Errata: Transcranial low-level laser therapy (810 nm) temporarily inhibits peripheral nociception: photoneuromodulation of glutamate receptors, prostatic acid phophatase, and adenosine triphosphate

Marcelo Victor Pires de Sousa
Cleber Ferraresi
Masayoshi Kawakubo
Beatriz Kaippert
Elisabeth Mateus Yoshimura
Michael R. Hamblin
Errata: Transcranial low-level laser therapy (810 nm) temporarily inhibits peripheral nociception: photoneuromodulation of glutamate receptors, prostatic acid phosphatase, and adenosine triphosphate

Marcelo Victor Pires de Sousa,a,b,c Cleber Ferraresi,a,d,e,f Masayoshi Kawakubo,a Beatriz Kaippert,a,g Elisabeth Mateus Yoshimura,b and Michael R. Hamblina,h,i

aMassachusetts General Hospital, Wellman Center for Photomedicine, BAR414, 40 Blossom Street, Boston, Massachusetts 02114, United States
bUniversity of São Paulo, Institute of Physics, Laboratory of Radiation Dosimetry and Medical Physics, Rua do Matão, Travessa R, 187, Cidade Universitária, São Paulo, Brazil
cBright Photomedicine Ltd., CIETEC Building, 2242 Lineu Prestes, São Paulo 05508-000, Brazil
dFederal University of São Carlos, Department of Physical Therapy, Laboratory of Electro-Thermo-Phototherapy, Street Washington Luis, km 235. Monjolinho, São Carlos, São Paulo 13565-905, Brazil
eFederal University of São Carlos, Post-Graduation Program in Biotechnology, Street Washington Luis, km 235. Monjolinho, São Carlos, São Paulo 13660-000, Brazil
fUniversity of São Paulo, Optics Group, Physics Institute of São Carlos, Street Miguel Petroni, 146–Jardim Bandeirantes, São Carlos, São Paulo 13660-970, Brazil
gFederal University of Rio de Janeiro, Carlos Chagas Filho, 373–Cidade Universitária, Rio de Janeiro, RJ 21941-170, Brazil
hHarvard Medical School, Department of Dermatology, 50 Staniford Street #807, Boston, Massachusetts 02114, United States
iHarvard-MIT, Division of Health Sciences and Technology, 77 Massachusetts Avenue, E25-518, Cambridge, Massachusetts 02139, United States

This article [Neurophoton. 3(1), 015003 (2016)] was originally published online on 25 January 2016 with an error in the abstract. The last sentence of the abstract, “This is the first study to show inhibition of peripheral pain due to photobiomodulation of the central nervous system,” is incorrect and has been removed from the paper. Prior published work showed inhibition of peripheral pain due to photobiomodulation of the central nervous system.

The article was republished online on 16 March 2016 and appears correctly in print.

References

© 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)