 to 2011).24 This could
have been caused by climate change,21 but direct heat discharges, urbanization and changing
river morphology also have an impact on the river temperature.1

3 Data

3.1 Aerial Survey

An aerial survey of the research area was conducted on October 31, 2013, between 12:30 and 3:00
p.m. UTC on behalf of the Federal Institute of Hydrology (BfG). Data of the Rhine River were
acquired with two camera systems: a digital camera with RGB and near-IR channels, and a thermal
imaging camera measuring the brightness temperature in the 8 to 12 μm wavelength region. The
thermal camera was an extended version of the Image IR 8800 by InfraTec with an mercury cad-
mium tellurid detector, an absolute accuracy better than 1%, a relative temperature resolution, and
accuracy of 0.025 K. This camera system had a focal plane array of 640 × 512 pixels and a focal
length of 13 mm and was deployed on an aircraft that flew at an altitude of ∼3000 m. At the given
flight altitude, the resolution of the TIR camera allowed for a ground sampling distance of 4 m and
an orthorectified image of ∼2800 m × 2150 m covering the whole width of the main stream and
larger branches. The RGB and NIR data were acquired with the digital camera UltraCamXp by
Vexcel and captured at the same time as the TIR data. Due to a higher pixel resolution, the final
RGBNIR image had a spatial resolution of 0.8 m. A classification of the RGBNIR images was
performed to eliminate land or mixed pixels and the effects of land surface temperatures as well as
to identify clouds and shadows present during the data acquisition. The classification was based on
band indices (normalized difference vegetation index based on the NIR and the red bands, nor-
malized difference water index based on the green and NIR bands) and thresholds, derived from
training areas/ground control points in the RGBNIR dataset where the surface characteristics were
known. With very strict thresholds, mixed pixels capturing a combination of land and water sur-
faces were identified and with the land pixels omitted from further analysis. Fortunately, no clouds
were identified over the water surface.

3.2 Satellite Data

As mentioned in Sec. 1, river water temperatures can also be provided by satellite data. The
accuracy of temperatures from Landsat ETM+ and the possibility to identify dischargers
along the Rhine River has been evaluated in a previous study.6 In this paper, the capabilities
of satellite data will be evaluated based on artificial satellite datasets derived from the aerial
survey (see Sec. 4.3).

3.3 Longitudinal Temperature Profiles

To reduce the amount of data to be processed, longitudinal profiles of the river temperature
were created by selecting points evenly distributed every 100 m along the river center line.
The temperature from the aerial survey extracted at their coordinates normally represents the
water temperature of the main river stream (see Fig. 2). To capture water plumes on either stream
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side, an additional point raster with 100 m spacing was distributed over the river and related to
the closest 100 m profile point for a distributed longitudinal profile. Raster temperature and
classification value (water, land, cloud, or shadow) were extracted for each raster point and sum-
mary statistics, such as mean and standard deviation of the water temperature, were calculated
for each 100 m profile point.

3.4 In Situ Measurements

The measurements from several water quality measurement stations along the Rhine and its
tributaries were used for the comparison of remote sensing temperatures with in situ temper-
atures (see Fig. 1). The measurement stations are listed in Table 1 with the responsible operators.
The measurement stations measure the bulk water temperature at the river shore and, in some
cases, also across the river (Worms and Mainz). Independent of the instrumental accuracy, the
accuracy of the bulk water measurements can vary from 0.1 to 0.25°C up to 0.5°C,22 depending
on the maintenance of the measurement station.

In addition to the water quality measurement stations, temperature data loggers were tem-
porarily deployed with the support of the Federal Waterway and Shipping Administration
(WSV) at lateral buoys of the river channel at a depth of 1 m. Their locations were close to
some of the regular measurement stations but were also in between to complement the density
of the in situ measurement network. The absolute accuracy of the temperature data loggers was
�0.1°C according to the manufacturer’s calibration and the test calibration performed before
deployment. Most temporary temperature loggers close to water quality measurement stations
confirmed the station measurements within the expected accuracy limits.

3.5 Additional Data

For the atmospheric correction, the atmospheric conditions were derived from a combination of
weather data at ground level and predefined standard atmospheric profiles from the atmospheric

Fig. 2 Example of the RGBNIR (land) and thermal infrared data (water area) from the aerial survey
as well as the longitudinal profile with 100 m intervals and the distributed longitudinal profile with
100 m spacing (data source: BfG).
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band model (see Sec. 4.2). Temperature, relative humidity and station pressure at weather sta-
tions in the research area were accessed from the German Meteorological Service (DWD)25 and
linearly interpolated in space and time to obtain representative input parameters for each image
that was corrected (see Ref. 26).

4 Methods

4.1 Comparison with In Situ Measurements

The ability to estimate bulk water temperatures with the remote sensing datasets was assessed by
a comparison with in situ measurements at the acquisition time. The temperature is extracted
from the remote sensing data at the location of the measurement station or its water outtake,
respectively. For the characterization of the dataset, the mean and standard deviation of the tem-
perature difference were calculated. Additionally, the RGBNIR classification was consulted to
determine whether the remote sensing sensor actually acquired water temperature at that
location.

4.2 Calibration and Atmospheric Correction of the Aerial Survey

When evaluating the local effect of the water temperature on the river ecosystem, it is necessary
to obtain absolute bulk temperature values and their error estimates. The TIR camera sensor,
however, acquires the brightness temperature of the observed surface (TB), including all radi-
ances emitted into the line of sight of the camera. As water is a good, but not a perfect, absorber,
it has an emissivity (ε) between 0.96 and 0.99 in the 8 to 14 μm region.27 Thus, a correction for
the emissivity of the observed surface and the influence of the atmosphere is mandatory for
calculation of kinetic surface temperatures (Tsurface). Based on the wavelength range of the

Table 1 Water quality stations and temperature data loggers along the Rhine and its tributaries
(operators and data sources: BfG, HLUG: Hessian Agency for the Environment and
Geology, LUBW: Agency for the Environment, Measurements and Nature Conservation Baden-
Württemberg, LUGW: State Office for the Environment, Water Management and Trade
Supervision Rhineland-Palatinate, WSV).

River Name River (km) Interval Operator

Rhine Karlsruhe temperature logger 358.6 5 min BfG/WSV

Rhine Karlsruhe station 359.2 Hourly LUBW

Rhine Rheinhausen temperature logger 392.5 5 min BfG/WSV

Rhine Speyer temperature logger 424.6 5 min BfG/WSV

Neckar Mannheim station 2.95 Hourly LUBW

Rhine Worms temperature logger 443 5 min BfG/WSV

Rhine Worms station 443.3 Hourly LUGW

Rhine Nierstein temperature logger 481.7 5 min BfG/WSV

Rhine Mainz station 498.5 Hourly LUGW

Rhine Mainz temperature loggers 499 5 min BfG/WSV

Nahe Dietersheim station 3.54 10 min LUWG

Rhine Kaub station 546.2 15 min WSV

Rhine Kaub temperature logger 546.2 5 min BfG/WSV

Rhine Boppard temperature logger 571.2 5 min BfG/WSV
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TIR sensor, the low suspension load of the Rhine River, and only few waves with foam during
the acquisition, an emissivity value of ϵ ¼ 0.99 was chosen. After the correction for emissivity,
two different approaches for correcting the datasets were tested with the aim of evaluating the
efforts necessary for their calculation in relation to the quality of the results: As retrieval schemes
for the river water temperature with regression between in situ and brightness temperatures was
employed as well as straightforward atmospheric correction based on the physical parameters
and modeling of the atmosphere.

When a sufficient number of in situmeasurements is available for a dataset and the variability
of the bias between remote sensing and in situ temperatures is low, a linear regression of the
remotely sensed Tsurface based on in situ measurements is a possible option. This is a well-estab-
lished method for the calibration of sea surface temperatures (SST) acquired by various satellite
sensors. The SST or Tsurface is compared to in situ measurements (T insitu), the coefficients α0 and
α1 for a linear relationship between Tsurface and T insitu are fitted using the least squares approach,
and Tsurface is directly calibrated to the bulk temperature of the sea water.

T insitu ¼ α0 þ α1Tsurface: (1)

For the aerial survey, this was accomplished by randomly selecting half of the in situ mea-
surements for calibration and calculating the coefficients for a linear regression between the
aerial dataset and the in situ measurements. The surface temperatures from the aerial survey
were then calibrated based on the discovered relationship and validated with the remaining
in situ measurements. For SST products, using the linear relationship between Tsurface and
bulk temperature is simple and effective, but it has been disputed and more advanced calibration
algorithms have been developed.28–30 They take into account the water vapor content and vertical
structure of the atmosphere or the state of the water surface and consider nonlinear errors due to
the nonlinear relationships among brightness temperatures, water surface temperatures, and the
state of the atmosphere. The nonlinear nature of these relationships, however, is more relevant on
larger spatial scales (>5 deg) than the scale of the aerial survey,30 where a calibration based on
linear regression seemed suitable.

An alternative to the calibration with in situ measurements is the correction for atmospheric
influences during the acquisition. The surface temperature can be underestimated by up to 5 to
10°C if the influence of the atmosphere is not corrected.26 During the aerial survey, the difference
was smaller, but could not be ignored (see Sec. 5.2). The temperature measured by the camera
sensor is calibrated under laboratory conditions, but in reality, measured radiance and brightness
temperature are affected by downwelling Ldown

a and upwelling Lup
a atmospheric radiances as well

as the transmissivity τ of the atmosphere [Eq. (2)]. The temperature measured during the aerial
survey has to be converted to radiance Lmeas with Planck’s radiation law and corrected for the
emissivity (ϵ) of the surface and the atmosphere between surface and sensor altitude (Lup

a , Ldown
a ,

τ) (Refs. 31 and 32, references to the wavelength are omitted).

Lmeas ¼ ðεLsurface þ ð1 − εÞLdown
a Þτ þ Lup

a : (2)

The atmospheric parameters in Eq. (2) were modeled based on radiative transfer equations by
the software MODTRAN®5.3.2. It is widely used to correct single-band thermal data acquired
by satellite and airplane; for some datasets, predefined input parameters and weather data are
available (e.g., in the AtmCorr Calculator,32 ATCOR).

Individual atmospheric parameters were calculated for each image of the aerial survey;
weather data (air temperature, station pressure, and relative humidity) from a DWD meteoro-
logical station was linearly interpolated for the acquisition time and center point of each temper-
ature raster and combined with a standard atmospheric profile (U.S. Standard) as input for
MODTRAN®5.3.2. When computing Ldown

a and Lup
a , the radiances were integrated over the

wavelength and the response function of the sensor as suggested by McCarville et al.33 The
temperature raster was then corrected based on Eq. (2) and compared to in situ measurements
where available.

The atmospheric correction does not take into account other processes at the water surface
that can influence the acquired brightness temperatures. These are the difference between the
skin temperature at the water surface measured by the TIR sensor and the subsurface bulk water
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temperature represented by the in situ measurements, the possible stratification of the water, or
the effects of viewing angle, wind, waves, and foam on the emissivity.

4.3 Artificial Satellite Datasets

One aim of this study was to test the methods for the detection of inflows for datasets with
different resolutions and noise levels, but thermal images from satellites were not available
at the same point of time as the aerial survey. Hence, several artificial datasets that resemble
actual datasets provided by the Landsat missions were created by degrading or upscaling34

the TIR and RGBNIR raster data of the aerial survey. For the upscaling of thermal raster
data, a spatial filter designed to simulate the sensor response should be applied,35,36 but
block averaging is commonly used and gives satisfactory results.36–38 The brightness temper-
atures acquired by the aerial survey were used as input, as the effect of the exponential term
in the Planck’s radiation law to convert between radiance and temperature should be small
and there is no obvious difference between the scaling of temperature and radiance.38 It was
implemented by using the functions measure.block_reduce from the skimage package39 and
the module gdal from the osgeo package40 in python.41 Subsequently, a random noise mask
with a normal distribution, with zero as mean value and a standard deviation equal to the desired
noise equivalent differential temperature (NEΔT) was created and added to the degraded raster
data with the new, lower resolution. Of the final datasets, one dataset was created with the NEΔT
and acquired resolution of Landsat ETM+ thermal data.42,43 The other two datasets received the
spatial resolution of the new Landsat TIRS sensor (100 m), with two different NEΔT: 0.4°C,
required during the planning phase of the satellite mission,44 and the actually evaluated 0.1°C.45

Table 2 assembles the characteristics of the original survey data and the three artificial satellite
datasets. While the mean temperature remained almost the same, the block averaging reduced the
temperature range of the dataset and the standard deviation decreased with increasing pixel size
rather than with increasing NEΔT (see Ref. 38).

4.4 Inflow Detection

For the detection of inflows along the Rhine River, the mean and the standard deviation of the
water temperature for every 100 m were calculated from the distributed longitudinal profile (see
Fig. 3). For every 100 m of the longitudinal profile, the temperature from evenly spaced points
across the whole river was collected and summary statistics (mean μ100 m and standard deviation
σ100 m) were calculated to represent the characteristics of the river temperature and further
analyzed.

The change point analysis is a suitable method to identify the points where the statistical
properties within the dataset change.46 The applied pruned exact linear time method offers
exact segmentation of datasets to identify several change points with computational costs linear
to the number of data points.46 The change point package47 of the statistical program R (Ref. 48)
was then used to apply the change point analysis of the mean river temperature and to test
whether this method could identify inflows even without prior knowledge of them. A standard-
ized method was implemented to set the threshold for the change detection so that the change

Table 2 Overview of the evaluated remote sensing datasets with their spatial resolution and
sensor noise.

Dataset Spatial resolution (m) NEΔT (°C)

Aerial survey 5 0.025

Landsat ETM+ (evaluated NEΔT ) 60 0.22

Landsat TIRS (evaluated NEΔT ) 100 0.1

Landsat TIRS (required NEΔT ) 100 0.4

NEΔT , noise equivalent differential temperature.

Fricke and Baschek: Temperature monitoring along the Rhine River based on airborne thermal. . .

Journal of Applied Remote Sensing 095067-7 Vol. 9, 2015



detection of different datasets could be compared: different threshold values were tested and the
threshold was reached when the number of change points converges asymptotically to a stable
value. Compared to other methods to define the penalty value, this approach proved to detect the
position of the known inflows the best and was the least affected by the variance of the dataset.
The change point analysis of the mean was conducted for the μ100 m of all original and artificial
datasets (see Sec. 4.3). The locations of known potential inflows21 served as validation data and
counted as detected if a change point was found within 5 km of a known potential inflow. The
change point analysis of the mean and variance proved to result in too many change points as the
variance could also change long after the inflow based on the distribution of the water plume.

Additionally, the simple standard deviation of the water temperature for each 100 m section
(σ100 m) could be used to evaluate the mixing processes of water bodies. After an inflow, the
lateral flow of the main stream and the plume of the inflow are indicated by the increasing vari-
ability of the water temperatures. Ideally, a certain distance after the outlet, the water bodies have
mixed and the stream exhibits a nearly uniform temperature with a low standard deviation in the
distributed longitudinal profile (see also Fig. 3). Thus, the standard deviation of the water tem-
perature across the river can serve as an indicator for the existence of plumes or uniform streams.
As a threshold for uniform river sections, the mean plus the standard deviation of all σ100 m of
the longitudinal profile was chosen.

5 Results and Discussion

5.1 Characteristics of the Dataset

Throughout the original aerial survey, a systematical error in the form of a temperature decrease
could be observed toward the border area of the single scenes. The range was −0.1 to −0.2°C
compared to the temperature in the center area of the overlapping neighboring scene. This phe-
nomenon could be observed due to the constant emissivity and only slowly changing temper-
ature of the river water in contrast to the changing emissivities and TB of the varying land
surfaces. The spatial allocation of the pixels was not necessarily accurate as the spatial accuracy
was only ∼15 m, but even after applying a 3 pixel × 3 pixel averaging filter, the systematical
error was visible. Possible causes for this error include the influence of varying observation

Fig. 3 The mean temperature and standard deviation of the temperature along the distributed
longitudinal profile of the Rhine River, extracted from the original aerial survey acquired on
October 31, 2013 (data source: BfG). The changes of mean temperature and standard deviation
show the effect of inflows with differing water temperatures on the river temperature.
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angles on the atmospheric parameters (up- and downwelling atmospheric radiances and trans-
missivity) and emissivity or sensor degradation toward the border areas. The correction of one
test scene with MODTRAN®5.3.2 and different observation angles showed that the look angle
off-nadir at the border of the scene (20 deg) caused no changes in transmissivity, but a slightly
higher upwelling radiance. This should actually cause higher brightness temperature at the bor-
der (þ0.4°C). On the other hand, water shows a decrease of emissivity with increasing viewing
angle,49 which could cause decreasing brightness temperatures. This effect has been calculated to
be only around −0.1 to −0.2°C. The observation could also be caused by natural vignetting that
is more prominent for short focal lengths and wide angle lens as used for the acquisition of the
TIR images. Based on these estimations that have an equally large uncertainty, the observed
systematic error remains partly unexplained and a sensor error cannot be eliminated.

5.2 Evaluation of Original, Calibrated, and Corrected Aerial Survey Data

For the evaluation of the usefulness of the remote sensing temperatures and the correction
methods, TB acquired by the aerial survey and corrected Tsurface were compared to the water
temperatures measured in situ. TB and Tsurface actually represent the skin temperature of the
water surface, while the in situ stations and temperature loggers measure the subsurface (bulk)
water temperature at 1 to 2 m depths. All datasets were preprocessed as described in Sec. 4.2, and
the difference between the temperatures acquired by the aerial survey, Taerial, and the in situ
measurements from 19 stations at the time of acquisition was calculated (ΔT). The mean differ-
ence (μ) between the uncorrected original dataset from the aerial survey and the in situ temper-
ature measurements was −1.23°C with a standard deviation (σ) of 0.54°C. The aerial data
underestimated the real water temperature quite uniformly over the survey area. The in situmeas-
urement stations where ΔT was outside μ� σ were investigated more closely. Of these stations,
two temperature measurement stations located at Rheinhausen andWorms had to be omitted as it
is unclear which water body they represent. Both river sections are characterized by a parallel
flow of inflow plumes and river water, and the in situ measurements are situated at the boundary
layer between the two water bodies. The authors believe that the underwater measurements at
the two locations do not represent the surface water temperature as the vertical mixing of the
water layers at this location is incomplete. Without the measurements in question, the variance of
ΔT was reduced (see Fig. 4) and they were omitted for the remaining evaluation of the aerial
dataset. A correction for the emissivity improved the mean ΔT to −0.85°C, while the standard
deviation, as expected, remained almost the same at 0.15°C.

The remaining ΔT could be due to the atmospheric influence and a difference between sur-
face and bulk temperature. At mean runoff, vertical mixing takes place in the Rhine River and
prevents a stratification of water bodies: even when low sun angles occurred and hard shadows

Fig. 4 Boxplot of the temperature differences between aerial survey and in situ measurements
(ΔT ¼ T aerial − T insitu), showing the effects of the correction steps on ΔT (black line: median, bot-
tom and top of the box: first and third quartiles, whiskers: �1.58 interquartile range, roughly a 95%
confidence interval).
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were visible in the RGBNIR data on the water surface, no temperature differences were
detectable in the TIR data at the shadow border. Based on this assumption of vertical
mixing, differences between subsurface and bulk water temperature were neglected. However,
differences between the subsurface and the cooler skin temperature (skin effect) can occur in
the dimension of 0.1°C (daytime) to 0.5°C (nighttime),50 but could not be investigated in the
absence of additional in situ measurements of the skin temperature.

The correction of the aerial survey based on a linear regression between half of the in situ
measurements and the corresponding TIR temperatures should also correct for the skin effect and
was quite successful: After the correction for emissivity and the calibration with α0 ¼ 1.81 and
α1 ¼ 0.93, the mean ΔT between the aerial survey and the second half of the in situ temperatures
selected for the validation was 0.04� 0.21°C (see also Fig. 5). On the other hand, the atmos-
pheric correction slightly overestimates the atmospheric influence (ΔT ¼ 0.14� 0.33°C). With
a subsequent calibration based on linear regression between the temperatures corrected for the
atmosphere and in situmeasurements (α0 ¼ 4.81, α1 ¼ 0.64), mean ΔT was reduced to −0.10�
0.21°C when comparing the corrected and calibrated temperatures to the validation in situ data.
As the atmospheric correction of the raster temperature images was calculated individually, the
values of ΔT did not change uniformly (see also the increased standard deviation of ΔT for the
atmospheric correction in Fig. 4). Hence, mean ΔT is not the same as for the calibration only.
The resulting mean differences were similar to other studies,12,13 but with a lower variance of the
differences. The authors conclude that the relationship between remote sensing and in situ tem-
peratures is similar for all measurement stations and temperature loggers in this analysis, except
the stations excluded before (see beginning of Sec. 5.2).

The artificial degraded datasets corrected for emissivity were also compared to in situ mea-
surements (see Fig. 6). The degrading of both the spatial resolution and the sensor noise lead to
a decreasing remote sensing temperature that underestimates the actual water temperature at
the in situ measurement stations. This may be due to mixed pixels of water and land surface
at the river shore, which had a lower TB at acquisition time, and the measurement stations that
were mostly located close to the river shore. The standard deviation of the difference between
remote sensing temperatures and in situ measurement increased with the pixel size in this
comparison (see Fig. 6), but it is still lower than the standard deviation of the original
Landsat ETM+ scenes for the Rhine River (σ ¼ 1.3°C) from a previous study,6 which are addi-
tionally affected by the atmosphere and sensor characteristics.

Fig. 5 Uncorrected and corrected temperatures from the aerial survey versus in situ measure-
ments. The data points of the original survey show that a correction is necessary, but the bias is
fairly uniform and the results of calibration and atmospheric correction lie very close to the line
through the origin.
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5.3 Inflow Detection

The majority of the 20 known inflows could be detected by the change point analysis of the
mean: the sensitivity of the change point analysis to the changes of the mean temperature
from the distributed longitudinal profile seems to be sufficient as the mean includes any temper-
ature changes across the river caused by inflows and dischargers (e.g., Fig. 7 and Table 3). The
change point analysis also detects false positive change points. If one inflow does not mix well
with the main river stream and causes several Tmean changes depending on the distribution of the
plume of the inflow, several change points are detected by this method (for example, downstream
of the power plant in Philippsburg in Fig. 7). This also shows that an inflow plume can change its
apparent size and persist over a long distance after the inflow source. On the other hand, when
several inflows with a similar effect on the river water temperature are located close to each other,

Fig. 6 Boxplot of the temperature differences between the in situ measurements and the four
different remote sensing dataset corrected for emissivity (ΔT ¼ T dataset − T insitu) (black line:
median, bottom and top of the box: first and third quartiles, whiskers: �1.58 interquartile range,
roughly a 95% confidence interval).

Fig. 7 Change point analysis of the mean water temperature from the original aerial survey. 80%
of the inflows were successfully detected (marked by green dashed lines) by change points (red
dashed lines).
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only one change point is detected and the inflows cannot be identified separately (for example, in
Karlsruhe and Mannheim/Ludwigshafen).

The degrading of the raster datasets (sensor noise and spatial resolution) seemed to have
different effects on the ability to detect inflows (see Table 3). With the chosen threshold method,
a higher NEΔT leads to a larger number of false positive change points, when nonexistent
inflows are instead caused by sensor noise and mixed pixels. Their influence seems to override
the effect of the spatial resolution that should reduce the variance by averaging the temperature
values.

In the dataset with the higher resolution, i.e., the original aerial dataset, the effects of the
inflows could be detected in the standard deviation of every 100 m part (see power plant
Philippsburg, Neckar River at Mannheim, Main River, in Fig. 8): only after a certain distance,
the mixing of the main stream and the inflow is completed and the standard deviation of the
distributed longitudinal profile falls below the threshold (defined in Sec. 4.4). Especially, the
river part 70 km downstream of the power plant in Phillipsburg and the river part from

Table 3 Results of the change point analysis of the mean river temperature from the different
remote sensing datasets: mainly the increasing noise level of the datasets caused an increasing
number of missed inflows and false positive change points.

Dataset (resolution and NEΔT )

Inflows Change points

Detected (%) Undetected (%) Number Correct (%) Incorrect (%)

5 m × 5 m, 0.025 80 20 14 83.3 16.7

60 m × 60 m, 0.22 45 55 16 62.5 37.5

100 m × 100 m, 0.1 80 20 18 77.8 22.2

100 m × 100 m, 0.4 45 55 12 66.7 33.3

Fig. 8 The standard deviation of the temperature along the distributed longitudinal profile of the
Rhine River and the identified inflow plumes for the dataset with a spatial resolution of 5 m × 5 m
(data source: BfG). In the first river section, σ is relatively low and the temperature distribution
across the river uniform except shortly after the inflows in Karlsruhe. However, from Philippsburg
on, temperature differences across the river are prevalent and until 20 km after the Nahe inflow,
the river is thoroughly mixed only for short passages.
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Mainz and the Main River inflow until the Middle Rhine Valley around Rh-km 550 are char-
acterized by inflows with persistent plumes and with a large impact on the variance of the river
temperature. The temperature plumes of the inflows prevail until the next inflow and overlay
each other. With a lower spatial resolution and more sensor noise, the ability to detect plumes
abated as they could not be differentiated from the variance inherent to the dataset.

6 Conclusion

When evaluating the ability of the water temperatures acquired by aerial survey of the Rhine
River to estimate bulk water temperatures and comparing the remote sensing surface temper-
atures with in situ measurements, it becomes apparent due to the temperature difference
(−1.23� 0.54°C) that correction for the emissivity of the water surface, the atmosphere, and
other effects (skin effect, lens error) is necessary. The mean bias after correction for emissivity
(−0.85� 0.15°C) is similar to that of Landsat ETM+ data of the research area,6 but the original
satellite dataset from several acquisition dates has a much higher variance compared to the aer-
ial data.

The results of the calibration and correction of the aerial temperature dataset were compa-
rable or better than that for other studies.12,13 The calibration based on linear regression between
in situ measurements and surface temperatures provided the best results and achieved a bias of
0.04� 0.21°C in the validation, with a maximum range of �0.3°C. The automatization of cal-
ibration based on in situ measurements, for example, for larger datasets or frequent data service,
would be possible for limited areas with a fairly homogeneous atmosphere when a sufficient
amount of in situ measurements, distributed over the investigated area, is available. In this
study, additional measurements were provided by temporary data loggers, but they may not
be available for other remote sensing datasets.

Atmospheric correction proved to be inferior to the calibration but still gave satisfying
results. It reduced the mean temperature difference between the corrected aerial survey and
in situ measurements to 0.14� 0.33°C, similar to the correction of satellite data for the
same area.6 While the expenditures for in situmeasurements are lower for this method, it requires
information about the atmospheric situation and more effort for the correction. Also, in this
case, it overestimated the in situ bulk temperatures and did not take other influences than
the atmosphere into account.

The evaluation of the observed outliers demonstrated how important the careful selection of a
representative pixel of nearby water is for the comparison with in situ measurements. The effect
of the omitted stations on the mean temperature difference and standard deviation was similar to
the effect of the different correction methods. In areas with a heterogeneous temperature dis-
tribution, either a high resolution of the remote sensing data or a careful selection of measure-
ment stations is required.

With regard to the upscaling of the remote sensing datasets, the degradation of spatial res-
olution and increasing sensor noise caused slightly lower temperatures due to the colder sur-
roundings of the water bodies and higher variance. Areas with uniform water temperature
also seemed well represented by datasets with lower resolution. When comparing the artificial
datasets and in situ measurements, the mean differences were in the same dimension as for the
data sets with a higher resolution, but with a higher variance.

The detection of change points with the change point analysis proved to find most of the
known inflows used for validation in the aerial survey (80%). In the artificial satellite datasets,
temperature signals from the inflows are evened out by upscaling through the block averaging or
disappear due to the increasing sensor noise (especially for the datasets 60 m × 60 m, 0.22 and
100 m × 100 m, 0.4), which seems to have a larger effect on the number of detected inflows than
the spatial resolution. The number of false positives also increases more strongly with sensor
noise than with increasing pixel size from <20% to almost 40% false positive detections.
Additionally, the atmospheric influence on the satellite datasets that were not modeled here
could hinder the change point detection. The longitudinal profiles from datasets with lower
spatial resolution and higher sensor noise would require smoothing to avoid the false positive
detections, which, in turn, would reduce the sensitivity of actual inflow detection. Further steps
to be undertaken will depend on the dataset and the desired result.
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The investigation of mixing processes based on the standard deviation of the water temper-
ature across the river was successful for the original data from the aerial survey. As soon as
the mean standard deviation is higher than the temperature difference or signal to be observed,
the increased variance of the degraded dataset prevents the identification of plumes with small
temperature differences. Thus, using the standard deviation of distributed longitudinal profiles
for the detection of plumes and mixing processes is only feasible for datasets with a sufficient
spatial resolution and low sensor noise such as the original aerial survey dataset.
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