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Abstract. The current paper investigates the long-term global impacts on crop productivity
under different climate scenarios using the AgMIP approach (Agricultural Model
Intercomparison and Improvement Project). The paper provides horizontal model intercompar-
ison from 11 economic models as well as a more detailed analysis of the simulated effects
from the Common Agricultural Policy Regionalized Impact (CAPRI) model to systematically
compare its performance with other AgMIP models and specifically for the Chinese agriculture.
CAPRI is a comparative static partial equilibrium model extensively used for medium and
long-term economic and environmental policy impact applications. The results indicate that,
at the global level, the climate change will cause an agricultural productivity decrease (between
−2% and −15% by 2050), a food price increase (between 1.3% and 56%) and an expansion of
cultivated area (between 1% and 4%) by 2050. The results for China indicate that the climate
change effects tend to be smaller than the global impacts. The CAPRI-simulated effects are, in
general, close to the median across all AgMIP models. Model intercomparison analyses
reveal consistency in terms of direction of change to climate change but relatively strong hetero-
geneity in the magnitude of the effects between models. © The Authors. Published by SPIE under a
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1 Introduction

Climate change can cause a wide range of effects in agriculture. A direct impact of climate
change on agriculture is reflected through altering crop growth development and yields due
to changes in rainfall and temperature patterns. The indirect second round effect of these pro-
ductivity changes can have profound implications for agricultural market developments, farm
incomes, environment, and ultimately also on food security both at local and global scales.1

There is a relatively rich literature available that attempts to quantify the economic impacts of
climate change on agriculture globally or in a specific region.2–4 There can be distinguished four
types of approaches employed in the literature:5 (1) crop simulation models,3,6–8 (2) statistical
cross-sectional or intertemporal analysis,2,9 (3) agro-economic simulation and partial equilibrium
(PE) models,10,11 and (4) computable general equilibrium models (CGE).12 These studies have
reported substantial differences in outcomes, such as production, trade, welfare, and prices
induced by differences in model parameterization and model specification. In general, studies
have concluded that the impact of climate change on crop yields would highly depend upon the
geographical location of the crop production with crops in some regions benefiting10,13,14 while
crops in other regions showing an adverse effect under new climatic conditions.6,15–18 An
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extensive literature review on welfare effects of climate change carried out by Tol19 finds that
even though the studies differ in their methods, the estimates are in broad agreement on a number
of points, such as on the magnitude of the estimated welfare effect (small as compared to the size
of the overall economy), the differences between low and high-income countries (the effects are
higher in low-income countries), and the consistency of the effects over time (the earlier studies
carried out before 1995 are more pessimistic than later studies). The findings of Toll also suggest
that the uncertainty of the estimated effects is large and that the choice of the methodological
approach and model specification (e.g., model parameterization, modeling of adaptation) are
also crucial in explaining the differences in impacts across studies.

Although climate change effects obtained from different approaches can be compared
through a literature review (e.g., as in Ref. 19), they still suffer from a comparability problem
given that, among others, definition of variables, regional aggregation, scenario specification,
and key drivers (e.g., population change, economic growth, technological change) are usually
not harmonized and thus the differences in the results cannot be systematically evaluated. The
harmonization of scenarios and drivers is particularly relevant when attempting to assess uncer-
tainties linked to model specification and behavioral assumptions. A comparative analysis of
different methods with a harmonized approach keeps the focus of the analysis on the differences
in the underlying model specification and behavioral assumptions rather than on the differences
in the definition of variables, scenarios, and drivers, which allows one to more accurately identify
their implications for the simulated climate change effects. In fact, the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change (IPCC)20 revealed that model intercompar-
ison of the climate change effects is a largely underdeveloped research area and stressed that
“economic, trade, and technological assumptions used in many of the integrated assessment
models to project food security under climate change were poorly tested against observed
data.” The latest IPCC report (the Fifth Assessment Report) recognized that “an important recent
development is the systematic comparison of results from different modeling and experimental
approaches for providing insights into model uncertainties as well as to develop risk manage-
ment.” But the report also acknowledged that “the use of multiple crop models in impacts studies
is relatively rare.”21

There are a growing number of studies that combine different models to provide more robust
economic impacts of climate change and in particular to analyze the uncertainties linked to
model specification and behavioral assumptions. Two lines of research can be distinguished.
The first refers to horizontal model intercomparison which compares the climate change effects
for the same economic sector but applying a set of distinct modeling techniques.22–24 The second
approach consists of vertical model intercomparison which encompasses effects across different
sectors (e.g., agriculture, energy, health, transport) or different temporal and regional resolutions
(e.g., from the farm to the global level) using different modeling techniques tailored specifically
for a given sector or resolution.25

The main objective of this paper is to provide horizontal model intercomparison for the
long-term global effects on crop productivity changes under different climate scenarios. We
specifically focus on the application of the Common Agricultural Policy Regionalized Impact
(CAPRI) model by systematically comparing its performance with 10 other economic models.
Further, to illustrate the strength of the approach, we present global climate effects and
also more detailed effects for China. The CAPRI model is extensively used for medium
and long-term economic and environmental policy impact applications26–28 and a multimodel
comparative analysis allows evaluating the validity of CAPRI long-term projections with
respect to other economic models. These analyses were conducted in the framework of
the AgMIP project (Agricultural Model Intercomparison and Improvement Project). The
AgMIP project is a major international effort to assess the state of global agricultural modeling
and to understand climate impacts on the agricultural sector (AGR). The economics modeling
component of AgMIP is engaging key global economic modelers in a cross-model scenario
comparison exercise. It includes 11 economic models: six are CGE models (AIM,
ENVISAGE, EPPA, FARM, GTEM, MAGNET), whereas the rest (GCAM, GLOBIOM,
IMPACT, MAgPIE), including CAPRI, are PE multimarket models.24,29–31 We compare
CAPRI results with results obtained from these different modeling systems using harmonized
input and output data.
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2 Methodology

2.1 Scenarios

The simulations of this paper rely upon scenarios provided by the AgMIP project. The scenarios
are summarized in Table 1. The scenarios differ in terms of their assumptions about:29,32 (1) pop-
ulation and gross domestic product (GDP) growth, shared socio-economic pathway (SSP),
(2) the evolution of atmospheric greenhouse gas concentration levels, representative concentra-
tion pathway (RCP), (3) the impact of a given greenhouse gas concentration path on temperature
and precipitation at regional scales as projected by different global circulation models, and
(4) the impact of the projected climate scenarios on crop yields as projected by different
crop models.

The reference scenario (S1) represents a counterfactual situation with no climate change
considered and represents comparison point for the alternative climate scenarios S3-S6.
Under this scenario economic assumptions (population and GDP growth) are based on the
SSP229,33–35 available from the GLOBIOM model.36 According to the SSP2, the global popu-
lation projections show an increase by 35% in 2050 relative to 2010 (to 9.3 billion). Global GDP
is assumed to grow more than threefold between 2010 and 2050, but stronger during the first
half of that period than after 2030. The GDP growth in most developed countries is assumed to
be moderate, whereas in a number of developing countries the growth is assumed to be much
stronger (more than 10-fold).29,33–35

Apart from the macrovariables population and GDP, GLOBIOM also provides external a
priori information for the long-run evolution of major agricultural outputs for a coordinated
reference run, including the underlying assumptions on agricultural productivity growth rates.
The exogenous component of yield changes in GLOBIOM was harmonized with those from
the IMPACT model37 such that the CAPRI reference scenario is also consistent with the
standard assumptions on productivity shifts in the AgMIP project.

The climate change scenarios (S3-S6) apply productivity shifters based on an RCP 8.5.38

This RCP was used as an input into general circulation models: IPSL-CM5A-LR (scenarios
S3 and S5) and HadGEM2-ES (S4 and S6).39 The resulting changes in regional temperature
and precipitation were then used by two different crop models, LPJmL (S3 and S4), and
DSSAT (S5 and S6),39 which produced climate change induced changes in average crop
yields.29,30,32 The crop yield changes are used as exogenous productivity shifters in CAPRI
and other AgMIP models to simulate economic impacts of climate change. The simulations
were conducted for 2030 and 2050. In this paper, we focus mainly on results for 2050.

2.2 Modeling Approach

A number of economic approaches and models are applied for assessing the economic impacts of
climate change. They can be classified as either “structural” or “spatial-analogue” approaches.
The first approach is interdisciplinary and interlinks models from several disciplines.11,40–42

A common method applied to interlink different type of models consists of using biophysical
models to predict crop yield effects of climate change scenarios, which are then used as an input

Table 1 Scenario definition.

Scenario
Shared socio-economic

pathway (SSP)
Representative concentration

pathway (RCP)
Global

circulation model
Crop
model

S1 SSP2 Present climate None None

S3 SSP2 RCP8p5 IPSL-CM5A-LR LPJmL

S4 SSP2 RCP8p5 HadGEM2-ES LPJmL

S5 SSP2 RCP8p5 IPSL-CM5A-LR DSSAT

S6 SSP2 RCP8p5 HadGEM2-ES DSSAT

Note: Source: Reference 29.
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into the economic model to predict economic impacts.11 The key distinguishing feature of the
“spatial-analogue” approach is that it is more explicit in taking into consideration spatial varia-
tion in climate change.12 In this report, the first approach is applied. The advantage of this
approach is that it provides a more explicit representation of causal effects and adjustments
of the AGR to climate change.

We employ the CAPRI model to investigate the economic impacts of climate change in the
global AGR. CAPRI is a comparative static PE model for the AGR developed for policy and
market impact assessments from global to regional and farm type scale.43 The modeling of global
agricultural markets (hereafter referred to as “market module”) is defined by a system of behav-
ioral equations representing agricultural supply, human and feed consumption, multilateral trade
relations, feed, energy and land as inputs and the processing industry; all differentiated by com-
modity and geographical units. Based on the Armington approach,44 products are differentiated
by origin, enabling one to capture bilateral trade flows. The market module covers all main world
regions split into 73 countries or country aggregates and 47 agricultural products.

CAPRI also contains a more detailed modeling of the production side of the EU-27 and
selected European countries (hereafter referred to as “supply module”). The supply module
is composed of separate, regional and farm-type, nonlinear programming models interlinked
with the market module through prices and quantities. The regional programming models
are based on a model template assuming profit-maximizing behavior under technological con-
straints, most importantly in animal feeding and fertilizer use, but also constraints on inputs and
outputs, such as young animals, land balances, and policies (e.g., set-aside).44 The supply mod-
ule currently covers all individual Member States of the EU-27 and also Norway, Turkey, and
the Western Balkans.

The implementation of climate change scenarios in CAPRI was introduced in the form of
exogenous productivity shocks. The productivity shock for EU-27 and selected non-EU coun-
tries was introduced in the supply module, whereas the productivity shock for the rest of the
world was introduced in the market module. The climate change was introduced in the market
module by adjusting supply function parameters such that at given prices, yields would change
according to the productivity shock. In contrast, the supply module contains an explicit repre-
sentation of the production activities. The climate change was introduced in the supply module
directly through an adjustment of crop yields plus an associated adjustment of input require-
ments, in particular for crop nutrients.

2.3 Model Intercomparison

Alongside CAPRI simulation results, this paper also provides model intercomparison results
simulated by other AgMIP models: six CGE models (AIM, ENVISAGE, EPPA, FARM,
GTEM, MAGNET) and five PE models (GCAM, GLOBIOM, IMPACT, MAgPIE, CAPRI)
(Table 2).22,24,29–31

The main distinction between the CGE and PE models is that the former models capture
the whole economy (agricultural and non-AGRs), whereas the latter model captures only the
AGR. The main components of CGE models represent agricultural supply (production),
demand, and trade. Production decisions across activities in each region are based on profit
maximizing behavior of price-taking producers resulting in allocation of primary factors
(land, labor, capital) across sectors. The food demand in each region is determined jointly
with demand for all nonfood consumer goods derived from the household utility maximizing
behavior subject to their budget constraints. Modeling of trade is based on a spatially explicit
representation of bilateral flow of commodities across different world countries (i.e., the
Armington approach)44 in all CGE models with the exception of AIM where products with dif-
ferent origins are modeled as imperfect substitutes. The differences between the CGE models
arise primarily from the choices of sectoral and regional aggregation levels, the household utility
function specification, the structure of the production functions, data sources, and behavioral
parameters (elasticities).29,32

The PE models are far more heterogeneous in terms of their specifications, particularly with
respect to the agricultural production specification. GLOBIOM and MAgPIE incorporate very
detailed spatially explicit representations of bio-physical agricultural production structure.
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In contrast, IMPACT and GCAM apply a more aggregated modeling of the production side. A
distinguishing aspect of the CAPRI compared to other PE models is the combination of a very
detailed modeling of the production side for the European regions (i.e., within the supply mod-
ule) with a simplified treatment of agricultural production in the rest of the world (i.e., within the
market module). Further, CAPRI (similar to the CGE models) applies the Armington approach
which allows differentiating trade flows by origin among all world regions.29,32

Compared to the CGE models, the PE models consider only the impact of climate change
on the AGR without taking into account feedbacks from the other sectors of the economy.
Another important distinction between the CGE and PE models is related to modeling trade
flows. Most CGE models use the Armington approach (with the exception of AIM), whereas
most PE models (with the exception of CAPRI and GLOBIOM) consider only net-trade with no
diffraction of trade by origins. Modeling of climate change also differs significantly between
CGE and PE models. The yield changes were introduced as additive shifters of yields or
supply functions in PE models and land efficiency shifters of production functions in CGE
models.29,32

To make results comparable between the 11 models, reporting variables, commodity groups
analyzed, regional aggregation, and variable definitions were harmonized across models. The
commodities considered include eight commodity groups—wheat grains (WHT), coarse grains
(CGR), rice grains (RIC), oilseeds (OSD), sugar (SUG), ruminant meat (RUM), nonruminant
meat (NRM), and dairy products (DRY)—and an aggregate of the five crop groups (CR5).
Additionally, commodity aggregate for all crops covered (CRP) and an aggregate of the
total AGR are calculated. Country aggregates include Canada (CAN), USA, Brazil (BRA),
other South and Central America (OSA), former Soviet Union (FSU), Europe (EUR),
Middle-East and North Africa (MEN), sub-Saharan Africa (SSA), China (CHN), India
(IND), South-East Asia (SEA), other Asia (OAS), and Australia and New Zealand (ANZ).
A second level of regional aggregation adds up regions to North America (NAM), South
and Central America (OAM), Africa and Middle East (AME), Southern Asia (SAS) as well
as total world (WLD).29

3 Scenario Results

In this section, scenario results are presented in order to provide insight on the potential
effects of climate changes on the AGR. First, we compare CAPRI results with other
AgMIP economic model results for global agriculture. Then, we provide more detailed
CAPRI climate change effects for the Chinese agriculture. Results are presented in relative
terms. For the reference scenario (S1), results are reported relative to the base year value
2005. For the climate scenarios (S3-S6), the results are reported as percentage deviation
from the reference scenario.

3.1 Reference Scenario—Model Intercomparison

The reference scenario (S1) attempts to capture long-run development of the AGR with no cli-
mate change. As mentioned above, the assumptions for crop productivity growth are based on
the IMPACT model and are reported in Fig. 1. The productivity change in the reference scenario
varies between a 12% decrease for rice in Australia and New Zealand and a 147% increase for
wheat in sub-Saharan Africa in 2050 relative to 2005. However, for most regions and commodity
groups the productivity growth lies between 20% and 100%. The strongest productivity growth
is observed for developing countries (e.g., farm structure survey and SSA) and the smallest for
developed countries (e.g., ANZ, EUR and USA).29,37

Figure 2 reports global price changes for agricultural aggregate across different AgMIP mod-
els. The price changes are heterogeneous across models ranging from a decline of 25% to an
increase of 39% in 2050 relative to 2005. CAPRI alongside EPPA, FARM, MAGNET belong to
the group of models which project a decline in agricultural prices in the long-term. The rest of
models project an increase in prices over the same period. These differences in price projections
are driven by a variety of factors such as differences in parameterization of models, agricultural
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land development, models’ response to macroeconomic developments, and differences in
assumptions on the level of technical change of production factors.29

Land use projections are also relatively heterogeneous in the reference scenario across mod-
els (Fig. 3). The change of total agricultural area, cropland, and pasture land varies between −2%
and 17%, −6% and 26%, and −7% and 14%, respectively, in 2050 relative to 2005. However, the
projection of the expansion in the global land use tends to prevail across models. CAPRI reports
an increase in land use for all three land categories reported in Fig. 3 similar to ENVISAGE,
GTEM, MAGNET, GLOBIOM, IMPACT, and MAgPIE. Other models report mixed projec-
tions, out of which EPPA and FARM simulate a decrease in the total cultivated agricultural
area. The variation in the projections across models are driven, among other things, by the
type of data used to parameterize land allocation as well as by the approach applied to
model mobility of land across different uses, agricultural land competition with other sectors
and technological change.45

Fig. 1 Exogenous yield growth projections, 2005 to 2050. Yield growth index in 2050 relative to
2005 by commodity group and region.

Fig. 2 Price projections for the agricultural aggregate, 2005 to 2050. Global price growth index for
agricultural aggregate in 2030 and 2050 relative to 2005 by AgMIP model.
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3.2 Climate Change Effects—Model Intercomparison

This section presents global results for four climate change scenarios and for 11 global economic
models considered in AgMIP. Figure 4 reports model simulation results for the exogenous and
endogenous effects of climate change on yields. Almost all models, with the exception of
MAgPIE, consistently report a negative impact of climate change on yields relative to the refer-
ence scenario S1. The yield change in 2050 relative to the reference scenario lies between 20%
and −25%; however, for most models and commodities the range is between −2% and −15%.
GTEM generally has the smallest negative effects, whereas MAgPIE has the largest number of
positive effects for some commodities. MAGNET shows the largest negative effects across all
reported commodities.22 CAPRI projects negative-signed global agricultural yield responses

Fig. 3 Area projections for the agricultural aggregate, cropland and pasture land, 2005 to 2050.
Global area change for agricultural sector (AGR), cropland (CRP), and pasture (PAS) in 2050
relative to 2005 by AgMIP model.

Fig. 4 Global yield changes, (percentage change in 2050 relative to S1 in 2050). Percentage yield
changes for climate change scenarios in 2050 relative to S1 in 2050 by commodity group and
AgMIP model.
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across all four climate change scenarios and the effects tend to be at the lower range compared to
other models but comparable to ENVISAGE, GTEM, and GLOBIOM.

As a result of lower productivity, global agricultural prices increase relative to S1. The price
increases range from 1.3% to 56% over the price in 2050 without climate change (Table 3).
Globally, the scenarios using DSSAT results have greater price increases compared with the
LPJmL scenarios. The GCAM, EPPA, and ENVISAGE models generally have the smallest
price increases, whereas MAgPIE reports the largest positive price effects. Similar to other mod-
els, CAPRI projects an increase in the global producer prices in response to the predominantly
adverse impacts of climate change on crop yields. The magnitude of the CAPRI simulated effects
as well as the pattern across the four different impact scenarios is close to IMPACT, MAGNET,
and AIM.22,29,32

Almost all models (with the exception of FARM) simulate an increase in the global agricul-
tural area due to climate change. The area change varies between −0.2% and 9.2% (Table 4).

Table 3 Global price changes for agriculture aggregate, (percentage change in 2050 relative to
S1 in 2050).

Models S3 S4 S5 S6

AIM 5.5 6.6 11.5 10.8

ENVISAGE 2.8 3.2 3.3 3.5

EPPA 1.3 1.6 4.1 4.6

FARM 4.3 5.4 7.0 6.1

GTEM 4.9 6.0 6.7 6.2

MAGNET 10.6 11.0 13.5 14.7

GCAM 3.3 3.3 3.3 3.4

GLOBIOM 13.1 12.9 19.2 21.4

IMPACT 15.5 16.6 15.5 18.3

MAgPIE 7.7 56.5 29.8 51.2

CAPRI 11.2 12.5 10.6 13.2

Table 4 Global agricultural area changes (percentage change in 2050 relative to S1 in 2050).

Model S3 S4 S5 S6

AIM 3.0 2.6 3.6 4.0

ENVISAGE 2.4 2.4 2.4 2.7

EPPA 0.9 0.7 2.1 2.1

FARM −0.2 −0.2 −0.1 0.1

MAGNET 4.6 4.4 6.4 6.9

GCAM 1.9 1.6 1.8 1.9

GLOBIOM 0.7 0.2 0.9 1.7

IMPACT 6.4 6.4 7.7 9.2

MAgPIE 0.5 0.6 1.2 1.6

CAPRI 1.3 1.1 1.1 1.2
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IMPACT and MAGNET have the largest agricultural area increases across the scenarios,
whereas FARM, GLOBIOM, and MAgPIE report the smallest changes for most scenarios.
The CAPRI projections are close to the median across all AgMIP models in all four climate
scenarios.22,32

4 Climate Change Impacts for China

This section presents climate change impacts for Chinese agriculture based on CAPRI simula-
tion results. The exogenous yield shifters caused by the climate change show mixed results for
China. For coarse grains and oilseeds, yields decrease in all four climate scenarios. For the rest of
the crop groups, the climate change effects are mixed between positive and negative yield
changes across scenarios.

The simulation results indicate a moderate impact of climate change on the Chinese agri-
cultural prices at the aggregate AGR level. The aggregate prices increase between 4.7% and
5.2% relative to S1 without climate change (Table 5). These price effects are driven by the
drop in global agricultural supply and changes in the Chinese production structure.
However, there is strong variation across sectors; the sectoral prices change between 2.2%
and 59% relative to the reference scenario (Table 5). A stronger price increase also occurs
in 2050 relative to 2030 (not shown). The strongest price effect is observed for coarse grains
and oilseeds and, for S5 and S6, also for wheat. Compared to other AgMIP models, the mag-
nitude of the CAPRI results as well as their pattern across scenarios is close to the median.
Models GLOBIOM, IMPACT, MAgPIE, and MAGNET report stronger price effects, whereas
another cluster of models (ENVISAGE, GCAM, FARM, and GTEM) generate noticeably lower
price impacts.22,29,32

The aggregate production drops on average between 0.4% and 3.3% relative to the reference
scenario (Table 6). The S5 and S6 scenarios show stronger production decreases than the other
two scenarios (S3 and S4) as well as stronger production increase that occurs in 2050 relative to
2030 (not shown). Looking at the sectoral disaggregated level we find stronger adjustments in
the production, varying between 3% and −12.2% relative to the reference scenario (Table 6). The
highest decrease in production due to climate change is projected for coarse grains and oilseeds.
On the other hand, wheat increases production in S3 and S4 and rice increases production in S5
and S6; these results are mainly driven by the differences in the climate induced yield changes.
Compared to other AgMIP models, CAPRI projects the magnitudes of the production effects for
China in line with AIM, ENVISAGE, FARM, and GTEM. Other AgMIP models tend to sim-
ulate considerably stronger climate change impacts on production.22,29

Table 5 CAPRI price changes for China (percentage change in 2050 relative to S1 in 2050).

Sector S3 S4 S5 S6

AGR 5.2 5.7 4.7 4.7

CGR 18.7 17.3 47.1 43.7

DRY 4.8 4.9 10.6 9.8

NRM 5.0 5.3 6.7 6.6

OSD 19.4 13.2 22.1 23.4

RIC 24.5 24.3 11.2 9.5

RUM 6.6 6.8 14.8 13.5

SUG 2.2 2.6 2.6 3.2

WHT 4.2 8.3 59.0 49.5
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Aggregate land use changes induced by climate change are relatively small. Relative to the
reference scenario, the total agricultural area increases by 0.2% in scenarios S3 and S4 and by
0% in scenarios S5 and S6 (Table 7). Land relocation effects between different commodity
aggregates are also relatively small; for most commodity aggregates it ranges between −5%
and 3%. A stronger climate change impact on land use is projected for coarse grains and
wheat in scenarios S5 and S6. Land use for sugar decreases and for coarse grains it increases
in all climate scenarios. These results are mainly driven by the relative changes in profitability of
different crops caused by price and yields adjustments to climate change. For other crops, the
results are mixed depending on the scenario (Table 7). The CAPRI area projections are somehow
close to the median across all AgMIP models in all four climate scenarios.22,29

The reduced availability of agricultural commodities and higher prices due to climate
changes is reflected in lower consumption levels dropping on average between 0.6% and
2.8% in China. The strongest effects are observed for coarse grains and wheat (Table 8).
CAPRI-projected magnitudes of the consumption effects for China are in line with AIM,
ENVISAGE, FARM, and GTEM. Other AgMIP models tend to simulate considerably stronger
consumption responses to climate change.22,29

Table 6 CAPRI production change results for China (percentage change in 2050 relative to S1 in
2050).

Sector S3 S4 S5 S6

CGR −2.9 −2.6 −12.2 −10.3

DRY −0.2 −0.3 −1.2 −1.0

NRM 0.0 0.0 −0.8 −0.6

OSD −0.4 0.2 −5.2 −3.0

RIC −0.7 −0.3 2.8 3.4

RUM −0.3 −0.4 −2.4 −2.0

SUG −0.7 −0.7 −1.3 −1.0

WHT 1.1 0.6 −5.7 −4.6

Averagea −0.5 −0.4 −3.3 −2.4

aSimple average.

Table 7 CAPRI area change results for China (percentage change in 2050 relative to S1 in 2050).

Sector S3 S4 S5 S6

AGR 0.2 0.2 0.0 0.0

CGR 1.4 0.9 8.3 7.4

CR5 0.6 0.3 2.3 1.9

CRP 0.4 0.3 −1.2 −0.9

OSD 0.5 −0.3 −4.4 −3.5

PAS −0.1 0.0 1.7 1.4

RIC 1.0 0.9 −4.8 −4.3

SUG −1.9 −2.0 −5.2 −4.4

WHT −2.4 −1.3 10.5 7.3
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5 Discussion and Conclusions

The current paper investigates the long-term impacts of climate change on the global agriculture
and the Chinese agriculture following the AgMIP approach. We provide horizontal model inter-
comparison for 11 AgMIP models as well as explore in more detail the application of the CAPRI
modeling framework to systematically compare its performance with respect to other models and
specifically for the Chinese agriculture. We compile one reference scenario which serves as a
counterfactual situation for climate change scenarios. This scenario reflects economic assump-
tions as defined under the SSP2. We simulate four climate change scenarios. All scenarios are
run for 2030 and 2050.

The long-term projections of agricultural productivity in the reference scenario without cli-
mate change show relatively robust but heterogeneous growth across commodity groups.
Overall, the exogenous productivity change varies between 20% and 100% in 2050 relative
to 2005. There is no consensus in price and area projections across models in the reference
scenario; this is the case for both the magnitude and the sign of the projected changes. The
aggregate price changes at the global level range from a decline of 25% to an increase of
39% in 2050 relative to 2005. The projected change for the total agricultural area varies between
−2% and 17%.

In general, there are relatively moderate effects of climate change at the global level. The
results indicate that, at the global level, the climate change will cause a decrease in the agricul-
tural productivity between −2% and −15% by 2050. The productivity decline will in turn gen-
erate upward pressure on global food prices (between 1.3% and 56%) and will lead to expansion
of cultivated area (between 1% and 4%) over the same period. However, there is a stronger
impact across different agricultural commodities. Sectoral impacts of climate change may
increase by a factor higher than 5 or more relative to the aggregate global impacts.

The model intercomparison for climate change scenarios shows relatively strong hetero-
geneity in the simulated effects between models. Although all models tend to report consistently
higher prices, lower yields, increase in area use, and reduction in consumption as a response to
climate change, the strongest differences between models are in the relative magnitude of the
simulated effects.

The analyses of this paper show that the CAPRI simulations are in line with (or within the
variation of) the rest of the AgMIP models. The most significant differences are observed for
price projections for the reference scenario where CAPRI reports a decline in prices which is
consistent with three CGE models (EPPA, FARM, MAGNET) but is in conflict with all PE
models. The results for China are in line with the general projections for the global agriculture
with the difference that the climate change effects (e.g., yield decrease and price increase) tend to

Table 8 CAPRI consumption change results for China (percentage change in 2050 relative to S1
in 2050).

Sector S3 S4 S5 S6

CGR −3.5 −3.0 −12.3 −11.1

DRY −0.3 −0.3 −1.3 −1.1

NRM −0.2 −0.2 −0.9 −0.9

OSD −1.0 1.3 0.4 2.1

RIC −1.3 −1.2 0.4 0.5

RUM −0.8 −0.8 −2.5 −2.2

SUG −0.6 −0.7 −0.8 −0.9

WHT 0.8 0.3 −5.2 −4.2

Averagea −0.9 −0.6 −2.8 −2.2

aSimple average.
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be smaller. The analyses for the Chinese agriculture also reveal that CAPRI projections are close
to the median across all AgMIP models.

Overall, the analyses conducted in this paper revealed that the main discrepancy in simulated
effects across models occurred for the reference scenario. For this scenario, the differences in
projections differ not only in the magnitude but also in the direction (sign) of the simulated
changes. For the climate change scenarios, the signs of the changes are broadly in line across
models, whereas the magnitudes can vary substantially; sometimes the differences could be more
than fivefold large.

Key sources of differences in simulated effects are the model type (i.e., PE versus CGE
model) and how trade flows are modeled. For example, for price effects, the PE models appear
to produce systematically higher price changes as compared to the CGE models. This is most
likely because CGE models generally consider greater degrees of substitution within the pro-
duction and demand systems as well as including non-AGRs, implying that a part of the effects
occurring in agriculture might be absorbed by non-AGRs. The differences in results between
CGE and PE models could also partially be explained by how the climate change is modeled. In
CGE models, climate change shocks are introduced by adjusting the land efficiency parameter in
the production function, whereas in PE models the shocks are reflected by adjusting crop yields
or supply functions. Further, models with spatially explicit representation of bilateral trade flows
(e.g., Armington approach) tend to result in smaller price increases in the reference scenario and
larger increases in the climate change scenarios than other models. These results are contradic-
tory and require further research. The theoretical hypothesis would suggest a lower price trans-
mission in models with spatially explicit modeling of trade flows resulting in stronger price
adjustment to exogenous shocks due to the implicit assumption of more segmented markets.22,29

A second factor that causes divergence in the simulated effects across models is income and
the price elasticities of food demands. These elasticities are behavioral parameters which mea-
sure responsiveness of the food quantity demanded to income and price changes. They determine
the magnitude of adjustments taking place in the AGR as a response to changes occurring in the
macroeconomy (e.g., GDP growth) or on the supply side of the AGR (e.g., due to climate
change). The differences in elasticities between models are relatively significant causing hetero-
geneity in the simulated effects. For example, contrary to expectation, some models has elas-
ticities increasing over time (e.g., ENVISAGE, AIM), whereas others have theoretically
consistent decreasing elasticities over time for most commodity groups (e.g., CAPRI,
GLOBIOM, IMPACT) causing a strong differences in agricultural market responses across mod-
els to GDP growth in the reference scenario and to productivity changes in the climate
scenarios.22,29

The third reason for the differences in model results relates to the unavailability of accurate
primary and secondary economic data on issues linked, for example, to agricultural land use,
technological change, and costs of primary production factors. The fourth cause for differences
could be associated with a need to better reflect interdisciplinary knowledge into economic mod-
els, in particular, those linked to biophysical relationships and interactions. This shortcoming is
particularly visible from the relatively large discrepancy in simulated land use developments.
The land use response is fundamental in determining the potential for expansion or contraction
of agricultural production at the extensive margin, which can have an offsetting effect on the
climate change induced impacts at the intensive margin of the agricultural production
(i.e., through yield changes).22,29

The analysis of CAPRI performance reveals that its simulated effects are, in general, close to
the median across all AgMIP models. CAPRI contains some specific features which are either
not considered in the rest of the PE models or are treated differently depending on the model
component. First, CAPRI is an exception across all PE models as it models trade flows using the
Armington approach, which is considered only in CGE models. Second, CAPRI models climate
change by applying a different approach in the supply module than in the market module. Most
other models usually use only one approach. In the market module, CAPRI parameters of supply
functions are adjusted, whereas in the supply module, crop yields are adjusted. Given that
CAPRI combines elements from different models (including from CGE), this may partly explain
why the CAPRI results tend to lie at the mid-point across AgMIP models.
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The analyses of this paper also reveal that there are substantial differences in projections of
climate change impacts across scenarios determined by circulation models and crop models. The
differences in simulated effects between scenarios tend to be consistent across the 11 economic
models, but often exceed the differences in the simulated effects between the models. Model
intercomparison studies done for crop models within the AgMIP project show that the
model uncertainties of the climate induced yield changes can be substantial. The climate change
impacts across crop models vary depending on the model structure and parameter values. These
studies also suggest that a relatively small set of well-defined models can quantify the model
uncertainty relatively accurately and in some cases substantially reduce the variability.46–48

Applying this work in economic modeling may result in more accurate quantification of the
uncertainty of economic effects of climate change as well as it may deliver less uncertain results.
This would be a promising avenue for future research as it would contribute to a better under-
standing of uncertainties of AGR responses to climate change from an interdisciplinary point
of view.

An issue that may require further consideration is the responsiveness of fodder production to
climate change. In this assessment, yields of fodder crops including grasslands have not been
varied in the climate change scenarios, mainly because fodder crops are not explicitly included in
the product list of the IMPACT model that served to compile the standardized productivity
shocks. Yet it may be expected that fodder crops would be just as vulnerable to climate impacts
as other crops. Including assumptions on such effects would considerably reinforce the global
market effects via the animal sector.
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