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Abstract. It has been reported that a functional near-infrared spectroscopy (fNIRS) signal can be contaminated
by extracerebral contributions. Many algorithms using multidistance separations to address this issue have been
proposed, but their spatial separation performance has rarely been validated with simultaneous measurements
of fNIRS and functional magnetic resonance imaging (fMRI). We previously proposed a method for discriminat-
ing between deep and shallow contributions in fNIRS signals, referred to as the multidistance independent com-
ponent analysis (MD-ICA) method. In this study, to validate the MD-ICA method from the spatial aspect,
multidistance fNIRS, fMRI, and laser-Doppler-flowmetry signals were simultaneously obtained for 12 healthy
adult males during three tasks. The fNIRS signal was separated into deep and shallow signals by using
the MD-ICA method, and the correlation between the waveforms of the separated fNIRS signals and the
gray matter blood oxygenation level–dependent signals was analyzed. A three-way analysis of variance
(signal depth × Hbkind × task) indicated that the main effect of fNIRS signal depth on the correlation is signifi-
cant [F ð1;1286Þ ¼ 5.34, p < 0.05]. This result indicates that the MD-ICA method successfully separates fNIRS
signals into spatially deep and shallow signals, and the accuracy and reliability of the fNIRS signal will be
improved with the method. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution

or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.2.1.015003]
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1 Introduction
Functional near-infrared spectroscopy (fNIRS) measures the
changes in cerebral hemodynamics and oxygenation by radiat-
ing weak visible or near-infrared light into the head and
detecting the light reflected back (scattered) from another posi-
tion.1–5 fNIRS has been applied to obtain two-dimensional topo-
graphical images of the changes in brain hemodynamics and
oxygenation.6,7

All over the world, fNIRS systems have been used in more
and more situations,8 such as in neuroimaging research9,10

and medical purposes,11–14 especially for measuring the brain
activity of infants and children15–20 and for creating wearable
equipment,21,22 because they have a high level of safety23,24 and
require few constraints.

One of the limitations of fNIRS is the potential effect of the
extracerebral tissue on the signal. It was reported that an fNIRS
signal can be contaminated by extracerebral signals.25–29 It has
also been reported that the regional cerebral oxygen saturation is
affected by extracranial contamination.30,31

Another issue concerning extracerebral effects is the interfer-
ence of systemic hemodynamics on fNIRS signals.32,33 This is

often referred to as broadly distributed signals caused by heart
rate, blood pressure, and respiration. In other words, it is attrib-
uted to the effect of measuring systemically circulating blood.
Systemic interference is included both in extracerebral and cer-
ebral signals, so a signal originating from cerebral tissue may
include a systemic contribution. Extracerebral veins have also
been shown to affect fNIRS signals as a task-related systemic
contribution.34

To deal with the above-described interference issues, various
methods have been proposed.10 The validity of these methods,
however, was confirmed by making certain assumptions,
namely (expected) waveforms,35,36 contrast-to-noise ratio,37

and correlation with laser-Doppler signals.38,39 Few studies,
however, have verified such methods by spatial analysis using
simultaneous measurement by fNIRS and functional magnetic
resonance imaging (fMRI). On the other hand, for providing
higher spatial resolution, diffuse optical tomography using
high-density probe arrangements has been proposed,40,41 and
this technique was found to be consistent with nonsimultaneous
fMRI. Although general consistency between fNIRS and fMRI
has been reported,42–45 neither technique used multidistance
optodes, and the purpose of these studies did not include the
validation of methods for removing scalp effects. Through a
concurrent multimodality study with fMRI and laser-Doppler
flowmetry (LDF), a deep/shallow discrimination method can
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be validated from the spatial and temporal aspects. That kind of
confirmation is highly valuable for the practical use of fNIRS
with multidistance probes.

Accordingly, in the present study, we tried to validate a
method with multiple-distance probes and independent compo-
nent analysis (ICA)38 to discriminate between the scalp and cer-
ebral effects on the fNIRS signal using concurrently measured
fMRI and LDF signals.

2 Materials and Methods

2.1 Participants

A total of 12 healthy adult males (mean age: 37.7 years; age
range: 30 to 48 years) participated in measurements by simul-
taneous fNIRS with multidistance probes [with source-detector
(S-D) distances of 15 (or 16) and 30 mm], fMRI, and LDF. All
participants gave written informed consent to the study protocol,
which was approved by the Ethical Committee of the Faculty of
Medicine, the University of Tokyo [No. 3156-(2)]. None of the
participants had a medical history of psychiatric or neurological
illness or serious head injury, and none of them had a history of
psychotropic drug use.

2.2 Data Acquisition

2.2.1 Functional near-infrared spectroscopy

An optical topography system (ETG-4000, Hitachi Medical
Corporation, Japan) was used for the fNIRS measurements.
The light sources consisted of continuous laser diodes with
two wavelengths, 695 and 830 nm. The transmitted light
(detected with avalanche photodiodes) was sampled every
100 ms.

A multidistance measurement (namely 15-, 16-, and 30-mm
S-D distances) was conducted with 16 light sources and 16
detectors. Two probe holders were placed for covering the
left prefrontal cortex and the left somatosensory or motor cortex.
Ten-millimeter-thick low-elastic rubber sheets were used for
holding optical-fiber probes. On the optical fiber probes for a
15-mm S-D distance, optical filters were used for attenuating
optical intensity. In total, 22 channels and 15 channels were
measured for S-D 30 and 15 (or 16) mm, respectively. The chan-
nel arrangement and appearance of the probe holders used for
the fNIRS measurements are shown in Fig. 1. To mark the opti-
cal-probe positions, vitamin-E tablets were placed on the probe
holders [Fig. 1(a)]. The left one of the probe holders described in
Fig. 1(a) is placed on the left prefrontal position, and the right
one is placed on the left parietal position. The positions of the
(21) vitamin-E tablets used as markers are shown by yellow
ellipses. White squares indicate the positions of S-D 30-mm
measurement channels [Fig. 1(b)]. Red squares indicate the
positions of S-D 15- and 16-mm measurement channels
[Fig. 1(c)]. A photograph of the probe holder worn by a repre-
sentative participant is shown in Fig. 1(d), left, and a corre-
sponding T1-weighted image with vitamin markers is shown
in Fig. 1(d), right.

2.2.2 Magnetic resonance imaging

MRI was performed with a Philips Achieva 3.0T TX system
(Philips Medical Systems, The Netherlands) with a 32-channel
SENSE head coil. A total of 130, 175, and 180 T2*-weighted
gradient-echo echo-planar images (EPIs) were acquired while a

participant underwent a single session of the verbal-fluency task
(VFT), working-memory task (WM), and finger-tapping task
(TAP) (described below), respectively. The parameters used
for acquiring EPIs are listed in Table 1. A single EPI volume
consisted of 30 4-mm-thick (for VFT) or 35 3-mm-thick
(for WM and TAP) axial slices interspaced by a 1-mm gap, cov-
ering the entire brain. Other imaging parameters included rep-
etition time (TR) of 4000 ms (for VFT) or 2500 ms (for WM and
TAP), echo time (TE) of 30 ms, flip angle (FA) of 80 deg, field-
of-view (FOV) of 192 × 192 mm2, and matrix size of 64 × 64.
The total measurement time (number of EPI scans × TR) was set
to more than the total task duration (trial duration × repetition).
For all the tasks employed, the initial four scans were discarded
to allow for the T1-equilibration effects. Thus, the numbers of
scans listed in Table 1 are those excluding the number of those
“dummy” scans. Within the numbers of scans, the final eight
scans in WM and the first one scan in TAP were not used to
match the data size of blood oxygenation level–dependent
(BOLD) signal to that of fNIRS signal. Following the functional
imaging, a B0 field map was acquired by keeping the same head
position (35 4-mm-thick axial slices, TR of 20 ms, and TEs of
2.3∕4.6 ms). The B0 field map was later used to reduce the
image distortion caused by inhomogeneity in the magnetic
field. Further, for anatomically identifying activated regions
in the brain, a T1-weighted structural image was obtained
(FOV: 250 × 250 mm; in-place resolution: 1.1 × 1.1 mm; 301
contiguous sagittal slices with thickness of 0.6 mm; TR:
7.4 ms; TE: 3.4 ms; and FA: 8 deg).

2.2.3 Laser-Doppler flowmetry

Skin blood flow was measured with an LDF (MICROFLO DSP,
Oxford Optronix Ltd., UK) equipped with two surface probes.
One was attached to the skin, centered between the eyebrows
(channel 1), and the other was attached to the left temple (chan-
nel 2). The LDF analog output was converted into a digital sig-
nal by an analog-to-digital converter (NR-2000, Keyence
Corporation, Japan).

2.3 Tasks

The tasks performed in this study were a VFT,11,12 a verbal
WM,46–48 and a TAP.49 Target areas for each task were set as
Brodmann areas (BAs) 9, 10, 44, 45, and 46 for VFT, BA
46 for WM, and BAs 1, 2, 3, 4, and 40 for TAP.

In the VFT, each trial consisted of a 40-s pretask control
period, a 60-s task period, and a 70-s post-task control period.
During each task period (60 s), the participants were requested
to verbalize as many words as possible that began with a
Japanese character enunciated through headphones every 20 s
(three characters per trial). The characters, which were enunciated
randomly, included /a/, /to/, /na/, /i/, /ki/, /se/, /o/, /ta/, and /ha/.
During each control period, the participants were requested to
repeatedly verbalize the five Japanese vowels (/a/, /i/, /u/, /e/,
and /o/).11 The sequence was repeated for three trials. Speech
during fMRI scanning might cause movement artifacts in
BOLD signals; therefore, in this study, we adopted a method
to acquire all slices from the volume in the first period of the
relatively longer TR and to make the remaining period a
“no-sound” period.50,51 The acquisition time (TA) (for 30 slices)
was set to 1205 ms and participants produced all speech (words
and vowels) during the no-sound period of TRs, i.e.,
TR − TA ¼ 2795 ms. We confirmed that this duration was
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sufficient for all the participants to complete their articulation.
This is the point that is different from the conventional VFT
sequence. The temporal differences among slices exist within
TA (1205 ms) and were not corrected in the present study.
This is because the temporal change in the BOLD signal is sev-
eral times longer than the time scale of the present TA, for which
the benefit of correction can be minimal.

The WM and the TAP are described in our previous paper.52

Briefly, in the WM (which had an identical delayed-response
paradigm), each trial started with a 1.5-s presentation of the tar-
get stimuli (“target” hereafter) on a PC display screen, which
was followed by a delay of 7 s. A probe stimulus (“probe” here-
after) was then presented for 2.0 s or until the participant
responded. The participant responded by pressing a button on
a handheld pad connected to the PC. The button-pressing
time was recorded. In the WM, one or four Japanese hiragana
characters were presented as the target and a Japanese katakana

character was presented as the probe. The participants were
instructed to judge whether the character presented as the
probe corresponded to any of the target characters and then
press the appropriate button. The intervals between the probe
onset and the following target onset in the next trial were
24 s. Only a central fixation cross was presented during the
interval and delay periods. In addition, a visual cue (changing
the color of the fixation cross) was presented for 0.5 s prior to
trial onset. Auditory cues (1000- and 800-Hz pure tones of 100-
ms duration) were presented at the onset of the visual cue and
probe, respectively. One-item and four-item conditions were
presented in a pseudorandom order. The sequence was repeated
for 16 trials (eight trials for the one-item condition and eight
trials for the four-item condition).

In the TAP, the tip of the thumb was touched with the tip of
each finger in serial order (forefinger, second finger, third finger,
little finger, third finger, second finger, forefinger). On the
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Fig. 1 Channel arrangement and appearance of probe holders for functional near-infrared spectroscopy
(fNIRS) measurements: (a) Positions of sources, detectors, and vitamin-E markers. Left part is placed on
left prefrontal position and right part is placed on left parietal position. Positions of 21 vitamin-E tablets
used as markers are shown by yellow ellipses. (b) Positions of measurement channels with 30-mm
source-detector (S-D) distance. (c) Positions of measurement channels with 15- and 16-mm S-D distan-
ces. The dotted ellipses indicate the channel groups for each S-D 30-mm channel. (d) Photograph of a
probe holder worn by a representative participant (left) and the corresponding T1-weighted image with
vitamin markers (right).

Neurophotonics 015003-3 Jan–Mar 2015 • Vol. 2(1)

Funane et al.: Concurrent fNIRS-fMRI measurement to validate a method for separating deep. . .



computer screen, the color of the right or left arm of the fixation
cross “+” changed alternately between black and yellow at
3.3 Hz (duration of each color: 150 ms). The participants
were requested to tap the finger of the left/right hand when
the direction of the yellow arm was left/right, synchronized
with the presentation timing of the yellow arm. The task dura-
tion was 15 s, and there was a 25-s rest period between tasks.
The right- and left-finger tapping tasks were repeated five times
(10 trials in total).

After the initial dummy scans, analog pulse signals indicat-
ing fMRI scanning timings were sent from the MRI system to a
PC, in which a software package (E-Prime, Psychology
Software Tools, Inc., USA) was used to present visual and audi-
tory stimuli to synchronize the stimuli presentation to the fMRI
scanning and to send serial commands to the fNIRS system for
recording the time of the stimuli presentation.

2.4 Data Analysis

MATLAB (The MathWorks, Inc., USA) was primarily used for
the analysis. A flowchart of the data analysis is shown in Fig. 2.

Table 1 Parameters used for acquisition of echo-planar image (EPI).

Task VFT WM TAP

FOV 192 mm × 192 mm

TR 4000 ms 2500 ms

TE 30 ms

FA 80 deg

Number of pixels 64 × 64

Number of slices 30 35

Slice thickness 4 mm
(gap: 1 mm)

3 mm
(gap: 1 mm)

Voxel size 3 × 3 × 5 mm 3 × 3 × 4 mm

Number of scans 130 175 180

Note: VFT, verbal-fluency task; WM, working-memory task; TAP, fin-
ger-tapping task; FOV, field-of-view; TR, repetition time; TE, echo
time; FA, flip angle.
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Fig. 2 Flowchart of analysis.
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2.4.1 Preprocessing of functional near-infrared spectros-
copy and laser-Doppler-flowmetry signals

The oxy- and deoxy-Hb changes were calculated by using the
optical density change of 695- and 830-nm light in accordance
with the modified Beer-Lambert law.7,53

As the preprocessing for the fNIRS data analysis, a low-pass
filter (VFT: 1∕8 Hz, WM: 1∕5 Hz, TAP: 1∕5 Hz) was applied
for suppressing the pulse signals and a high-pass filter (VFT:
1∕320 Hz, WM: 1∕65 Hz, TAP: 1∕80 Hz, inverse number of
two times of each trial period) was applied for suppressing
the low-frequency fluctuation. Low-pass and high-pass filters
with the same cutoff frequencies described above were applied
to the LDF signals.

2.4.2 Discrimination between deep- and shallow-layer
functional near-infrared spectroscopy signals

A method for discriminating between deep and shallow signals
included in original oxy- and deoxy-Hb fNIRS signals obtained
with multidistance optodes by using the dependence of indepen-
dent component amplitude (weight) on S-D distance, referred to
as multidistance ICA (MD-ICA), was used.38,54 Briefly, a time-
delayed decorrelation (TDD)-ICA55,56 was applied for obtaining
independent components for each “channel group” that includes
one S-D 30-mm channel and the nearest one to four S-D 15- or
16-mm channels. Channel groups for execution of TDD-ICA
are listed in Table 2. They are also described in Fig. 1(c).
For each independent component, the deep/shallow contribution
ratios were calculated from the dependence of the signal ampli-
tude (i.e., weight of component) on S-D distance. The deep and
shallow subcomponents were then calculated by multiplying the
independent components by deep/shallow contribution ratios.
At this time, the original independent component is the sum
of the deep and shallow subcomponents. Deep and shallow sig-
nals are then reconstructed using the sum of the subcomponents
of all independent components. Delay times as a TDD-ICA
parameter were set to 80, 16, and 21 s for VFT, WM, and TAP,
respectively, which are about half the time of the block period
[i.e., task plus control (rest) period].

As for the MD-ICA method, it is assumed that the partial
optical path length of the deep layer linearly increases as the
S-D distance increases, while that of the shallow layer does
not change. This assumption is supported by several research
works.57–60 Moreover, it was assumed that the fNIRS signals
at each S-D distance can be expressed by the linear sum of
hemoglobin change signals, which are proportional to the partial
optical path length at the scalp and gray matter (GM).61

To apply the MD-ICA method to fNIRS data, at least two
kinds of S-D distance (> Xigr) are necessary. Xigr indicates
the shortest S-D distance at which the detected light has sensi-
tivity to absorption change in GM and is assumed to be 10.5 mm
in adults.38 Moreover, the channels in the same channel group
should be close enough to each other. In this study, the center-to-
center distance (center means midpoint between source and
detector) between the long-distance (S-D 30 mm) and the
short-distance (S-D 15 or 16 mm) channels was then set to
be within 19 mm. The threshold of the center-to-center distance
(19 mm) was set according to the previous study,38 where we
confirmed that the MD-ICA method successfully worked
even when the center-to-center distance was 16.8 mm. The
maximal center-to-center distance in the present case is
18.4 mm (e.g., between channels 15 and 24). The difference

between 16.8 and 18.4 mm is only 1.6 mm, and we then
assumed that 18.4 mm was also valid for execution of MD-
ICA. The deep- and shallow-layer contributions’ ratio for
each channel was calculated by using the amplitude-weighted
mean of contribution ratios.

2.4.3 Functional near-infrared spectroscopy activation
channel and effect size

The activation channel of the fNIRS signal was chosen from
BAs 9, 10, 44, 45, and 46 for VFT, BA 46 for WM, and
BAs 1, 2, 3, 4, and 40 for TAP. The BA number was deter-
mined62 for each projection point from the Montreal
Neurological Institute (MNI) coordinates. The activation chan-
nel for each participant was determined by the effect size
(Cohen’s d) of the original fNIRS signal. The effect size is
the amplitude difference between the mean of the task period
[mean (task)] and that of the control period [mean (control)]

Table 2 Channel groups for execution of time-delayed decorrelation
independent component analysis (TDD-ICA).

Channel
group no.

S-D 30-mm
channel no.

S-D 15 or 16-mm
channel no.

1 1 23, 26

2 2 24, 27

3 3 25, 28

4 4 26

5 5 26, 27

6 6 27, 28

7 7 28

8 8 26, 29

9 9 27, 30

10 10 28, 31

11 11 32, 36

12 12 33, 37

13 13 34, 36

14 14 35, 37

15 15 23, 24

16 16 24, 25

17 17 23, 24, 26, 27

18 18 24, 25, 27, 28

19 19 26, 27, 29, 30

20 20 27, 28, 30, 31

21 21 29, 30

22 22 30, 31

Neurophotonics 015003-5 Jan–Mar 2015 • Vol. 2(1)

Funane et al.: Concurrent fNIRS-fMRI measurement to validate a method for separating deep. . .



divided by the pooled standard deviation (σ). The equation for
the effect size is expressed as

d ¼ meanðtaskÞ −meanðcontrolÞ
σ

; (1)

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn1

i ðy1i − ȳ1Þ2 þ
Pn2

i ðy2i − ȳ2Þ2
n1 þ n2 − 2

s
; (2)

where y1 and y2 denote the vectors of raw Hb signals in the task
and control periods, respectively; n1 and n2 denote the numbers
of time points for y1 and y2; and ȳ1 and ȳ2 denote the temporal
means of y1 and y2, respectively.

52 For the calculation of y1 and
y2, no temporal offset for the transient phase was set. For cal-
culation of y1, the task periods of the four-item condition for
WM and right-hand tapping condition for TAP of all repetitions
were used. For calculation of y2, the periods of 30, 5, and 5 s
before task onset were used for VFT, WM, and TAP,
respectively.

In this study, the channels at which the effect size of oxygen-
ated hemoglobin (oxy-Hb) is over 0.2 and that of deoxygenated
hemoglobin (deoxy-Hb) is under −0.2 were first selected. After
that, the channel at which the difference between the effect sizes
of oxy- and deoxy-Hb in the target areas for each task is maxi-
mal was selected as an activation channel. The channels at
which the absolute amplitude of the deep signal is over
0.6 mM·mm in the entire time span have been removed as
noise channels.

2.4.4 Spatially weighted blood oxygenation level–dependent
signal

The photon-diffusion region (sensitivity map) expressed in
voxel coordinates for each channel of the fNIRS system was
calculated for each participant. A gray matter (GM)-BOLD sig-
nal was calculated from a spatially weighted sum of BOLD sig-
nals at voxels in the photon-diffusion region that is included in
the segmented GM region. The processing for obtaining a GM-
BOLD signal is described in detail in our previous study.52,63

The photon-diffusion region and the GM-BOLD signal were
calculated only for S-D 30-mm pairs. Short-distance channels
were used for calculating deep and shallow signals of S-D
30-mm channels by the MD-ICA method.

2.4.5 Methods for evaluating discrimination performance

The MD-ICA method separates the fNIRS signal on the basis of
signal depth (deep or shallow). As references for a shallow opti-
cal signal, skin blood flow (LDF signals) was measured. The
following two methods were used to evaluate the performance
of the MD-ICA method.

Correlation between fNIRS and LDF signals. The corre-
lation coefficients of original, deep, and shallow signals versus
the LDF signal were calculated by the way used in some liter-
ature,38,39,64 whereas Takahashi et al.29 calculated the temporally
integrated LDF signal (blood volume) to compare it with fNIRS
signal because, in principle, the integrated LDF signal may
relate more to the fNIRS signal than the direct LDF signal
(blood flow) does. It was expected that the LDF signal had a
higher correlation coefficient with the shallow signal than
that with the deep one. For calculating means and standard

deviations of correlation coefficients between fNIRS and
LDF signals, all S-D 30-mm channels (22 channels in total)
of fNIRS and both LDF channels 1 and 2 were used. It has
been reported that the fNIRS signal obtained with a short-dis-
tance probe (i.e., a surface fNIRS signal) is highly correlated
with the LDF signal.38,64 The sign of the deoxy-Hb signal
was inverted. While the total-Hb signal (oxy-Hb + deoxy-
Hb) is more related to the blood flow signal than oxy- and
deoxy-Hb signals in general, oxy- and deoxy-Hb signals
were used for the correlation analysis with LDF signals because
the present study focused on deep and shallow separation and
the contribution ratio depends on Hb types (oxy/deoxy).38 A
two-sample t-test was used to compare the correlation coeffi-
cients among signal depths (original/deep/shallow) for each
task and the Hb type with a Bonferroni correction for three
comparisons.

Correlation between fNIRS and GM-BOLD signals. The
correlation coefficients for the waveforms of the separated
fNIRS signals and the GM-BOLD signals were analyzed,
and the correlation coefficients for deep fNIRS and GM-
BOLD signals were expected to be larger than those for shallow
fNIRS and GM-BOLD signals. To investigate this expectation, a
three-way (task × depth × kind) analysis of variance (ANOVA)
was applied to the correlation coefficients for the fNIRS and
GM-BOLD signals. The sign of the deoxy-Hb signal was
inverted. The fNIRS data were down-sampled to match the
fMRI data used for the correlation analysis. Some studies
using concurrent fNIRS and fMRI measurements focused on
the BOLD-significant (i.e., activation) area.43,65 In this analysis,
on the other hand, the significance of the task-related change in
GM-BOLD signal was not calculated for each channel
and all the channels in the target areas for each task were
used, because the significance of the change in GM-BOLD
signal is not directly related to deep/shallow separation
performance.

3 Results

3.1 Functional Near-Infrared Spectroscopy Channel
Positions

The representative positions of each fNIRS channel were deter-
mined from the closest point on the brain surface to the midpoint
of the source and detector positions. The BA number62 for each
channel was determined for each participant in accordance with
the determination of fNIRS channel positions in the MNI space
(Table 3).

3.2 Grand-Average at Activation Channel

Grand-average continuous signals of fNIRS (original, deep, and
shallow), GM-BOLD, and LDF signal changes (channel 2) at
the activation channel obtained during VFT are shown in
Fig. 3. Standard errors at each time point are displayed as trans-
lucent patches. Vertical solid and dashed lines indicate task
onset and end timings, respectively. A task-related response dur-
ing VFT was obtained for each signal.

3.3 Correlation with Laser-Doppler-Flowmetry
Signals

Correlation coefficients (Fisher’s Z-transformation converted
from Pearson’s correlation coefficient r) for oxy- and deoxy-
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Hb signals (original, deep, and shallow) and LDF signals
(including channels 1 and 2) during performance of VFT,
WM, and TAP are shown in Fig. 4. Error bars indicate the stan-
dard deviations. Single (*) and double (**) asterisks denote the
statistical significance at p < 0.05 and 0.01 (corrected for multi-
ple comparisons), respectively.

3.4 Analysis of Variance of Correlation between
Functional Near-Infrared Spectroscopy and
Gray Matter Blood Oxygenation
Level–Dependent Signals

Correlation coefficient Z (Fisher’s Z) for the spatially weighted
GM-BOLD signals and the fNIRS signals (deep and shallow
signals of oxy- and deoxy-Hb) for the three tasks is shown
in Fig. 5. All the channels in the target areas for each
task were used. Figures 5(a) and 5(b) show the results for

oxy- and deoxy-Hb, respectively. Error bars indicate the stan-
dard deviations. A three-way ANOVA [signal depth (deep/shal-
low) × Hb kind (oxy/deoxy) × task (VFT/WM/TAP)] indicates
that the main effect of the separated fNIRS signal depth on the
signal correlation is significant [Fð1;1286Þ ¼ 5.34, p < 0.05]
and that the interactions between the three effects are not sig-
nificant. These results show that the mean of the correlation
coefficients of the deep signal (mean: Z ¼ 0.149) was signifi-
cantly higher than that of the shallow signal (mean: Z ¼ 0.120).

3.5 Deep-Layer Pooled Contribution Ratio Obtained
by Multidistance Independent Component
Analysis

Means and standard deviations of deep-layer pooled contribu-
tion ratio (%) for activation channels are listed in Table 4.
Although the deep-layer pooled contribution ratios are a little

Table 3 Estimated location of each near-infrared spectroscopy (NIRS) channel on normalized brain image. Mean and standard deviation (SD) of
Montreal Neurological Institute (MNI) coordinates across participants and corresponding Brodmann area (BA) numbers are shown for each chan-
nel. Percentage of participants by BA number is shown in parentheses.

Channel

Mean MNI coordinates

SD BA (%)x y z

1 −5.8 57.8 38.5 4.2 9 (83%) 10 (17%) —

2 −24.7 50.7 37.7 4.7 9 (58%) 46 (42%) —

3 −42.5 36.8 34.7 4.2 45 (42%) 46 (33%) 9 (25%)

4 5.5 65.2 25.7 4.8 10 (92%) 9 (8%) —

5 −15.0 62.2 27.2 4.9 10 (67%) 9 (17%) 46 (17%)

6 −36.2 50.7 26.2 4.5 46 (83%) 45 (17%) —

7 −50.7 34.3 21.8 4.4 45 (83%) 44 (8%) 46 (8%)

8 −7.2 68.7 14.5 4.8 10 (100%) — —

9 −27.3 62.5 15.0 4.0 10 (75%) 46 (25%) —

10 −44.5 48.8 12.2 3.9 46 (50%) 45 (42%) 10 (8%)

11 −52.0 −23.3 57.0 5.5 3 (33%) 4 (33%) 1, 40 (17%)

12 −48.0 −37.8 59.2 3.9 40 (58%) 3 (33%) 1 (8%)

13 −61.5 −29.0 44.7 4.7 40 (42%) 2, 3 (25%) 1 (8%)

14 −56.5 −46.5 48.0 4.0 40 (83%) 39 (17%) —

15 −13.0 51.5 43.8 2.8 9 (100%) — —

16 −31.7 42.3 40.8 4.8 9 (75%) 46 (25%) —

17 −16.2 58.7 32.8 3.3 9 (33%) 10 (33%) 46 (33%)

18 −36.0 47.0 31.2 4.3 46 (75%) 45 (25%) —

19 −18.8 63.8 21.2 3.6 10 (92%) 46 (8%) —

20 −38.0 53.2 19.2 4.3 46 (83%) 10 (8%) 45 (8%)

21 −16.5 67.8 11.0 5.4 10 (100%) — —

22 −37.2 58.8 7.0 3.9 10 (50%) 46 (50%) —
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Fig. 3 Grand average of continuous data of fNIRS (original, deep, and shallow) and gray matter blood-
oxygenation-level dependent (GM-BOLD) signals for activation channel, and laser-Doppler-flowmetry
(LDF) signal changes (channel 2) obtained during verbal fluency task (VFT). Translucent patches indi-
cate the standard error at each time point. Vertical solid and dashed lines indicate task onset and end
timings, respectively. (a) Original signal; (b) deep signal; (c) shallow signal [oxy-Hb (solid line), deoxy-Hb
(dashed line)]; (d) GM-BOLD signal change (%); and (e) LDF signal change (arb. unit).
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lower than those reported in a previous study,38 over half of the
contribution of Hb signal to the fNIRS signals is originated from
the deep layer, especially for oxy-Hb.

4 Discussion

4.1 Correlations between Functional Near-Infrared
Spectroscopy and Laser-Doppler-Flowmetry
Signals

The correlations between the fNIRS and LDF signals (shown in
Fig. 4) are very similar to those obtained in a previous study38

that showed the correlation coefficients for deep fNIRS and LDF
signals are significantly lower than those for shallow fNIRS and
LDF signals. The correlation coefficient between deoxy-Hb and
LDF signals under the TAP condition was extremely low. That
was possibly because the deep-layer pooled contribution ratio of
deoxy-Hb under the TAP condition was relatively high (Table 4)
in the present study. The low correlation between deoxy-Hb and
skin blood flow can be caused by the low contribution of the
shallow signal. It should be noted that we did not temporally
integrate the LDF signal, but the integrated LDF signal can
be more correlated with fNIRS signal when a proper integration
time is selected.29

From the aspect of correlation between fNIRS and LDF sig-
nals, it was shown that the fNIRS signals were reasonably di-
vided into signals with either higher or lower correlations with
the LDF signal. It should be noted that during the finger-tapping
task, the LDF signal had a higher correlation with the shallow
fNIRS signal than that with the deep fNIRS signal, even if the
target channels were located mainly in somatosensory or motor
areas (BAs 1, 2, 3, 4, and 40) far from the LDF probes (attached
on the forehead or temple). The result suggests that the LDF
signal correlates with the shallow fNIRS signal in the broad
area during the finger-tapping task.

4.2 Correlation between Deep Functional Near-
Infrared Spectroscopy Signals and Gray Matter
Blood Oxygenation Level–Dependent Signals

The mean of the correlation coefficients of the deep signal was
significantly higher than that of the shallow signal. This is partly
because deep (brain) and shallow (scalp) tissue layers are ana-
tomically governed by different blood vessel systems (internal
or external carotid artery). Different correlation coefficients for
the fNIRS and the GM-BOLD signals would, therefore, be
expected, i.e., the deep fNIRS signal should have stronger cor-
relation with the GM-BOLD signal than that between the shal-
low fNIRS and the GM-BOLD signals.

From this point of view, the results of the correlation between
deep fNIRS and GM-BOLD signals (Fig. 5) showed that the
MD-ICA method successfully separates fNIRS signals into

deep and shallow signals that have higher and lower correla-
tions, respectively, with spatially weighted GM-BOLD signals.

Deep and shallow signals can be similar as a result of MD-
ICA method. The high correlation between deep and shallow
signals was also obtained in previous studies.38,54 This can hap-
pen because the same independent components are commonly
used for reconstructing deep and shallow signals, and the sys-
temic signals did not be removed in order to quantify the con-
tributions of deep and shallow signals. If the contributions of
components that included both deep and shallow signals are
almost the same, then the correlations of the shallow and
deep signals with the GM-BOLD would be almost equivalent.
In the present case, however, different correlations were
obtained. This means that deep and shallow signals were differ-
ent enough from each other to evaluate the separation perfor-
mance. Although mean deep and shallow signals seem very
similar, as shown in Fig. 3 for example, individual deep and
shallow signals are different and have different correlations
with LDF or GM-BOLD signals.

4.3 Deep-Layer Contribution Ratio Obtained by
Multidistance Independent Component Analysis

It should be noted that the MD-ICA method quantifies the con-
tribution ratios of both deep and shallow layers, but the ratios
include the effect of systemic interference because the MD-ICA
method discriminates fNIRS signals on the basis of signal depth
only. Even if the deep-layer pooled contribution ratio is high, for
example, it is possible that the systemic contribution in the deep
layer is dominant.

It has been reported that there is interindividual variability in
the correlation between the fNIRS signal and the scalp blood
flow or mean blood pressure66 and that the systemic changes
that also affect extracranial signals can lead to false positives
in fNIRS signals.33 It should be noted that the effect of posture
(sitting or supine) on the contribution of deep-layer tissue to
fNIRS signal and its dependency on kind of task have not
been investigated. Such an effect might cause the difference
between the contribution ratios obtained in the current study
and in a previous study.

4.4 Limitations

In regard to the proposed deep-shallow separation method (MD-
ICA method), the structural parameter Xigr was fixed for all par-
ticipants and for all measurement channels. In this study, it was
confirmed that the fixed parameter is effective, even in the case
where the structural differences depending on individuals and
positions within individuals are not considered and neither
MRI structural data nor x-ray CT data are available. It should
be noted that the deep- or shallow-tissue condition may be
changed by changing the posture. The deep/shallow contribu-
tion ratio calculated in this study (i.e., supine posture) is not nec-
essarily the same as that calculated for a sitting posture.

The measurement area was limited to only prefrontal, soma-
tosensory, and motor cortices on the left side of the head. Other
areas should be covered by the proposed method, so occipital
and temporal areas should be further investigated. All partici-
pants in this study were male; it would, therefore, be more
helpful to validate the proposed method by using female
participants.

Table 4 Means and standard deviations of deep-layer pooled con-
tribution ratio (%) at activation channels.

oxy-Hb deoxy-Hb

VFT 50.0� 17.1 55.1� 17.0

WM 56.2� 10.7 64.3� 9.7

TAP 60.9� 11.6 74.8� 5.3
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5 Conclusion
Though very few studies have validated a multidistance scalp-
effect-removal method with concurrent fNIRS-fMRI measure-
ment, this study shows that the previously proposed deep/shal-
low separation method (MD-ICA method) successfully
separates fNIRS signals into “spatially” deep and shallow sig-
nals by comparing these signals with spatially weighed GM-
BOLD and LDF signals. The result shows that the accuracy
and reliability of the fNIRS signal will be greatly improved
with the MD-ICA method. The correlation coefficients for shal-
low fNIRS and LDF signals were larger than those for deep
fNIRS and LDF signals. This result is consistent with the results
obtained in a previous study.38 This method needs only small
numbers of probes [at least two middle-distance (>10.5 mm)
channels], so it will easily contribute to broad area (e.g.,
whole head) brain-imaging studies using cost-effective
equipment.
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