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Abstract. Assessment of human health impact from the exposure to PM10 air pollution is crucial
for evaluating environmental damage. We established an empirical model to estimate ground
PM10 mass concentration from satellite-derived aerosol optical depth and adopted the dose-
response model to evaluate the annual average human health risks and losses related to
PM10 exposure over China from 2010 to 2014. Unlike the traditional human health assessment
methods, which relied on the in situ PM10 concentration measurements and statistical population
data issued by administrative district, the approach proposed in this study obtained the spatial
distribution of human health risks in China by analyzing the distribution of PM10 concentration
estimated from satellite observations and population distribution based on the relationship to the
spatial distribution of land-use type. It was found that the long-term satellite observations have
advantages over the ground-based observations in estimating human health impact from PM10

exposure. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
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1 Introduction

The impact on human health from exposure to particulate matter (PM) pollution is staggering.
Studies from the World Health Organization (WHO) have shown that PM pollution contributed
to ∼3.2 million premature deaths and 7.4 million disability-adjusted life years in each year.1

∼50% of them are from East and Southeast Asian countries, where PM pollution is at a
more serious level.2 It is worth noting that in China, among the largest 500 cities, only 1%
of them are able to reach the air quality standards recommended by WHO, and seven of the
world’s ten most polluted cities are in China.3 With the process of industrialization, high con-
centrations of PMs have gradually developed into a serious regional environmental problem.

Assessment of the human health impact caused by PM10 exposure is important for evaluating
environmental damage related to air pollution. PM10 may make their way into human beings
through respiration. Toxic substances attached to PM10 particles could lead to a series of res-
piratory disease, cardiovascular disease, and increase the risks of cancer. However, even with the
great potentials for affecting human health, risks assessment of PM10 exposure in a large area
over China is very scarce. Quantitative analysis of the human health risks and losses by PM10

pollution in China can efficiently reflect the spatial distribution and variability of PM10 concen-
tration and exposure levels to the residents, as well as the risks of diseases. In addition,
such studies would provide a scientific basis for estimating economic losses as a result of
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overexposure of PM10, crucial information for developing environmental quality standards and
analyzing environmental benefits and risks.

Estimating PM concentration from satellite observations has been a hot topic in recent years,
owing to the advantage of satellite observations in terms of their large spatial coverage and
reasonable temporal resolution. Many empirical models and semiempirical observation-based
models were developed to estimate ground PM concentration. Empirical models were based
on statistical regressions between aerosol optical depth (AOD) and in situ PM measurements,
such as the simple linear regression models,4,5 and multiple linear regression models taking into
account the impacts of boundary, temperature,6 relative humidity (RH), and aerosol vertical
distribution.7,8 Semiempirical observation-based models considered the effects of aerosol
characteristics, such as hygroscopic growth, particle mass extinction efficiency, and size
distribution.9,10

As for the human health impact assessment, many previous studies have been carried out and
shown that the level of PM10 is associated with the rate of death from cardiovascular and res-
piratory illnesses.11,12 Gauderman et al.13 proposed a cross-sectional and cohort study method,
which was a new approach for studying the exposure–response relationship between air pollu-
tion and illnesses. Over China, Aunan and Pan14 calculated the concentration response coeffi-
cients for diseases caused by air pollution by meta-analysis, and An et al.15 assessed the human
exposure to PM10 in China based on ground observation data.

However, some shortfalls still exist in those traditional approaches to assess the human health
impact caused by air pollution. One of those is that the method suggested in these previous
studies typically relied upon air pollution data from ground-based observations, which tend
to be clustered in areas of poor air quality and high population. Using the ground-based obser-
vations alone is likely to be inadequate to represent the spatial variability of air pollution con-
centration, which may lead to overestimation of the impact of air pollution on human health.
Some research16,17 calculated PM10 concentration by spatial interpolation of ground-based
observation; however, due to the poor representative and irregular distribution of those
ground-based stations, these methods are constrained by physiochemical models and may
not generate satisfactory results especially in complex terrain areas.18 Although it is a good sol-
ution to calculate the air pollution concentration using a surface model, most models are only
suitable for forecasting short-term diffusion of air pollution in small areas.19,20 Estimating the air
pollution concentration over a long-term series in a large area like China with a surface model is
a rather difficult task.

To this end, an approach by using moderate resolution imaging spectroradiometer (MODIS)
Aerosol Product from 2010 to 2014 to estimate PM10 concentration is proposed. First of all,
compared with the inversion from instantaneous observations with a short time series, the
method proposed in this paper could improve the correlation between surface PM10 concentra-
tion and satellite-derived AOD, and avoid inconsistent results caused by instantaneous atmos-
pheric vertical instability and different atmosphere conditions. Second, the impact of PM10 on
human health is also a long-term process except for some extreme circumstances. Hence, reli-
ability is much higher when long time series data are used. Furthermore, PM10 derived from
satellite observations provides a better spatial coverage. It monitors not only the regions around
the ground observation stations, but also the areas that are usually lacking observations. Finally,
by obtaining the spatial distribution of the population in China, population density is also taken
into consideration when assessing the impact of PM10 on human health through a population-
weighted PM10 exposure model.

The study in this paper consists of three parts. First of all, the impact of aerosol scalar heights
and RH on the correlation between MODIS-retrieved AOD and ground PM10 concentration was
analyzed to derive an empirical model to estimate ground PM10 concentration from satellite-
derived AOD. Second, the annual average impact of PM10 on human health over China
from 2010 to 2014 was assessed by using a dose response model, and the spatial distribution
of PM10 exposure risks in China was obtained by analyzing both the distribution of PM10 con-
centration and the population. Finally, the validation of satellite-derived PM10 was analyzed,
the advantages of using long-term satellite observations data were discussed, and different
evaluation methods were compared.
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2 Data and Methods

2.1 Study Area

China is located in the east of Asia and the west of the Pacific; its climate is significantly affected
by both continent and ocean. As a result of its complex terrain, both temperature and precipi-
tation exhibit a complex spatial pattern. Similarly, land-use type in China has a large variability.
For instance, sandy deserts and Gobi are mainly located in northwestern China, arable land is the
dominant land type in the eastern plain, grassland scatters over the northern part of Inner
Mongolia, and forest land is mainly in the northeastern and southwestern China. In addition,
the economic development in China is also regionally imbalanced. Eastern areas are more eco-
nomically developed than western China. Consequently, population density is higher in Yangtze
River Delta, Pearl River Delta, and the Bohai Rim Economic Circle, and lower in western China.

With the rapid economic development, air pollution has become one of the top environmental
concerns in China.21 The growing demand for energy and the increasing number of motor
vehicles and fast industrialization have led to a serious deterioration in air quality and consequent
serious negative effects on human health and ecosystems. In some parts of China, due to the
overlaying of different kinds of pollutants, air pollution is more serious over cities and industrial
zones. Environmental protection in China is facing huge challenges and becoming more urgent.

2.2 Data Collection and Processing

In this research, NASA MODIS C5.1 daily Aerosol Level-2 Product MOD04, over the time
period from 2010 to 2014, was used to estimate PM10 concentration. The data are produced
at a spatial resolution of 10 × 10 km2.22 We first extracted the valid AOD [aerosol optical thick-
ness at 0.55 micron for both ocean (best) and land (corrected) with best quality data
(quality flag ¼ 3)] from MOD 04 daily Aerosol Product; the valid range of this data is from
−0.05 to 5.0. The AOD was derived from the Dark Target algorithm.23 Due to the limitation
of the Dark Target algorithm,24 some data over bright areas and cloudy areas were missing.
To deal with this problem, we calculated the missing AOD by integral averaging the value
of the day before and the day after. Then we obtained the monthly average AOD and annual
average AOD based on the daily Aerosol Product.

After that, we collected PM10 annual average concentration measured over 228 Chinese cities
from 2010 to 2014. The annual average PM10 concentration in each city is the mean value of all
the monitoring stations in both urban and suburban areas in this city. The average PM10 con-
centration measured in these 228 Chinese cities can be classified into two groups, one group was
used for establishing the exponential model, and the other group was used for estimating val-
idations of satellite-derived PM10 concentration. In this paper, 176 were used to establish the
empirical model, and the others were used to evaluate the validation of the model. Monthly
average temperature and actual vapor pressure data from 2010 to 2014 were acquired from
194 international exchange meteorological stations in China. And monthly average aerosol
scale height was obtained from 98 solar radiation observation stations in China over the time
period from 2010 to 2014.

2.3 Methodology

2.3.1 Relationship between aerosol optical depth and ground PM10 mass
concentration

Estimating ground aerosol mass concentrations from aerosol optical depth.
Since the ground PM10 concentration is defined as the surface concentration of the particles,
while the AOD retrieved from satellite observations corresponds to total column concentration
of particles under ambient RH, the direct correlation between satellite-based AOD and the
ground concentration of PM10 is relatively low and is influenced by humidity. Due to the
hydroscopic growth of aerosols, to accurately estimate the ground PM10 concentration from
satellite-retrieved AOD, RH has to be taken into account. According to the empirical relationship
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derived by White and Roberts25 and Li et al.,7 the aerosol extinction coefficient (β0) is defined as
follows:

β0 ¼ ρ × fðRHÞ ¼ ρ ×
1

1 − RH
; (1)

where β0 is the aerosol extinction coefficient, ρ is the mass concentration and RH is the relative
humidity.

In addition, the aerosol extinction coefficient is also a function of height. The variation of the
aerosol extinction coefficient (βz) with the height can be described as an exponential function:10

βz ¼ β0 × e−
z

ASH; (2)

where ASH is the aerosol scaling height and z is the height.
Since the AOD is an integral of the aerosol extinction coefficient in the total column,

AOD ¼
Z∞

0

βzdz ¼
Z∞

0

β0 × e−
z

ASHdz ¼ ASH × β0: (3)

Therefore, the ground aerosol mass concentration (AMC) can finally be written as

AMC ¼ β0
fðRHÞ ¼

AOD

ASH
× ð1 − RHÞ: (4)

The spatial distribution of the monthly mean ASH was obtained from 98 solar radiation
observation stations in China over the time period from 2010 to 2014 by using Kriging inter-
polation. RH was calculated with the modified Magnus equation.26

RH ¼ ea
e0ðTÞ

× 100; (5)

e0ðTÞ ¼ 610.78 × e
17.269ðT−273.16Þ

T−35.86 ; (6)

where ea is the actual vapor pressure and e0ðTÞ is the saturation vapor pressure at air temperature
T. It is obvious that knowledge of the spatial distribution of both T and ea are required to gen-
erate the RH spatial distribution over China. To this end, ea was obtained through interpolation
of the monthly mean vapor pressure data in China by using Kriging interpolation. From Eq. (6),
it is seen that to obtain the spatial distribution of the saturated vapor pressure, air temperature has
to be known. First of all, monthly mean air temperature data from 183 meteorological stations in
China are converted to air temperature at sea level according to the following definition:

T2 ¼ T1 þ
0.65h
100

; (7)

where T1 is the measured air temperature at meteorological stations, T2 is the temperature at
virtual sea level, and h is the altitude, which is calculated with a digital elevations model. Since
the variation of air temperature at the same level is considered as continuous, the air temperature
at sea level was calculated through Kriging interpolation. Second, the actual air temperatures
were obtained by converting the interpolated air temperature at virtual sea level back to actual
elevation with Eq. (7). Finally, by combining Eqs. (4), (5), and (6), the monthly mean surface
aerosol mass concentration was estimated.

Relationship between ground PM10 concentration and ground AMC. PM10 is
microscopic solid or liquid matter suspended in the Earth’s atmosphere, with an aerodynamic
diameter <10 μm. AMC includes aerosols with various sizes, while PM10 accounts for only the
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aerosols with sizes <10 μm. To obtain the PM10 concentration from AMC, we first selected the
PM10 annual average concentration observed over 176 Chinese cities from 2010 to 2014. Note
that the PM10 annual concentration for each city is the mean value of all the monitoring stations
in both urban and suburban areas. Then we compared the annual average AMC with the annual
average surface monitors located in the grid of the remote sensing data and analyzed the regres-
sion relation between them. It is found that there is an exponential relationship between annual
average ground AMC from 2010 to 2014 and corresponding ground PM10 mass concentration
over these cities. The derived relationship is given and shown in Fig. 1.

2.3.2 Distribution of population in China

Statistical population data from a 10-year population census in China are usually given for each
administrative district, that is to say, the data are usually at the county level. In addition, the
process of urbanization in China has made the population more mobile. Therefore, the spatial
and temporal resolution of the statistical population data is too low to be suitable for the purpose
of our study. To tackle this problem, a spatial distribution model of the population was adopted to
obtain a grid map of spatial distribution of the population over China.

Based on the assumption that a strong correlation exists between the total population and
land-use type, a raster population model27 was adopted and given as

POPi;j ¼ Pi;r ×
Vj;rP
k
j¼1 Vj;r

þ Pi;u ×
Vj;uP
k
j¼1 Vj;u

; (8)

where POPi;j is the total population of j’th pixel in the i’th administrative district, Pi;r is the total
rural population in this area, Pi;u is the urban population in this area, k is the total number of
pixels in this area, and Vj;u is the coefficient of the urban population, which is calculated by a
distance attenuation exponential model based on the scale of the urban city. Vj;r is the coefficient
of the rural population in this area, which is calculated with a weighted linear model. In this
model, the indicators are selected according to the relationship between population in various
types of agricultural land, and the weighting coefficients are determined by the correlation
between land use and population.

2.3.3 Population-weighted exposure model

PM10 human health risks assessment is a process that quantitatively describes the impact of PM10

exposure on human health. The concentration of PM10 alone is not able to fully describe the
human exposure level since PM10 concentration and spatial distribution of human population are
often inconsistent. The spatial variability of both human population and PM10 concentration

Fig. 1 The relationship between aerosol mass concentration and ground PM10 mass
concentration.
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should be taken into account when assessing health risks. Therefore, a population-weighted
exposure model15,28 was adopted to quantify the PM10 exposure level.

Pwel ¼
PðPi × CiÞP

Pi
; (9)

where i is the number of the grid, Pi is the total population in i’th grid, and Ci is the PM10

concentration in the i’th grid. The model is affected by both population density and PM10 con-
centration in the grid.

2.3.4 PM10 human health risks and losses assessment

Human health risks and losses caused by PM10 exposure are evaluated quantitatively by using
the dose-response model. The studies by WHO showed that the relative risk (RR) of the health
endpoints has a logarithmic relationship with PM10 concentration,29 which is defined as

RR ¼ eαþβC

eαþβC0
¼ eβ·ðC−C0Þ: (10)

and the human health effect of the air pollution model is defined as

E ¼ E0 × RR ¼ E0 × eβðC−C0Þ; (11)

where E is the incidence of health endpoints at an actual concentration of PM10, C0 is the refer-
ence concentration of PM10, which means the highest concentration that is harmless to human
health, E0 is the incidence of health endpoints at a reference concentration of PM10, β is the
exposure–response relationship coefficient, and C is the actual concentration of PM10.
According to WHO standards,26 the annual average reference concentration of PM10 is
20 μg∕m3. Health losses caused by PM10 exposure are then calculated as

ΔE ¼ E − E0: (12)

The total health losses model for all health endpoints is given as

ESUM ¼
Xn
i¼1

ðE − E0Þ · Pe; (13)

where ESUM is the total health losses, n is the number of health endpoints, and Pe is the total
number of the population that is exposed to PM10 pollution. Overexposure of PM10 leads to an
increased rate of premature death, cardiopulmonary, and cardiovascular diseases. Therefore, in
this study, total mortality, respiratory diseases, and cardiovascular diseases are treated as health
endpoints. The health effects to PM10 concentration is related to health endpoints through the
exposure–response relationship as shown in Eqs. (10) and (11).

Exposure-response coefficient (β) is defined as the increase of rate of a health endpoint for a
10 μg∕m3 increase in PM10 concentration. It is clear that determination of the exposure-response
coefficient is a crucial step to accurately evaluate the human health risks and losses caused by the
exposure to PM10. In this study, the exposure-response coefficients (β) from previous studies30–36

were used, and are shown in Table 1.
Baseline health statistical data show the mortality or morbidity of each health endpoint; they

are obtained through sample surveys. In this study, the annual average mortality or morbidity
statistical data are from China Health Statistics Yearbook.37–40 Mortality in urban and rural areas,
and morbidities of respiratory and cardiovascular diseases in the total population are shown in
Table 2.
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3 Results

3.1 Spatial Distribution of PM10 in China

The annual average PM10 spatial distribution from 2010 to 2014 derived from the relationship
between ground PM10 concentration and satellite-derived AOD is shown in Fig. 2. The spatial
resolution of the map is 10 × 10 km2. It is seen that the highest annual average PM10

Table 1 Exposure response coefficient.

Health endpoints Demographic Exposure-response coefficient

Mortality Adults (≥30 years old) 0.0043

Respiratory diseases Whole population 0.0013

Cardiovascular diseases Whole population 0.0013

Table 2 Baseline health statistical data (‰).

Health endpoints Details Baseline health statistical data (‰)

Mortality Urban areas 3.37

Rural areas 3.57

Mean 3.52

Respiratory diseases Acute upper
respiratory infections

38.02

Pneumonia 1.06

Bronchopneumonia 4.10

Total 43.18

Cardiovascular diseases Heart disease 10.68

Hypertension 31.36

Cerebrovascular disease 5.85

Total 47.89

Fig. 2 Annual average PM10 in China from 2010 to 2014.
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concentration is mainly concentrated in Northern China, the Sichuan Basin, and Taklimakan
Desert regions, where annual average PM10 concentration is >100 μg∕m3. The northwestern,
the middle and lower reaches of the Yangtze River, and Inner Mongolia, Shaanxi, Shanxi, and
some other provinces in northern China are as high as 80 μg∕m3. In the northeastern area,
Liaoning and Jilin, the annual average PM10 concentration is ∼70 μg∕m3. In southwestern
and southern China, PM10 concentration is ∼60 μg∕m3. Over the Tibetan Plateau, Fujian
and Heilongjiang province, PM10 concentration has the lowest value. In general, concentration
is the highest in the northern zone, followed by the central region, and the concentration is lowest
in southern China and the Tibetan Plateau.

3.2 Spatial Distribution of Population in China

Figure 3 shows the annual average population density over China from 2010 to 2014 in a res-
olution of 10 km. In general, the permanent population of China is mainly concentrated in the
eastern coastal area. Population density in northern China, southern China, and the middle and
lower reaches of Yangtze River is much larger than that in western China. Population density in
the plain and basin areas is overall higher, while it is much lower in mountainous and plateau
regions. Areas along rivers and the coast are more densely populated.

3.3 Population-Weighted PM10 Exposure Level

To accurately assess the impact of PM10 exposure on human health, the distribution of PM10 has
to be combined with the distribution of the population. Therefore, according to the population-
weighted PM10 exposure model, given in Eq. (9), population-weighted PM10 exposure levels are
calculated and are shown in Fig. 4. It is clearly seen that, in both northern China and the Sichuan
Basin regions, which are highly populated and industrialized and have a higher annual average
PM10 concentration from 2010 to 2014, the population-weighted PM10 exposure level is even
higher; it can reach up to 100 μg∕m3. In the middle and lower reaches of the Yangtze River, from
Wuhan to Nanjing, the population-weighted PM10 exposure level is as high as ∼85 μg∕m3. In
northeastern, southern, and southwestern China, population-weighted PM10 exposure level is
∼65 μg∕m3, much lower than that in the northern China and the Yangtze River region.
However, most western and northwestern regions have a very low population-weighted exposure
level as a result of both less population and underdeveloped industry.

3.4 PM10 Human Health Losses in China

Finally, according to human health effects of the PM10 model, as shown in Eqs. (12) and (13),
the human health losses of each health endpoint resulting from PM10 exposure are evaluated.

Fig. 3 Annual average population density in China from 2010 to 2014.
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It is found that, from 2010 to 2014, exposure to PM10 air pollution has caused a negative effect
on health for ∼6.9 million people in China every year. Among them, there are 0.9 million cases
of death and 6.0 million cases of acute health diseases. More specifically, ∼3.5 million people
suffer from acute respiratory illness, and 2.5 million people suffer from acute cardiovascular
diseases due to the exposure to PM10.

4 Discussion

4.1 Validation of Satellite-Derived PM10

The uncertainties of the satellite-derived PM10 lead to the uncertainties of the human health impact
resulting from PM10 exposure. To estimate the validation of the satellite-derived PM10 concen-
tration, the annual average PM10 concentration measured in 228 Chinese cities was first analyzed
using cluster analysis. Then these ground measured data were divided into four categories. They
represent four PM10 pollution levels, and the PM10 concentration is significantly different in each
category. To estimate the overall validation of the satellite-derived PM10, we first selected 52 of
them as the samples according to the method of stratified sampling.41 Note that 52 is the minimum
number of samples when these cities were divided into four categories. Then we compared the
annual average of ground-based PM10 concentration with the annual average of satellite-derived
PM10 concentration of these 52 samples from 2010 to 2014, as shown in Fig. 5. A linear relation-
ship exists between the satellite-derived PM10 and ground-based PM10; the correlation coefficient
is as high as 0.83, root mean square error is 19.27, relative standard deviation is 12.66%, and mean
absolute percentage error (MAPE) is only 7.70%. High correlation and low MAPE indicates the
applicability and reliability of PM10 concentration derived fromMODIS data. The mean bias of the
concentration of PM10 is <10 μg∕m3 based on the accuracy of MODIS AOD retrievals over land.
The corresponding transferred bias for the relative risks from exposure to PM10 is <0.01 according
to the PM10 human health impact model and the bias of negative cases from PM10 exposure is <0.2
million.

4.2 Advantages of Satellite-Derived PM10 in Estimating Human Health Impact

The correlation between short-term satellite data and ground PM is relatively low in somemeteoro-
logical conditions, especially when troposphere air changes. Tian and Chen42 found that the instan-
taneous satellite data were poorly related to the ground-based PM2.5 concentration due to changes
in meteorological conditions. Hutchison43 indicated that a stronger correlation can be obtained by
averaging longer timescales’ satellite observation data and ground-based PM2.5 data. In this study,
we obtained annual average AOD from MODIS Aerosol Product data for the years from 2010 to
2014 and annual average ground PM10 observations to avoid the problem of low correlation

Fig. 4 Annual average population-weighted PM10 exposure level from 2010 to 2014.
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between AOD and ground PM10 concentration caused by instantaneous atmospheric vertical insta-
bility and different atmosphere conditions. Furthermore, the impact of PM10 exposure on human
health is a long-term process, and research on human health impact based on long-term satellite-
derived PM10 data can improve the accuracy of the results.

Correlating the human health impact with long-term PM10 concentration derived from sat-
ellite observations has many advantages. Currently, most works on the assessment of air pollu-
tion to human health in a certain region are usually based on the average ground-based
observations data.44,45 It is known that the air quality monitoring stations are mainly located
in the areas where PM10 concentration is higher, such as urban areas. Consequently, PM10 con-
centration and subsequent human health risks and losses are overestimated. Although some stud-
ies46,47 used the interpolated PM10 concentration from ground-based observations to access the
human health risks and losses, these methods are constrained by physiochemical models and
may not generate accurate results in complex terrain areas.18 Surface models20 based on GIS
and ground-based observations could provide more accurate results of PM10 concentration; how-
ever, they are usually not suitable for calculating long-term diffusion of air pollution in large
areas. In our study, PM10 concentration derived from satellite observations can be considered
more realistic than the above methods, since no direct interpolation on PM10 concentration is
involved.

The distribution of population is another factor that has to be taken into account to accurately
assess the impact of air pollution on human health. However, the statistical population data from
census are given for each administrative district and do not provide sufficient spatial resolution24

for the purpose of this study. To this end, based on the correlation between the total population
and land-use type, we generated a population distribution map with a resolution of 10 km. Such a
distribution map demonstrates the spatial variations of population over China. In addition, unlike
traditional human health assessment methods, which overlay the in situ PM10 concentrations
data over statistical population data given by the administrative district, we obtained the spatial
distribution of human health risks in China by analyzing the spatial distribution of both PM10

concentration and population. To show the advantages of the approach used in our study, we
calculated the human health risks and losses based on both the satellite observations data and
ground-based observations data. Comparison of the results of the two approaches is given in
Figs. 6 and 7.

It is shown in Fig. 6 that relative risks based on satellite observations are generally lower than
that based on ground-based observations in most provinces, except for Shanghai, which includes
more highly populated areas, and Hainan, Guangdong, Guangxi, which are located in the

Fig. 5 Comparison of annual average of ground-based PM10 concentration and satellite-derived
PM10 concentration.
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subtropical monsoon climate zone. Humid weather and complex atmosphere conditions lead to
a lower accuracy in estimating PM10 concentration in these regions. For all other provinces,
relative risk by PM10 exposure based on satellite observations is lower than that based on ground
observations data. As for the annual average human health losses caused by PM10 exposure from
2010 to 2014, as shown in Fig. 7, the total number of cases of detrimental health impact from
PM10 pollution estimated with ground-based PM10 observations is 10.21 million, which is much
larger than the estimation with the method proposed in our study.

5 Conclusions

In this study, an empirical model to estimate ground PM10 mass concentration from AOD was
first investigated, and the effect of PM10 exposure on human health in China was then assessed
with the dose-response model. Compared with other existing studies, our study has improve-
ments in three aspects. First of all, long-term remote sensing data were used instead of ground-
based observations to estimate the spatial distribution of PM10 concentration in order to avoid

Fig. 6 Comparison of relative risk based on ground-based observations data with relative risk
based on satellite observations data at a provincial scale.

Fig. 7 Comparison of human health losses based on ground-based observations data with losses
based on satellite observations data.
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the problem of low correlation between AOD and ground PM10 concentration, which is caused
by instantaneous atmospheric vertical instability and different atmosphere conditions. Second, a
map of spatial distribution of the population was generated by using the relationship between
population and land-use type to avoid the problems associated with the statistics population data
from census, such as low spatial and temporal resolution, since the statistics population data are
usually at the administrative county level and its update cycle is long, ∼10 years. Finally, taking
into account the spatial distribution of both PM10 concentration and population to assess the
human health impact by PM10 exposure gave more accurate results for areas where a high
PM10 concentration is associated with a low population. A comparison between the satellite-
derived PM10 and ground-based PM10 indicated the validation of the method proposed in
this research, and a comparison between the methods based on ground-based observations
data and satellite observations data indicated that using long-term satellite observations has
great potential and advantages in human health impact assessment.

In a variety of atmospheric particulate pollution, PM2.5 poses the greatest risks to human
health and shows stronger epidemiological links with human health. However, due to lack
of PM2.5 monitoring data, since PM2.5 concentration was not included in the air quality standard
in China until February 2012, only PM10 is chosen as the main pollutant when assessing the risks
of PM to human health in this paper. In future studies, we will take PM2.5, ozone, nitrogen
oxides, sulfides, and some other air pollutants into consideration. The impact of air pollution
on human health is a long-term integrated process; how to integrate the various components of
air pollution on human health and determine the relationship between the different components
will be another challenge.
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