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Abstract. Safe locomotion is a crucial aspect of human daily living that requires well-functioning motor control
processes. The human neuromotor control of daily activities such as walking relies on the complex interaction of
subcortical and cortical areas. Technical developments in neuroimaging systems allow the quantification of cort-
ical activation during the execution of motor tasks. Functional near-infrared spectroscopy (fNIRS) seems to be a
promising tool to monitor motor control processes in cortical areas in freely moving subjects. However, so far,
there is no established standardized protocol regarding the application and data processing of fNIRS signals that
limits the comparability among studies. Hence, this systematic review aimed to summarize the current knowl-
edge about application and data processing in fNIRS studies dealing with walking or postural tasks. Fifty-six
articles of an initial yield of 1420 publications were reviewed and information about methodology, data process-
ing, and findings were extracted. Based on our results, we outline the recommendations with respect to the
design and data processing of fNIRS studies. Future perspectives of measuring fNIRS signals in movement
science are discussed. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or repro-

duction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.4.4.041403]

Keywords: functional near-infrared spectroscopy; optical neuroimaging; motor control; walking; posture.

Paper 17031SSRRR received Mar. 4, 2017; accepted for publication Jun. 23, 2017; published online Aug. 1, 2017.

1 Introduction
Safe locomotion is indispensable for human daily living and
requires good functionality of motor control processes. The effi-
ciency of motor control processes of daily motor activities such
as walking1,2 and standing3,4 relies on complex neuronal net-
works encompassing subcortical and cortical brain structures.
Studies show that a smaller gray matter volume is associated
with lower gait performance indicated by increased gait
variability5–7 or slower gait velocity.8,9 Moreover, lower whole-
brain gray matter volume goes along with worse postural bal-
ance performance irrespective of age,10 whereas the increase of
gray matter volume is associated with balance improvements.11–13

In older age, however, shrinking of those cortical structures14,15

might diminish motor control capabilities.16 The substantial
body of literature suggests that cortical structures play an impor-
tant role for the motor control of daily motor tasks. Therefore,
the assessment of cortical activity while subjects are moving is a
key factor to foster a better understanding of neuromotor control
which, in turn, could help to improve rehabilitation strategies.17

Brain activity can be measured by the following neuroimag-
ing methods: functional magnetic resonance imaging (fMRI),
magnetoencephalography (MEG), positron-emission-tomogra-
phy (PET), electroencephalography (EEG), and functional
near-infrared spectroscopy (fNIRS). While fMRI is considered
as gold standard for the assessment of activity in cortical and
subcortical structures, it suffers from the vulnerability for

movement artifacts and the restricted range of motion in the
scanner.18–21 Likewise, MEG exhibits a high vulnerability for
motion artifacts18 while the use of PET does not allow repeated
measurements due to the injection of radioactive tracers.20 EEG
puts out not only signals with high temporal resolution but
also signals with a relatively weak spatial resolution.18,22

Furthermore, EEG is vulnerable to artifacts, time consuming
in preparation,18,22,23 and the signals are hard to interpret for
nonexperts.24 Hence, fMRI, MEG, PET, and EEG suffer from
specific restrictions that hamper a time-efficient evaluation of
cortical activation in moving subjects.

fNIRS is a relatively new optical neuroimaging technique
that uses the theory of neurovascular coupling.19,25–27

Neurovascular coupling results from the neuronal activity or
glia activity that provokes an enhanced blood flow in an active
brain region to satisfy energetic demands of the neuronal
tissue.27–29 Based on these hemodynamic responses of neuronal
cortical tissues, the fNIRS technology allows an indirect evalu-
ation of brain activation (such as fMRI).18,19

Therefore, light with different wavelengths in the near-
infrared spectrum is emitted through the skull and undergoes
some scattering and absorption processes inside the neuronal
tissue.27,30,31 In the neuronal tissue, the chromophores such as
oxygenated (oxyHb) and deoxygenated hemoglobin (deoxyHb)
absorb light at different spectra19,20,32,33 whereas the non-
absorbed components of the scattered light leave the brain in
a banana-shaped course. Those components are recorded by
a detector on the head surface.30,31,34 Based on the described
neurovascular coupling, an enhanced brain activation induces
an intensified blood flow in the active brain regions leading
to an increase in oxyHb and decrease of deoxyHb.27,30 As
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a consequence of the different absorption spectra of the chro-
mophores, the activity-dependent concentration changes in
oxy- and deoxyHb can be quantified with the modified
Beer–Lambert law and used as an indicator of regional
brain activation.19,20,27,30,32

The advantage of optical neuroimaging using fNIRS is the
possibility to measure cortical activity (quantified as changes
in tissue oxygenation and blood perfusion, associated with
neural activity) noninvasively25,27,35,36 with a relatively good
spatial and temporal resolution.19–22 This benefit makes
fNIRS systems suitable for the usage in special cohorts, such
as children.18,20,22,36–40 Moreover, fNIRS systems are applicable
even during outdoor activities41 and could be used as a monitor-
ing tool in neurorehabilitation settings.18,42–44 From this point of
view, fNIRS is a promising tool to understand the contribution
of cortical areas in the neuromotor control of gross motor skills,
such as posture and walking.17 However, the fNIRS technology
also has some disadvantageous including a limited depth sensi-
tivity that restricts the measurements of brain activity to cortical
layers36 and the vulnerability to systemic vascular changes that
may contaminate the signal during strenuous physical tasks.27,45

In addition, no standardized procedures regarding the usage of
fNIRS with respect to measuring cortical activity in moving sub-
jects exist17,42 which clearly limits the comparability across
existing studies.

This systematic review elucidates the application of fNIRS in
neuromotor research and concentrates on two crucial motor
tasks, namely locomotion and postural stability. In this context,
we aim to give an overview about (a) the methodological
approach of fNIRS and (b) the main findings of the fNIRS mea-
surements reported in the literature.

2 Systematic Literature Search and
Data Extraction

Two independent researchers performed a systematic literature
search to identify all relevant studies applying fNIRS to
investigate hemodynamic brain responses during walking and
postural tasks on February 4, 2017. Therefore, we used the fol-
lowing search terms: gait OR walking OR posture OR “postural
control” OR balance OR balancing OR sway AND NIRS OR
fNIR OR fNIRS OR “functional near-infrared spectroscopy”
OR “near-infrared spectroscopy” OR “functional near-infrared
spectroscopic” OR “optical imaging system.” All studies that
used brain–computer interfaces, examined orthostatic regulation
or animals, provided insufficient statistical methods, or used
non-English language were excluded. During this procedure,
six articles were excluded due to the lack of statistical analy-
ses,46–48 ineligible measurement condition,49 and non-English
language.50,51 The search and screening process is shown in
Fig. 1. From the included studies, data about cohort character-
istics, fNIRS methodology, and main findings were extracted.

3 Results: Methodology Employed in
the Studies

In the following, we will provide information about the meth-
odological approaches of the reviewed studies. We focused on
general aspects regarding the application, data processing, and
data analyzing of fNIRS (e.g., study design, used filter methods,
and statistical analysis). Further information about the cohorts,
tasks, sampling frequencies, wavelengths, and numbers of chan-
nels can be requested by e-mail from the corresponding author
or is available in Ref. 52.

3.1 Baseline Condition and Duration

3.1.1 Treadmill walking

Fifteen studies investigating cortical activation during treadmill
walking assessed baseline brain activation during quiet
standing.53–67 In contrast, Eggenberger et al.68 chose slow walk-
ing (2 km∕h) for 1 min as the baseline condition. The duration
of baseline cortical activation used for further analyses varied
between 2.555,56 and 20 s59–61 (for an overview see Table 1).

3.1.2 Overground walking

Twenty-one studies conducting overground walking, quantified
baseline brain activation in a standing position.66,69–88 In con-
trast, two studies assessed baseline brain activation while
walking89 or during a predefined time period prior to a freezing
of gait event (FOG; a sudden, brief inability to start movement
or to continue rhythmic, repeated movements despite the inter-
nal intention to move).90 The duration to assess baseline brain
activity ranged between 5 s69,73,76,81 and 5 min.78 Most studies
used 10 s to quantify baseline brain activity.66,70–72,74,75,82–88

Interestingly, Holtzer et al.74,75,83–85 asked their participants to
conduct a simple counting task (in steps of 1) during the baseline
condition (for an overview see Table 1).

3.1.3 Postural tasks

In postural research, 13 studies assessed baseline brain activity
during quiet standing.91–103 The temporal duration to quantify
baseline brain activity ranged from 293 to 60 s.97 In most studies,
data of 30 s98–100 or a few seconds before starting the next
trial91,94,95,102 were used to assess baseline brain activation. In
addition, Wang et al.104 used 20 min quiet sitting to measure
baseline connectivity (for an overview see Table 1).

3.2 Number and Duration of Trials and
Rest Phases

3.2.1 Treadmill walking

The studies that used a treadmill for the walking condi-
tion53–68,105–107 are shown in Table 1. Per task, a minimum of
2 trials105 and a maximum of 10 trials54–56 were performed.
Most studies used three to five trials to assess task-relevant cort-
ical activity.53,57,59–62,64,64,65,67,106,107 Task phases were set to 30 s
in the majority of the studies,55–61,65,68,105–107 but Harada et al.,53

Kim et al.,106 and Mihara et al.58 used 60 s, Koenraadt et al.54

used 35 s, Metzger et al.64 used 45 s, Suzuki et al.67 used 40 s,
Suzuki et al.62 used 90 s, and Fraser et al.63 used 120 s. The time
of the rest phases ranged in most studies between 25 and
60 s.53–57,59–62,65,68,106,107 Additionally, rest times of 15 s prior
to58,64 and after each walking trial58 were reported while
Suzuki et al.67 implemented 10 to 25 s between trials (for an
overview see Table 1).

3.2.2 Overground walking

Twenty-three studies investigated cortical hemodynamic
responses during overground walking.66,69–90 For each condi-
tion, 1,70,79 3,76 4,87 5,66,69,71,77,80,81,86 6,73–75,82–85 and 15 walks
were used.89 Either the time for each task phase ranged between
1069 and 120 s66 or the participants were asked to walk a pre-
determined distance ranging between ∼473–75,82,83,85 and 90 m.86

The resting phases prior to and after each trial lasted 20 s77,79 or
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60 s76 and 10 s87 or 30 s between the trials.72 Two studies used
20 s of rest between successive trials and 1 to 2 min of rest
between successive task blocks.80,81 Furthermore, in three
studies, a rest of 2 min was used66,86,90 while one study allowed
participants to rest 588 or 30 min between tasks71 (for an over-
view see Table 1).

3.2.3 Postural tasks

Regarding the examination of brain activity during a sensory
organization test (SOT; a balance test using quantitatively differ-
ent visual, proprioceptive, and vestibular cues to assess the qual-
ity of postural stance stability), two trials,92 three trials,96 or four
trials were conducted103 which lasted 45,92 40,103 or 20 s.96 The
participants of the three studies using mechanical perturbations
performed 1595,102 to 30 trials94 with a randomized perturbation
duration of 5 to 20 s.94,95,102 In semivirtual reality, seven trials
with a task phase duration of 45 s were used.98 The rest between
task phases depended on the conducted tasks (see Table 1) and
ranged between 4 and 20 s.91,94,95,101 In other studies, a rest of
1103 or 2 min was included.92,98,99 To avoid fatigue, resting times
after some trials that lasted a few minutes were common91,92,94

(for an overview see Table 1).

3.3 Source–Detector Separation

The closest distances between the optodes (source and detector)
were reported to be ∼1 cm, which was used as a short separation
channel54 and was followed by an interoptode distance of
2.5 cm.73–75,82–85,93,105 Three studies used 3.2 cm,91,92,97 and
two studies used 3.5 cm.80,81,90 Another seven studies used
4 cm.70,71,78–81,104 One study used a different distance between
source and detector (1, 3, and 4 cm)54 and another one used
multidistance measurement (2.0, 2.5, 3.5, and 4.0 cm).68 The
remaining 36 studies set the interoptode distances at
3 cm.53,55–62,64–67,69,72,76,77,80,81,86–89,94–96,98–104,106–108 An over-
view on used source–detector is shown in Fig. 2(a).

3.4 Placement of the Optodes

The majority of studies used the international “10-20 EEG sys-
tem” for the placement of the optodes.53–57,59–65,67–77,79,81–83,85,87–108

In some studies, an additional three-dimensional (3-D)-
digitizer was applied69,76,94–96,106,108 or an MRI scan was
conducted59–62,67,90,94–96,102,107 to coregister optode positions
on the head. Other placement strategies (placing optodes on
the forehead) were applied in four studies.58,66,80,86

Fig. 1 Search process and identification of relevant studies.
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Table 1 Overview about the population, study designs, and data processing steps of reviewed fNIRS studies (note that the number of trials is
reported per condition).

First author – Population
(n ¼ number of participants;
age in years� SD)

1. Baseline condition 1. DPF

• Conditions 2. Baseline duration 2. Data processing (filtering)

3. Number of trials and
duration

3. Final data processing

4. Rest phase duration 4. Activation parameters

5. Time used for analysis

Al-Yahya et al.65 – Stroke patients
(n ¼ 19; 59.61� 15.03)

1. Quiet standing 1. Age-dependent value
(4.99þ 0.067 × age0.814)

– Healthy old adults
(n ¼ 20; 54.35� 9.38)

2. 25 to 45 s (randomized
order)

2. LPF at 0.67 Hz

• DTW vs. NW 3. 5×; 30 s 3. Baseline correction; averaging

4. 25 to 45 s (between trials /
randomized order)

4. Oxy- and deoxyHb

5. 6 to 16 s after task begin

Atsummori et al.69 – Healthy young adults
(n ¼ 6; 29.7� 3.3)

1. Quiet standing 1. Constant value (no details reported)

• DTW vs. NW 2. 5 s before task begin 2. Not reported

3. 5× (DTW) / 6× (NW); 10 s 3. Baseline correction; averaging

4. 20 s at beginning 4. Oxy- and deoxyHb

5. 6 s after task begin/ending

Basso-Moro et al.98 – Healthy young adults
(n ¼ 16; 29� 4.8)

1. Quiet standing 1. Age-dependent value
(4.99þ 0.067 × age0.814)

• Perturbations in semivirtual reality
with increasing difficulty

2. Last 30 s (of 2 min) 2. LPF at 0.1 Hz

3. 7×; 45 s 3. Averaging

4. 2 min after block 4. Oxy- and deoxyHb

5. Last 10 s of perturbation

Beurskens et al.105 – Healthy young adults
(n ¼ 15; 24.5� 3.3)

1. Sitting on chair 1. Constant value (6.0)

– Healthy old adults
(n ¼ 10; 71.0� 3.8)

2. 30 s 2. HRF-filter; wavelet MDL detrending
algorithm

• DTW vs. NW 3. 2×; 30 s 3. Moving standard deviation and
spline interpolation, baseline
correction, canonical HRF

4. Not reported 4. Oxy- and deoxyHb

5. Entire task time

Caliandro et al.70 – Patients with ataxic gait
(n ¼ 14; 27 to 71)

1. Quiet standing 1. Constant value (5.93)

– Healthy controls (n ¼ 20; 32 to 65) 2. Last 10 s of standing 2. LPF at 0.1 Hz

• Patients vs. HC 3. 1×; 10 m 3. Baseline correction; averaging

4. Not relevant 4. OxyHb

5. Entire task time expect of first 5 s

Caliandro et al.71 – Patients with ataxic gait
(n ¼ 19; 31 to 70)

1. Quiet standing 1. Constant value (5.93)

– Healthy controls (n ¼ 15; 36 to 73) 2. Last 10 s of standing 2. LPF at 0.1 Hz

• Patients vs. HC 3. 2×; 10 m 3. Baseline correction; averaging

4. 30 min between trials 4. OxyHb

5. Entire task time expect of first 5 s
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Table 1 (Continued).

Clark et al.66 – Older persons with mobility and
somatosensory deficits
(n ¼ 14; 77.1� 5.56)

1. Quiet standing 1. N/A

• Walking in normal shoes vs. texture
insoles vs. barefoot vs. DTW

2. 10 s immediately before
task

2. No filter

3. 5× walking laps with
18 m (overground);
60 to 120 s (treadmill)

3. Averaging

4. 2 min after task 4. TOI

5. Entire task phase

Clark et al.86 – Older adults with mild mobility
deficits (n ¼ 16; 77.2� 5.6)

1. Quiet standing 1. N/A

• NW vs. DTW 2. 10 s immediately before
task

2. No filter

3. 5× walking laps with 18 m 3. Averaging

4. 2 min after task 4. TOI

5. 10 s before task begin (preparation
phase) and in steady phase/transition
phase excluded

Doi et al.72 – Adults with mild cognitive
impairment (n ¼ 16; 75.4� 7.2)

1. Quiet standing 1. N/A (arbitrary unit)

• NW vs. DTW 2. 10 s before walking 2. LPF at 0.05 Hz; linear fitting on
baseline data

3. 3×; 20 s 3. Averaging

4. 30 s between trials 4. OxyHb

5. Entire task period

Eggenberger et al.68 – Healthy old adults (dancing: n ¼ 19;
72.8� 5.9; balance: n ¼ 14;
77.8� 7.4)

1. Walking at 2 km∕h 1. N/A (absolute values)

• Dancing vs. balancing
(before and after intervention)

2. Middle 40 s (of 1 min) 2. 60 s moving average: motion artifact
correction (oxyHb: >2.5 and
< − 2.5 μM∕deoxyHb: >1.5 and
< − 1.5 μM excluded); visual
inspection of data

3. 8×; 30 s 3. Averaging

4. 30 s between trials
(walking at 2 km∕h)

4. OxyHb

5. 1 to 7 s = acceleration phase;
10 to 25 s = steady state walking
phase; 26 to 34 s = deceleration
phase; 35 to 46 s = drop phase

Ferrari et al.99 – Healthy, young adults
(n ¼ 22; 26.5� 4.0)

1. Quiet standing 1. Age-dependent value
(4.99þ 0.067 × age0.814)

• Balancing in semivirtual reality 2. Last 30 s (of 2 min) 2. LPF at 0.1 Hz

3. 2×; 9 min 3. Averaging

4. 2 min after block 4. Oxy- and deoxyHb

5. 30 s per task
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Table 1 (Continued).

Fraser et al.63 – Healthy young adults
(n ¼ 19; 21.83� 1.92)

1. Quiet standing 1. Constant value (no details reported)

– Healthy old adults
(n ¼ 14; 66.85� 5.26)

2. 5 s 2. No filter

• NW vs. single cognitive task vs.
easy DTW vs. hard DTW

3. Walking: 2×; 2 min; single
cognitive task: 4×; 75 s;
DTW 4×; 2 min (for each
dual-task condition)

3. Averaging

4. 30 to 60 s between trials 4. Oxy- and deoxyHb

5. Entire task period

Fujimoto et al.102 - Patients with subcortical stroke
(n ¼ 20; 60.2� 9.5)

1. Quiet standing 1. N/A (arbitrary unit)

• Postural test before/after
rehabilitation

2. Time before next
perturbation (ERD)

2. HPF at 0.01 Hz; PCA

3. 15×; 1 s 3. Two parameter gamma HRF

4. 5 to 15 s between trials
(randomized)

4. Oxy- and deoxyHb

5. Around perturbations

Fujita et al.101 – Healthy, young adults (low span
group: n ¼ 13; 24.0� 3.1 / high
span group: n ¼ 16; 22.5� 3.6)

1. Quiet standing 1. N/A (arbitrary unit)

• Single- and dual-task mono- or
bipedal standing

2. 10 s 2. LPF at 0.5 Hz; HPF at 0.01 Hz;
5 s moving average

3. 3×; 20 s 3. Baseline normalization,
baseline correction, averaging

4. 10 s between trials 4. OxyHb

5. Entire task time

Harada et al.53 – Healthy, old adults (n ¼ 15; 63� 4) 1. Quiet standing 1. N/A (arbitrary unit)

• Low vs. high gait capacity group at
different speeds

2. 10 s before walking 2. HPF at 0.03 Hz

3. 3×; 60 s 3. Baseline normalization; averaging

4. 40 s between trials 4. OxyHb

5. 20 s after target speed

Helmich et al.108 – Young, concussed adults with
persistent postconcussive
symptoms (n ¼ 7; 29� 15)

1. N/A 1. Constant value (6.0)

– Young, concussed adults with
minor postconcussive symptoms
(n ¼ 13; 26� 7)

2. N/A 2. LPF at 0.1 Hz; HPF at 0.001 Hz;
spline interpolation; visual inspection

– Healthy, young adults (n ¼ 10; 27� 8) 3. 10×; 10 s 3. Normalization; averaging

• Comparison of three groups during
standing on different surfaces
(stable vs. instable) and sensory
conditions (eyes closed vs. eyes
open vs. blurred vision)

4. No rest between trials 4. Oxy- and deoxyHb

5. Entire task time

Hernandez et al.82 – Healthy old adults (n ¼ 8; 61� 4) 1. Quiet standing 1. Constant value (6.0)

– Patients with multiple sclerosis
(n ¼ 8; 57� 5)

2. 10 s before walking
(counting silently in
steps of 1)

2. LPF at 0.14 Hz; noisy channels
excluded (dark current condition or
saturation); visual inspected

• Comparison of healthy adults and
patients with multiple sclerosis during
NW and DTW

3. 3× walking loops (= 6×
straight walks a 14 ft.)

3. Baseline normalization; averaging

4. At least 10 s after trial 4. OxyHb

5. Entire task time
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Table 1 (Continued).

Herold et al.100 – Healthy young adults
(n ¼ 10; 25; 21 to 47)

1. Quiet standing 1. N/A (arbitrary unit)

• Standing vs. balancing on
balance board

2. 30 s before task 2. 5.0 s moving average; LPF at 0.5 Hz;
HPF at 0.01 Hz; PCA (r ¼ 0.25)

3. 3×; 30 s 3. Averaging

4. 30 s after trial 4. Oxy- and deoxyHb

5. Middle 20 s

Holtzer et al.73 – Healthy, young adults (n ¼ 11; 19 to 29) 1. Quiet standing 1. Constant value (6.0)

– Healthy, old adults (n ¼ 11; 69 to 88) 2. 5 s before walking 2. LPF at 0.14 Hz; combined principal and
independent component analysis

• DTW vs. NW vs. standing/comparison
between cohorts

3. 3× walking loops (= 6×
straight walks a 15 ft.)

3. Baseline normalization; averaging

4. Not reported 4. OxyHb

5. Old 4 s / young 3.5 s

Holtzer et al.74 – Nondemented older adults
(n ¼ 318; 76.66� 6.7)

1. Quiet standing 1. Constant value (6.0)

• DTW vs. NW vs. standing 2. 10 s (counting silently
forward in steps of 1)

2. LPF at 0.14 Hz; noisy channels
excluded (dark current condition or
saturation); visual inspected

3. 3× walking loops (= 6×
straight walks a 14 ft.) /
standing for 30 s

3. Baseline normalization; averaging

4. “Short break” reported 4. OxyHb

5. Entire task time

Holtzer et al.84 – Nondemented older adults
(n ¼ 348; 76.8� 6.8)

1. Quiet standing 1. Constant value (6.0)

– Older adults with low perceived stress
(n ¼ 147; 76.72� 6.87)

2. 10 s (counting silently
forward in steps of 1)

2. LPF at 0.14 Hz; noisy channels
excluded (dark current condition or
saturation); visual inspected

– Older adults high perceived stress
(n ¼ 171; 76.58� 6.37)

3. 3× walking loops (= 6×
straight walks a 14 ft.) /
standing for 30 s

3. Baseline normalization; averaging

• DTW vs. NW vs. standing/comparison
between cohorts

4. “Short break” reported 4. OxyHb

5. Entire task time

Holtzer et al.75 – Nondemented older adults
(total: n ¼ 236; 75.5� 6.49Þ

1. Quiet standing 1. Constant value (6.0)

– Healthy older adults
(n ¼ 167; 74.43� 6.04)

2. 10 s (counting silently
forward in steps of 1)

2. LPF at 0.14 Hz; noisy channels
excluded (dark current condition or
saturation); visual inspected

– Older adults with peripheral NGA
(n ¼ 40; 77.03� 6.27)

3. 3× walking loops (= 6×
straight walks a 14 ft.) /
standing for 30 s

3. Baseline normalization; averaging

– Older adults with central NGA
(n ¼ 29; 79.59� 7.38)

4. “Short break” reported 4. OxyHb

• DTW vs. NW vs. standing/comparison
between cohorts

5. Entire task time
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Table 1 (Continued).

Holtzer et al.85 – Older adults with low perceived
fatigue (n ¼ 160; 76.20� 6.64)

1. Quiet standing 1. Constant value (6.0)

– Older adults with high perceived fatigue
(n ¼ 154; 77.41� 6.66)

2. 10 s (counting silently
forward in steps of 1)

2. LPF at 0.14 Hz; noisy channels
excluded (dark current condition or
saturation); visual inspected

• DTW vs. NW vs. standing/comparison
between cohorts

3. 3× walking loops (= 6×
straight walks a 14 ft.) /
standing for 30 s

3. Baseline normalization; averaging

4. “Short break” reported 4. OxyHb

5. Entire task time

Huppert et al.91 – Healthy young adults (n ¼ 10; 21 to 47) 1. Quiet standing 1. Not relevant (image reconstruction)

• Stepping reaction task 2. Time before next trial
(4 to 8 s, random order)

2. Discrete cosinus transform term
(0 − 1∕120 Hz); visual inspected

3. 8× blocks a 32× trials 3. Gamma-variant HRF; averaging

4. 4 to 8 s between trials
(random order) / few
minutes after 2 to 3 scans

4. Oxy- and deoxyHb

5. Entire task phase

Karim et al.97 – Healthy young adults (n ¼ 9; 18 to 42) 1. Quiet standing 1. Not relevant (image reconstruction)

• Video game with balance task 2. 60 s (pre- and posttask) 2. Cosinus transform term
(0 to 1∕120 Hz); visual inspected

3. 6× beginner / 8× advanced
level; 30 to 60 s

3. Boxcar HRF; averaging

4. 30 s between trials 4. Oxy- and deoxyHb

5. Entire task phase

Karim et al.92 – Healthy young adults
(n ¼ 15; 28� 9)

1. Quiet standing 1. Not relevant (image reconstruction)

• SOT conditions 2. 45 s before trial 2. Cosinus transform term
(0 to 1∕120 Hz)

3. 2×; 45 s 3. Gamma-variant HRF; averaging

4. 60 s after trial / 2 min after
two scans

4. Oxy- and deoxyHb

5. Entire task phase

Kim et al.106 – Healthy young adults
(n ¼ 14; 30.06� 4.53)

1. Not reported 1. Not reported

• Stepping (ST) vs. Treadmill walking
(TW) vs. robot-assisted walking (RAW)

2. Not reported 2. Gaussian smoothing; wavelet MDL
algorithm

3. 5×; 30 s (ST, TW);
60 s (RAW)

3. Canonical HRF

4. 15 s at begin and end; 30 s
between trials (ST, TW) /
60 s at begin and end;
45 s between trials (RAW)

4. OxyHb

5. Entire task time

Koenraadt et al.54 – Healthy, young adults (n ¼ 11∕23� 4) 1. Quiet standing 1. N/A (arbitrary unit)

• Precision walking vs. NW 2. 25 to 35 s 2. LPF at 1.25 Hz; HPF at 0.01 Hz;
superficial interference with LPF at
1 Hz; short separation channels (1 cm)

3. 10×; 35 s 3. Baseline normalization; averaging

4. 25 to 35 s before/after
trial / 3 min after 10 trials

4. Oxy- and deoxyHb

5. 12.5 s in task phase
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Table 1 (Continued).

Kurz et al.55 – Healthy, young adults
(n ¼ 13; 23.7� 1.4)

1. Quiet standing 1. N/A (arbitrary unit)

• Forward vs. backward walking 2. 2.5 s before walking 2. HPF at 0.01 Hz; 5 s moving average;
PCA (r ¼ 0.25)

3. 10×; 30 s 3. Baseline correction; averaging

4. 30 s between trials 4. Oxy- and deoxyHb

5. Entire task phase

Kurz et al.56 – Children with spastic diplegic cerebral
palsy (n ¼ 4; 11.0� 4)

1. Quiet standing 1. N/A (arbitrary unit)

– Healthy children (n ¼ 8; 13.2� 3) 2. 2.5 s before walking 2. HPF at 0.01 Hz; 5 s moving average;
PCA (r ¼ 0.25)

• Patients vs. HC 3. 10×; 30 s 3. Baseline correction; averaging

4. 30 s between trials 4. OxyHb

5. Entire task phase

Lin et al.103 – Healthy middle-aged adults
(n ¼ 15; 46� 11)

1. Quiet standing 1. N/A (image reconstruction)

– Healthy old adults (n ¼ 15; 73� 5) 2. 40 s before trial 2. Autoregressive model with
prewhitened iterative reweighted
least squares algorithm

• Middle-aged vs. old adults
(different balance conditions)

3. 4×; 40 s 3. HRF; averaging

4. 1 min between trials 4. Oxy- and deoxyHb

5. Entire task phase

Lin and Lin79 – Healthy young adults (n ¼ 24; 20 to 27) 1. Quiet standing 1. Age-dependent value
(4.99þ 0.067 × age0.814)

• DTW vs. NW 2. 20 s 2. LPF at 0.2 Hz

3. 1×; 60 s 3. Baseline correction

4. 20 s before/after task /
2 min after two trials

4. OxyHb

5. Entire task phase

Lu et al.76 – Healthy young adults
(n ¼ 17; 23.1� 1.5)

1. Quiet standing 1. Constant value (6.0)

• DTW vs. NW 2. 5 s before walking 2. Bandpass filter (LPF at 0.01 Hz; HPF at
0.2 Hz); PCA; spike rejection (channels
with > CV 15% rejected/channels with
CV > 10% for further analysis)

3. 3×; 60 s 3. Averaging

4. 60 s between trials 4. Hbdiff (oxyHb–deoxyHb)

5. Early phase (5 to 20 s after task begin);
late phase (21 to 50 s after task begin)

Mahoney et al.93 – Healthy, nondemented older adults
(n ¼ 126; 74.41� 6.12)

1. Quiet standing 1. Constant value (6.0)

– Older adults wild mild Parkinson
symptoms (n ¼ 117; 77.50� 6.72)

2. First 2 s 2. LPF at 0.14 Hz; visual inspected

– Patients with Parkinson disease
(n ¼ 26; 81.23� 5.93)

3. 10 s 3. Baseline normalization; averaging

• Patients vs. HC (standing while
counting silently in steps of 1)

4. “Short break” reported 4. OxyHb

5. Entire task phase
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Table 1 (Continued).

Maidan et al.90 – Parkinson patients with FOG
(n ¼ 11; 66.2� 10.0)

1. Walking 1. Age-dependent value
(4.99þ 0.067 × age0.814)

– Healthy controls (n ¼ 11; 71.2� 6.0) 2. 6 s before FOG 2. LPF at 0.14 Hz

• Patients vs. HC (walking; turning) 3. 6 s walking with 180 deg
turn

3. Baseline correction; averaging

4. 2 min between tasks 4. OxyHb

5. Defined time period around FOG event
(prior ¼ −6 to −3 s / before ¼ −3 to
0 / during ¼ 0 to 3 s)

Maidan et al.80 – Healthy, older adults
(n ¼ 38; 70.4� 0.9)

1. Quiet standing 1. Age-dependent value
(4.99þ 0.067 × age0.814)

– Parkinson patients (n ¼ 68; 71.7� 1.1) 2. 5 s before task 2. Bandpass filter (LPF at 0.01 Hz and
HPF at 0.14 Hz), wavelet filter; CBSI

• DTW vs. NW vs. obstacle negotiation 3. 5×; 30 s 3. Baseline correction; averaging

4. 20 s after trial / between
trials on individual needs

4. OxyHb

5. Entire task phase

McKendrick et al.88 – Healthy, young adults
(n ¼ 13; 22; 19 to 31)

1. Sitting (for sitting condition)
and standing (for walking
condition)

1. Constant value (5.94)

• Sitting vs. walking indoors vs. walking
outdoors (all conditions while
performing secondary task)

2. 10 s 2. LPF at 0.1 Hz; visual inspected

3. 16×; 120 s (sitting) / 8×;
a 120 s (per walking
condition)

3. Baseline correction

4. 5 min between walking
conditions

4. Oxy- and deoxyHb

5. Entire task time

Meester et al.57 – Young, healthy adults
(n ¼ 17; 27.8� 6.3)

1. Quiet standing 1. Age-dependent value
(4.99þ 0.067 × age0.814)

• DTW vs. NW 2. Middle 10 s of rest 2. LPF at 0.67 Hz; 4 s moving average;
visual inspected

3. 5×; 30 s 3. Averaging

4. 20 to 40 s between trials 4. OxyHb

5. Middle 10 s of task

Metzger et al.64 – Healthy young adults
(n ¼ 12; 27.6; 19 to 39)

1. Quiet standing 1. N/A (arbitrary unit)

• DTW vs. NW 2. 10 s at begin 2. 5 s moving average; CBSI

3. 4×; 45 s 3. Averaging; baseline correction

4. 15 s after trial 4. Oxy- and deoxyHb

5. Entire task time

Mihara et al.58 – Stroke patients with ataxic gait
(n ¼ 12; 52.7� 16.9, 12 to 74)

1. Quiet standing 1. N/A (arbitrary unit)

– Healthy controls
(n ¼ 11; 42.6� 11.6, 30 to 70)

2. 6 s before walking 2. Not reported

• Patients vs. HC 3. 3×; 60 s (HC);
30 s (patients)

3. Baseline correction; averaging

4. 15 s before/after walking 4. OxyHb

5. Acceleration phase = 6 s after starting
treadmill; steady phase = 6 s during
steady speed
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Table 1 (Continued).

Mihara et al.94 – Healthy young adults
(n ¼ 15; 29.4� 6.7)

1. Quiet standing 1. N/A (arbitrary unit)

• Warned before perturbations vs.
baseline; unwarned before
perturbations vs. baseline;
warned vs. unwarned

2. Time before next
perturbation (ERD)

2. HPF at 0.05 Hz

3. 20 to 30×; 1 s 3. Gaussian HRF; averaging

4. 5 to 20 s between trials
(randomized) / 4 to 5 min
after block

4. OxyHb

5. Around perturbation

Mihara et al.95 – Stroke patients (n ¼ 20; 61.6� 11.9) 1. Quiet standing 1. N/A (arbitrary unit)

• Balance perturbations 2. Time before next
perturbation (ERD)

2. HPF at 0.03 Hz

3. 15×; 1 s 3. Two-parameter gamma HRF

4. 5 to 15 s between trials
(randomized)

4. OxyHb

5. Around perturbations

Mirelman et al.77 – Young, healthy adults
(n ¼ 23; 30.9� 3.7)

1. Quiet standing 1. Age-dependent value
(4.99þ 0.067 × age0.814)

• Standing vs. DTS vs. NW vs. DTW 2. 20 s before walking 2. LPF at 0.14 Hz; continuous wavelet
transform

3. 5×; 30 m 3. Baseline correction; averaging

4. 20 s before/after trial 4. OxyHb

5. Entire task phase

Miyai et al.107 – Healthy young adults
(n ¼ 8; 35� 8, 24 to 56)

1. Quiet standing 1. N/A (arbitrary unit)

• NW vs. standing 2. 30 s 2. HPF at 0.03 Hz

3. 5×; 30 s 3. Linear interpolation; averaging

4. 30 s between trials 4. Oxy- and deoxyHb

5. Entire task phase

Miyai et al.61 – Stroke patients (n ¼ 6; 57� 13) 1. Quiet standing 1. N/A (arbitrary unit)

•Walking with mechanical assistance vs.
walking with facilitation technique

2. Middle 20 s 2. HPF at 0.03 Hz

3. 4×; 30 s 3. Linear interpolation; baseline
correction; averaging

4. 30 s between trials 4. OxyHb

5. Last 20 s of task phase

Miyai et al.60 – Stroke patients (n ¼ 8; 57� 12) 1. Quiet standing 1. N/A (arbitrary unit)

• Before/after 2 months rehabilitation 2. Middle 20 s 2. HPF at 0.03 Hz

3. 4×; 30 s 3. Linear interpolation; baseline
correction; averaging

4. 30 s between trials 4. OxyHb

5. Last 20 s of task phase

Miyai et al.59 – Stroke patients with hemiparesis
(n ¼ 6; 57� 6)

1. Quiet standing 1. N/A (arbitrary unit)

– Healthy controls (n ¼ 6, 53� 11) 2. Middle 20 s 2. HPF at 0.03 Hz

•Walking with weight support vs. walking
without weight support

3. 4×; 30 s 3. Linear interpolation; baseline
correction; averaging

4. 30 s between trials 4. OxyHb

5. Last 20 s of task phase
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Table 1 (Continued).

Nieuwhof et al.81 – Parkinson patients (n ¼ 14; 71.2� 5.4) 1. Quiet standing 1. Constant value (6.0)

• DTW (with different tasks) 2. Last 5 s of standing 2. LPF at 0.1 Hz; visual inspected

3. 5×; 40 s 3. Baseline correction; averaging

4. 20 s between trials / 1 to
2 min between blocks

4. OxyHb and deoxyHb

5. Entire task phase

Osofundiya et al.87 – Obese old adults (n ¼ 10; 80.6� 6.79) 1. Quiet standing 1. Constant value (6.0)

– nonobese old adults (n ¼ 10;
80.6� 7.50)

2. 10 s 2. Not reported

• Quiet sitting vs. NW vs. precision
walking vs. DTW

3. 8× a 30 s 3. Baseline correction; averaging

4. 10 s between trials 4. OxyHb and HbT

5. Entire task phase

Saitou et al.78 – Hemiplegic stroke patients
(n ¼ 44; 66� 9.3)

1. Quiet standing 1. Constant value (5.9)

• Different tasks (e.g., calculation, pulley,
we only consider walking vs. baseline)

2. 5 min 2. Not reported

3. 1×; 5 min 3. Averaging

4. 5 min 4. OxyHb; CBV; COV

5. Entire task phase

Suzuki et al.62 – Healthy, young adults
(n ¼ 9; 28.1� 7.4, 22 to 46)

1. Quiet standing 1. N/A (arbitrary unit)

• Walking at different speeds 2. First 13 s 2. HPF at 0.03 Hz

3. 3×; 90 s 3. Linear interpolation; baseline
correction; averaging

4. 30 s between trials 4. Oxy- and deoxyHb; regional cortical
activation ratio (oxy Hb of the specific
channel divided by oxyHb of all 42
channels multiplied by 100)

5. 13.5 s in task phase

Suzuki et al.67 – Healthy, young adults
(n ¼ 7; 31.3� 4.8, 24 to 45)

1. Quiet standing 1. Not relevant (arbitrary unit)

• Walking with vs. without verbal
preadvice

2. 10 s before walking 2. HPF at 0.03 Hz

3. 4×; 40 s 3. Baseline normalization; averaging

4. 10 to 25 s between trials
(randomized order)

4. Oxy- and deoxyHb

5. First 10 s of task phase

Takeuchi et al.89 – Young healthy adults
(n ¼ 16; 25.9� 4.4, 20 to 33)

1. Walking 1. Constant value (no details reported)

– Healthy older adults
(n ¼ 15; 71.7� 3.3, 65 to 78)

2. 30 s 2. Spike rejection (artifact with more than
3 SD); 5 s moving average; bandpass
filter (LPF at 0.5 Hz; HPF at 0.01 Hz)

• Walking vs. walking with smartphone 3. 15×; 10 s 3. Baseline normalization; averaging

4. No rest 4. OxyHb

5. Entire task phase

Takakura et al.96 – Healthy young adults
(n ¼ 11; 33.4� 7.4)

1. Quiet standing 1. Constant value (1.0)

• SOT conditions 2. 20 s before task 2. Bandpass Fourier filter (0.01 to 0.1 Hz)

3. 3×; 20 s 3. Averaging

4. Few minutes after 3 trials 4. OxyHb

5. Entire task phase
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3.5 Differential Path Length Factor

The differential path length factor (DPF) is a scaling factor
that specifies how many times the detected light has traveled
farther than the source–detector separation through the
brain.109,110 In 21 studies, constant DPF values were
used63,69–71,73–76,78,81–85,87–89,93,96,105,108 whereas nine studies
used age-dependent DPF values.57,65,77,79,80,90,98,99,104

For constant DPF, values of 1.0,96 5.9,78 5.93,70,71 5.94,88 and
6.073–76,81–85,87,93,105,108 were used, while age-dependent DPF
values were calculated according to the formula (DPF ¼ 4.99þ
0.067 × age0.814).57,65,77,79,80,90,98,99 An overview on used DPF
values is provided in Fig. 2(b). In other studies, arbitrary
units,53–56,58–62,64,67,72,94,95,100–102,107 tissue oxygenation index [TOI;
the ratio of oxyHb to total hemoglobin (sum of oxy- and
deoxyHb)],66,86 image reconstruction,91,92,97,103 or absolute values68

were used, which are not dependent on specific DPF values.

3.6 Data Processing: Signal Filtering and
Movement Artifact Removal

Twenty-one studies applied a low-pass filter (LPF) to their
data,54,57,65,71–75,77,79,81–83,85,88,90,93,98–101 14 studies used a high-
pass filter (HPF)53,55,56,59–62,67,94,95,100–102,107 and 5 studies used
a bandpass filter.76,80,89,96,104 Most studies applied an LPF with
a cut-off frequency around 0.1 Hz71,73–75,77,80–85,88,90,93,98,99,108

whereas some studies used an LPF with a cut-off frequency
at 0.05,72 0.67,57,65 0.5,100,101 and 1 Hz54 (for an overview see
Table 1). Eight studies applied an HPF with a cut-off frequency
at 0.03 Hz,53,59–62,67,95,107 six studies at 0.01 Hz,54–56,80,100,101 and
one study at 0.0594 or 0.001 Hz.108 Furthermore, eight studies
used the moving average method55–57,64,68,89,100,101 to smooth
their data. Filter methods based on principal component analysis
(PCA) were conducted in six studies55,56,73,76,100,102 and a spike
artifact correction was used in three studies.68,76,89 Few studies

Table 1 (Continued).

Verghese et al.83 – Older adults (n ¼ 166; 75� 6.1) 1. Quiet standing 1. Constant value (6.0)

– NW vs. DTW vs. standing 2. 10 s (counting silently
forward in steps of 1)

2. LPF at 0.14 Hz; noisy channels
excluded (dark current condition or
saturation); visual inspected

3. 3× walking loops (= 6×
straight walks a 14 ft.) /
standing for 30 s)

3. Baseline normalization; averaging

4. “Short break” reported 4. OxyHb

5. Entire task phase

Wang et al.104 – Healthy young adults
(n ¼ 22; 24.4� 1.6)

1. Sitting (eyes closed) 1. Age-dependent constant value
(WL: 760 nm ¼ 5.91; WL: 850 ¼ 5.40)

– Healthy older adults
(n ¼ 39; 70.5� 7.7)

2. 20 min 2. Bandpass filter (0.005 to 2 HZ)

• Standing connectivity differences
healthy young and healthy old adults

3. 1×; 10 min 3. Wavelet phase coherence analysis

4. No rest 4. OxyHb

5. Entire task time

Abbreviations: deoxyHb, deoxygenated hemoglobin; DTS, dual-task standing; DTW, dual-task walking; ft., feet; HC, healthy controls; HPF, high-
pass filter; HRF, hemodynamic response function; LPF, low-pass filter; MDL, minimum description length; MRI, magnetic resonance imaging; N/A,
not applicable; NW, normal walking; NGA, neurological gait abnormalities; oxyHb, oxygenated hemoglobin; PCA, principal component analysis;
RAW, robot assisted walking; SOT, sensory organization test; ST, stepping; TOI, tissue oxygenation index; and vs., versus.

Fig. 2 Overview on (a) used source–detector separation and (b) DPF values in the reviewed studies.
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applied HRF filter,105 an autoregressive model with prewhitened
iterative reweighted least square algorithms,103 wavelet fil-
ter,80,105,106 Gaussian smoothing,106 and correlation-based signal
improvement (CBSI).64,80 A visual inspection of data was
reported in 13 studies.68,74,75,81–85,88,93,97,108,111

3.7 Data Processing: Correction for Physiological
Artifacts

One study applied short separation channels54 and one study
used multidistance measurements68 to correct for superficial
blood flow. For multidistance measurements or short separation
channels, normally lower source–detector separation (<1.5 cm)
is chosen, which is used to probe extracerebral noise.
Furthermore, the following additional physiological parameters
were measured to take into account systemic physiological
artifacts: (1) heart rate,53,57,59–62,71,87,98,99,107 (2) blood pres-
sure,53,54,57,59–62,71,107 and (3) arterial oxygen saturation.59–62,107

The usage of filter methods based on PCA, which can be useful
for the correction of motion and physiological noise, was used in
six studies.55,56,73,76,100,102

3.8 Data Processing: Final Data Processing and
Statistical Analysis

Twenty-three of the reviewed studies used a baseline
correction53,55,56,58–62,64,65,69–71,77,79–81,87,90,96,100,101,105 and 14
studies conducted a baseline normalization.53,54,67,73–75,82–
85,89,93,101,108 Furthermore, almost all studies computed an aver-
age of (1) all trials and (2) across the channels of a specific
ROI.53–65,68–77,80–85,87,89–91,93–96,98–101,103,107

In addition, linear interpolations were used in the studies of
Miyai et al. and Suzuki et al.59–62,107 A method based on moving
standard deviation and spline interpolation was applied by
Beurskens et al.105 Three studies applied discrete cosine trans-
form terms.91,92,97

Canonical hemodynamic response function was conducted
in two studies105,106 that examined cortical activation during
walking. Studies researching postural tasks used either
a gamma hemodynamic response function91,92,95,102,103 or
a Gaussian hemodynamic response function.94 A wavelet
coherence analysis was used in one study.104

Five studies divided their task phase in different time
periods,58,68,76,86,90 18 studies used predetermined time
intervals inside the task phase,53,54,57,59–62,65,67,69–71,73,93,94,98–100

and 24 studies used the entire task phase for
analysis.55,56,63,64,72,74,75,77,80,82,83,85,87,89,91,92,96,97,101–103,106–108

The statistical analysis was performed in 47 studies with
parametric53,54,56–70,73–77,79,80,82–89,91–99,103–108 and in one study
with nonparametric methods.81 Eight studies used parametric
and nonparametric methods55,71,72,78,90,100–102 (see Table 1).

3.9 Markers for the Assessment of Cortical
Activation

The majority of reviewed studies used changes of oxyHb to
assess brain activation.53,57–62,68,70–75,77–80,82–85,89,90,93–96,101,104,106

Furthermore, 21 studies used both oxyHb and deoxyHb to
quantify the activation of the region of interest.54–56,63–
65,67,69,81,88,91,92,97–100,102,103,105,107,108 Only Clark et al.66,86 used
the TOI, which is the ratio of oxygenated to total tissue hemo-
globin, to evaluate cortical activation. In addition, Lu et al.76

used Hb diff (oxyHb – deoxyHb) for the quantification of

cortical activation. Furthermore, one study used a cortical acti-
vation ratio62 to measure brain activation (for an overview see
Table 1).

4 Results: Main Findings of the Studies
In the following sections, we will provide an overview about the
main findings of the reviewed studies. The results section is
divided into outcomes of walking and postural tasks.

4.1 Walking

Walking was associated with a higher activation of prefrontal
cortex (PFC),53,54,57,58,67 presupplementary motor area,53,67 pre-
motor cortex (PMC),53,106 supplementary motor area (SMA),53–
55,58,67,106,107 and sensorimotor cortex (SMC).53,58,67,106 A higher
PFC activation was observed in persons with low gait capacity,53

high perceived stress,84 high perceived fatigue,85 high risk of
falling,83 ataxic gait,70,71 and patients with Parkinson’s
disease80,90 during walking. Moreover, higher activation of pre-
central gyrus (PrG), postcentral gyrus (PoG), and superior pari-
etal lobule (SPL) was observed in children with cerebral palsy56

and in stroke patients in the nonaffected hemisphere in the
PFC,58 SMA,58,61 and SMC.61 During dual-task walking (e.g.,
walking and solving an additional cognitive or motor task),
the PFC exhibited an enhanced activation in stroke patients,65

patients with multiple sclerosis,82 patients with Parkinson’s dis-
ease,81 obese adults,87 older adults with mild cognitive impair-
ments,72 old adults with mobility deficits,66,86 and healthy
older63,65,73–75,82 and young adults.57,63,64,73,76,77 In comparison
to young adults, older adults exhibited a higher73 or similar63

PFC activation during dual-task walking. The activation of
PFC during dual-task walking was associated with the perfor-
mance in motor tasks,75,77,89,105 cognitive tasks,75,77,89 and neuro-
psychological tests.72 In single task walking, PFC activation
positively correlated with the neuropsychological performance
in healthy older persons68 and with motor performance in neu-
rologically diseased persons.70,71 A decrease in PFC activation
was observed in younger adults while walking and solving a
working memory task79,88 and in healthy seniors while solving
a complex visual task.105 Interestingly, the activation of PFC in
older adults is decreased after a motor intervention68 and when
textured insoles were used or barefoot walking was conducted.66

In contrast, the inpatient intervention in stroke patients enhanced
PMC activation during walking.60 Additionally, an increase of
motor complexity due to the increase in walking speed led to a
pronounced activation of PFC,62 SMA,53 and Broca area,64

whereas a decrease of motor complexity due to body weight
support induced a decrease in SMC activation.59

4.2 Postural Tasks

In balance tasks, the activation of PFC,91,98,99 SMA,101,102 and
superior temporal gyrus97 was modulated by task difficulty and
by age-related processes.104 Furthermore, an increased PFC acti-
vation was observed during standing in young adults with post-
concussion symptoms,108 in patients with Parkinson’s disease93

or in stroke patients’ in the affected95,102 and unaffected
hemisphere.95 Furthermore, stroke patients showed a stronger
activation in PMC and parietal areas concerning the unaffected
hemisphere.95 After the rehabilitation program, the same
patients showed a decreased activation of PMC and parietal
areas but a bilateral increase in PFC and SMA activations.102
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During the SOT, different sensory information changes the
functional connectivity of brain areas96,103 and induced activa-
tion changes especially in superior marginal gyrus,92,96 opercu-
lum,96 temporal–parietal areas,103 and occipital regions.103

Additionally, correlation between balance performance and
the activation of PFC95,102 and SMA was observed.95,100,102

5 Discussion
fNIRS is a relatively new neuroimaging technique that has
attracted attention in scientists who examine neuromotor con-
trol. This resulted in a considerable magnitude of published
studies. However, a summarization and evaluation that can
help to improve future experimental protocols was still required.
In the first part of the discussion section, we will discuss the
findings about study designs, fNIRS configurations and data
processing steps to come closer to more standardized protocols
that are not available at this moment.27,112 In the second part,
the main findings of the reviewed studies are discussed.

5.1 Discussion: Methodology

5.1.1 Baseline condition and duration

The majority of studies with walking or postural tasks assessed
baseline brain activation in quiet standing. Interestingly, Holtzer
et al.74,75 used a silent counting task to avoid mind wandering.
Mind wandering occurs up to 50% of the waking hours113

for instance during driving114,115 especially when perceptual
requirements are low.116 Moreover, the wandering of the mind
is characterized by the processing of task unrelated thoughts
such as worrying about the past or future,117 which evokes a
stronger activation of default networks118 and hence changes
the activation in PFC areas.119,120 In addition, it was shown
by Durantin et al.120 that fNIRS is sensitive to detect mind wan-
dering. Based on these assumptions, it is possible that mind
wandering influences the cortical activation during baseline
(and maybe motor control) affecting further analyzation proc-
esses. Hence, it might be advantageous to use the approach
of Holtzer et al.,74,75 which eventually minimizes the detrimental
effect of mind wandering on cortical activation and leads to a
more standardized baseline assessment. However, before the
usage of this simple counting task can be recommended, further
research should investigate its influence on cortical activation
patterns including examination of enhanced reproducibility.

5.1.2 Number and duration of trials and rest phases

Our results revealed that the number of trials and their durations
varied across the studies evaluating walking or postural tasks.
The most common time interval was set to 30 s. However,
we are unaware of a study investigating the influence of meas-
urement strategy (e.g., required number of trials to achieve a
sufficient reproducibility). Hence, further methodological inves-
tigations to optimize fNIRS measurement protocols are needed.
Moreover, the duration and number of the trials depend on the
aim of the study. Longer measurement durations may be useful
to study the contribution of different areas in the temporal course
of movement execution. In contrast, longer measurement dura-
tions could result in motor fatigue. Motor fatigue does diminish
performance for example in postural tasks121–126 and would
hence change underlying motor control processes. This again
could potentially evoke altered hemodynamic responses,
which were observed after cognitive fatigue.127 However,

research examining the interplay between a specific gross
motor task and hemodynamic responses as a function of physi-
cal fatigue level has not been conducted yet.

Another interesting point influencing the trial duration is the
combination of analysis methods. From a movement scientific
view, the analysis of gait features (especially gait variability and
stability) gives an insight in the central organization of motor
control processes128–131 and those are useful to detect risk groups
such as fallers.132,133 To reliably assess gait variability or stabil-
ity, a larger number of strides is required134,135 and as a conse-
quence, a sufficiently long time period (in which an adequate
number of strides can be undertaken) of the trial duration has
to be recorded. The rest phase durations in included studies
have varying temporal ranges. In general, empirical evidence
suggests that refraction time or time with reduced responsive-
ness lasted for almost the same duration as stimulus time.136

Hence, we recommend to include intertrial rest intervals with
at least the same duration as the task period, especially in
block design studies.

5.1.3 Source–detector separation

The separation of source to detector is one important aspect for
penetration depth27,34 and the influence of extracerebral
signals.34,137 Our results indicated that 3 cm was the most com-
monly used distance in the reviewed studies. In the literature,
different recommendations about optimal source–detector sep-
aration exist. While some authors recommend 4 cm,34 other
collectives recommend 3 cm.138,139 In addition, especially in
children or infants shorter interoptode distance (>2.0 cm) is rec-
ommended for usage.22,139 The issue of the optimal separation
between source and detector is a controversial debate because
different third variables such as different colors of the partici-
pant’s skin and/or hair used wavelengths and head size could
influence penetration depth.34,140 Furthermore, the varying
thickness of scalps, skulls, and cerebrospinal fluids in individ-
uals and cortical regions141–143 could influence the penetration
depth and the sensitivity to hemodynamic changes in cortical
layer.142–144

Remarkably, a longer source–detector separation leads to a
greater contribution of cerebral than extracerebral layer to obtain
hemodynamics signals.145–148 The penetration depth of light is
less than half of the interoptode distance147 causing short
channel distances to cover only signals from noncerebral
compartments.137,141 For instance, at the source–detector sepa-
ration of 3 cm, the contribution of the gray matter to the
light absorption is estimated to range from about 20% to
30%.149 Moreover, Kohri et al.150 observed that at source–detec-
tor separation of 2, 3, and 4 cm, the cerebral tissue contributes to
33%, 55%, and 69% to the optical signal. Hence, we recom-
mend that the source–detector separation should be greater
than 3 cm to enhance the contribution of cerebral cortical layer
to the optical signal.

5.1.4 Placement of optodes

The majority of the studies used the 10 to 20 EEG systems to
place the optodes. This standardized location system ensures the
comparability among the different studies. The additionally used
3-D digitizer or individual MRI scan improves the registration of
channels to specific brain areas. Based on the data we recom-
mend for optode placement the usage of the 10 to 20 EEG
systems to ensure the comparability among studies.
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5.1.5 Differential path length factor

Our results show that most studies used constant DPF with a
value of 6. The usage of a constant DPF value seems not always
appropriate because the brain undergoes age-related changes of
gray and white matter,151,152 intracranial volume,153 and cerebral
volume as well as blood flow154, which may affect DPF.155

Furthermore, methodological studies show that DPF values
are (1) age-dependent and subject-specific,110,155,156 (2) wave-
length-dependent,110,155,157 and (3) cortex region-depen-
dent.110,155,158–160 Hence, it seems favorable to calculate
specific DPF values to enhance the measurement accuracy in
age-groups in which formulas to calculate age-specific DPF
values are available (adults under 50 years).110,155 Otherwise,
“arbitrary units,”161 TOI,162–164 or absolute values137,163,165

could be used since those do not depend on a specific DPF
value. In addition, it is suggested that the calculation of effect
sizes is useful to deal with the DPF issue.166 However, additional
research is strongly needed that provides a formula to calculate
DPF values for specific age-groups (adults older than 50 years)
dependent on wavelength and cortex region. In our opinion, the
optimal approach to quantify DPF, taking the dependency of
DPF regarding subject, age, wavelength, and cortex region
into account, is the direct quantification of DPF using frequency
or time-domain NIRS.

5.1.6 Data processing: signal filtering and movement
artifact removal

In sum, either LPFs or HPFs were commonly applied in the
reviewed studies to remove noise and drifts. Most of the studies
used a cut-off frequency for LPF around 0.1 Hz and HPF around
0.01 Hz. The reviews of Brigadoi et al.,167 Cooper et al.,168 and
Gervain et al.40 recommended to use a bandpass filter (consist-
ing of both LPFs and HPFs) with cut-off frequencies at 0.5
(LPF) and 0.01 Hz (HPF). The bandpass filtering should
be used carefully to avoid accidental removal of stimulus-
dependent hemodynamic response signals.111 Hence, a higher
cut-off frequency at 0.5 Hz (LPF) in conjunction with other
more sophisticated filter methods is recommended to be used
for the removal of movement and physiological noise.111,167,168

Different methods such as PCA,169–171 task-related component
analysis,172–174 CBSI,175 wavelet-based filters,171,176–179 autore-
gressive algorithm-based filters,180 Kalman filter,181 and
Wiener filter182 are proposed for the filtering of fNIRS data.
Interestingly, Nozawa et al.183 suggested that effectiveness of
motion correction filter methods depends on subject and task.
However, reviews comparing a variety of filter methods recom-
mend the additional application of wavelet filter167,168 or spline
technique.168 These filter methods were occasionally applied in
reviewed studies80,105,106 leaving potential to optimize the filter-
ing processes in further studies. Based on these assumptions, we
recommend the usage of a bandpass filter and wavelet filter to
reduce motion artifacts. If there are sudden shifts in the data
(baseline shift), the approach developed by Scholkmann
et al.184 can be useful to remove them.

5.1.7 Data processing: correction for physiological
artifacts

Twelve studies recorded physiological signals such as heart rate,
blood pressure, or arterial oxygenation saturation parallel to the
fNIRS signals. Task-related systematic changes in heart rate,

respiration rate, or blood pressure are known to influence the
fNIRS signal and may cause false-positive results.45 For in-
stance, often unconsidered factors such as adding of speech
as a task (e.g., in dual-task paradigms) lead to changes in
partial pressure of end-tidal carbon dioxide, which influences
cerebral hemodynamics and masked neuronal-induced activity
changes.185,186 Hence, to improve the accuracy of fNIRS, the
recording and elimination of systemic physiological changes
seems necessary.45,187,188 The signals of additional physiological
measures could be useful for filtering of fNIRS signal189,190 or to
ensure the absence of systematic physiological differences
among the experimental conditions.87 In addition, some mea-
sures such as heart rate variability could be used to study
the interplay between the central (fNIRS) and the autonomic
(e.g., heart rate variability) nervous system.120,191 Further-
more, filter methods based on PCA and independent component
analysis, which were applied in six studies,55,56,73,76,100,102 could
be used to remove movement-related167 or physiological
artifacts.169,170,192–195 In addition to the other filter meth-
ods,196,197 a more “direct” approach to reduce extracerebral
noise is the use of short separation channels or multidistance
technique198–200, which were applied in only two of the reviewed
studies.54,68 Short separation channels have a small distance
between source and detector to record extra cerebral signals,
such as superficial blood flow.141,198,201 These extracerebral sig-
nals are used to filter the remaining fNIRS data. Previous studies
revealed that the application of short separation channels is
powerful in reducing extracerebral noise141,145,200,202–208,
which contaminates fNIRS signals.45,199,201,209–214 The optimal
distance between short separation channels varied across
different cortex regions141,202 but should be generally <1 cm for
measurement on the head of adult humans. Hence, further
development and implementation of short separation channels
(multidistance technique) could enhance the accuracy of fNIRS
measurements and have to be considered whenever technically
possible.

5.1.8 Data processing: final data processing and
statistical analysis

Most studies used baseline normalization and baseline correc-
tion to circumvent the influence of different path lengths
factors.166 Furthermore, averaging of channels across trials
and in specified ROIs was common practice in the reviewed
studies.

Some studies divided their task phase in different time peri-
ods, which seems useful for studying the contribution of cortical
areas in different temporal periods during task execution.
Therefore, attention should be paid to the temporal delay of
∼2 to 5 s in hemodynamic response.69,107,139

The majority of the reviewed studies used simple statistics
based on processing mean values over the task period. This
approach, however, tends to result in a loss of acquisition of
information because it does not consider the temporal shape
of the fNIRS signal.192 Hence, some authors suggest that the
analysis of fNIRS data with general linear models is more
favorable.192,215 However, the choice of the statistical analysis
methods should depend on the research question and the exper-
imental design.216 For instance, in an event-related design, the
application of a general linear model is a valid technique216

whereas simple statistics might also be appropriate (and
commonly used192) especially in studies utilizing block
designs.55,56,59–62,107,217 The majority of reviewed studies used
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parametric methods for statistical data analysis. In fNIRS stud-
ies, the assumptions for parametric tests are sometimes violated
(e.g., normal distribution due to small sample size); therefore,
nonparametric tests are a considerable option.218,219 More-
over, nonparametric tests are more robust and less influenced
by outliers or nonnormal distributed data220–222 and are recom-
mended to use in fNIRS studies. From another point of view, in
neuroscience, multiple experimental conditions (crossed) or
multiple observations per condition (nested) were used.223,224

Furthermore, different categorical or continuous confounding
variables have to be considered (e.g., gait speed, education, and
gender) and/or data were unbalanced or incomplete, which
makes it necessary to use advanced statistical methods.223,225

To account for those problems, linear mixed-effect models
can be used.10,224–226 However, statistical methods should be
chosen carefully considering the experimental design and distri-
bution of recorded data. A further description of statistical meth-
ods for fNIRS data is given in the reviews of Tak and Ye192 and
Kamran et al.227

5.1.9 Markers for the assessment of cortical activation

The majority of reviewed studies used only oxyHb for the quan-
tification of cortical activation since a change in oxyHb is
assumed to be a more robust marker of changes in regional cer-
ebral blood flow than changes in deoxyHb.160,228,229 However,
this procedure seems questionable because neuronal activity
is not just mirrored in an increase of oxyHb but also in a
decrease in deoxyHb in healthy adults.30,230 Furthermore, an
enhanced level of physiological noise is more prominent in
oxyHb signals30 and the decrease in deoxyHb is related to an
increase in BOLD contrast obtained in fMRI231,232, which sup-
ports the validity of the evaluation of deoxyHb changes. In
pathological states, neurovascular coupling might perhaps be
impaired, which results in altered concentration changes in
deoxyHb during neural activity.230 Lindauer et al.230 assumed

that in some pathological states, an increase in deoxyHb may
reflect neural activity. Based on the mentioned assumptions,
it seems favorable to report at least oxyHb as well as
deoxyHb to assess task-dependent activity.30,45,165

5.2 Discussion: Main Findings

5.2.1 Walking

Evidence from neuroimaging studies point out that two distinct
supraspinal locomotor networks are responsible for the control
of walking and standing1,233–237 (see Fig. 3). The direct locomo-
tor network consists of the primary motor cortex (M 1) and the
cerebellar locomotor region and is potentially activated in the
absence of pathologies or challenging situations.235 In the indi-
rect locomotor pathway, the neuronal commands are transmitted
via PFC and SMA to the basal ganglia and subthalamic as well
as mesencephalic locomotor regions.233–237 The indirect loco-
motor pathway becomes activated when the automatic execution
of walking is impaired (e.g., in challenging situations) and com-
pensatory mechanisms are necessary.44,238 This assumption is
supported by findings of our reviewed fNIRS studies, which
reported more pronounced activation in prefrontal structures
in (1) in adults during dual-task walking,57,63,63,66,69,72–74,77,86,89

(2) in adults during fast walking,53,64 (3) in obese persons,87

(4) in individuals with low gait capacity during fast walking,53

(5) in older adults with high level of perceived fatigue85 or
stress,84 (6) in old adults with increased fall risk,83 and (7) in
neurological patients.58,70,71,75,80,82,90 Remarkably, the PFC
activation in neurological patients correlates with their step
widths,71 which again (1) is associated with balance
control239 and (2) serves as a predictor of falls.240 Further-
more, correlations between cortical activation and motor
performance,55,56 especially obvious in dual-task walking con-
ditions,76,77,89,105 was observed. This reinforces the important
role of cortical areas in motor control. Moreover, the reduction
of PFC activity after a motor-cognitive intervention program

Fig. 3 Schematic illustration of the indirect and direct locomotor pathways as a function of the degree of
automaticity in motor control.
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(lasting 8 weeks)68 perhaps originated from the shift toward a
more automatic control of locomotion relying on the enhanced
usage of direct locomotor pathway via M1, cerebellum, and
spinal cord.1,233,234,238

However, premotor areas and the SMA play a role in differ-
ent cognitive processes241–243 and were activated as a function of
task difficulty in a variety of cognitive domains.244–246 Hence,
the phenomenon of a more pronounced activation of premotor
areas (as part of indirect locomotor pathway) in diseased cohorts
(or during challenging motor tasks) is perhaps not fully attrib-
utable to motor task complexity but partly also to general task
complexity.

However, the decrease in PFC activity in a complex visual
task105 or difficult working memory tasks during walking79,88

may not be induced by the shifts in locomotor pathways but
rather originate from the prioritization of task-relevant areas
as consequence of the limited resources of the brain.247

While those three studies focused only on PFC activity, it is dif-
ficult to draw a final conclusion about potentially underlying
cortical processes in other areas. Hence, to elucidate the mech-
anisms with respect to task prioritizations, we require further
research248,249 including the simultaneous assessment of more
cortical structures (e.g., motor areas).

For the design and monitoring of rehabilitative interventions,
fNIRS could be a promising tool.42 For instance, the SMC
activity decreases during weight-supported walking in stroke
patients59 and could be a hint that weight supports lower task
complexity.250 Interestingly, a verbal preadvice67,94 or the
usage of mechanical assistance during walking61,106 increases
central nervous load. These findings could be useful to create
tailored rehabilitation programs that consider mental load as
variable for workload assessment.

5.2.2 Postural tasks

As pointed out for walking, neural control of posture is realized
via direct or indirect pathway251 which are shown in Fig. 3.
Our results reveal that the PFC activation is enhanced in
(1) neurological patients during standing93 or during postural
perturbations95,102 and (2) healthy adults during challenging bal-
ance tasks.91,98,99 These findings and the observations that PFC
activity and SMA are associated with balance measures95,100,102

support the notion that indirect locomotor pathway is crucial for
neuromotor processes in nonautomatized challenging situations.

Additionally, altered sensory information evoked by the exe-
cution of SOT induces a higher activation especially in STG.92,96

The STG is associated with (1) the control of more difficult bal-
ance tasks,97 (2) the integration of vestibular information,252–254

and (3) the spatial orientation.255 So far, the mentioned studies
did include only young participants.92,96 While aging changes
the contribution of somatosensory, vestibular, and visual system
in balance tasks,256 it seems necessary to enlarge existing knowl-
edge about cortical sensory integration processes.

6 Key Studies
In the following, we highlight one key study in the area of walk-
ing and balance. Those studies are of high practical relevance
and cannot be performed in an fMRI since motor imagery is
suggested not to be a satisfactory indicative of brain activation
during motor execution.257

6.1 Walking

The usage of a smartphone during walking causes serious
injuries.258,259 Hence, the understanding and the analysis of
underlying motor control processes of walking while texting
on a smartphone seems to be of high practical relevance.260

The investigation of smartphone usage while recording the kin-
ematics of gait is not possible in an fMRI-scanner but could be
conducted with fNIRS. In the study of Takeuchi et al.,89 the in-
fluence of using a smartphone while walking was investigated in
healthy old and young adults. Takeuchi et al.89 observed that in
young adults, the activation magnitude of left PFC is associated
with dual-task cost (change between single- and dual-task per-
formances) of gait acceleration and right PFC is related to the
dual-task cost of the conducted cognitive smartphone task. In
contrast, in the older adults middle PFC was associated with
dual-task costs of step time and the activation of the left
PFC is associated with dual-task costs of gait acceleration.89

Furthermore, younger adults have lower dual-task costs in kin-
ematic parameters.89 In sum, these results point toward the effec-
tive lateralization in young adults, while in older adults more
resources are needed to maintain gait performance which is
in accordance with the theories of hemispheric asymmetry
reduction261 and compensational recruitment.262

6.2 Postural Tasks

While fMRT is sensitive to motion artifacts,18–21 the simultane-
ous recording of brain activity and the quantification of
kinematic parameters of gross motor skills (e.g., dynamic
whole-body balance task) are impossible. Remarkably, it is
assumed that to increase our knowledge about neuromotor con-
trol processes, the simultaneous assessment of brain activity and
kinematic parameters is necessary.263 Furthermore, gross motor
skills are, for example, an essential part of rehabilitative inter-
ventions (e.g., balancing on wobble board264–266). The study of
Herold et al.100 used fNIRS to investigate the contribution of
motor areas in online neuromotor control of balance perfor-
mance on a wobble board and recorded simultaneous sway
parameters via an inertial sensor. They observed (1) a pro-
nounced activation of PrG, PoG, and SMA during balancing
and (2) a strong negative correlation between the magnitude
of SMA activation and sway in mediolateral direction during
balancing.100 The results of Herold et al.100 allow a deeper
understanding of the role of the SMA in online neuromotor con-
trol of balance movements and may be helpful to design tailored
intervention programs or to monitor the intervention progress.

7 Conclusion
In sum, neuroimaging with the fNIRS technology seems to be a
promising tool to shed light on the functioning of cortical areas
in motor control. However, the absence of standardized study
protocols limits the comparability among studies. Based on
our findings, we deduce recommendations and potential future
directions, which are shown in Table 2. Hopefully, those recom-
mendations will lay foundations to improve the study protocols
and data processing of fNIRS methodology encouraging further
research to extend our existing knowledge about neuromotor
control processes. This increase in knowledge might be helpful
to develop tailored rehabilitation programs for clinical settings
in, e.g., orthopedics and neurology.42 Furthermore, combining
the information we can derive from fNIRS signals with kin-
ematic parameters which are risk factors for falls132,267 or for
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cognitive decline268 could perhaps support a more sensitive and
effective early detection of persons with a high likelihood for
falls or with a high risk to develop cognitive diseases. This,
in turn, may allow an early onset of therapeutic interventions,
an effective monitoring of intervention programs and it would
support the decision making in health care units. Those potential
applications could be beneficial for patients and the resources of
the health care system.

Appendix
For further information about search strategy, cohort character-
istics, study protocols, number of fNIRS channels, used wave-
lengths and sampling frequencies in the reviewed studies, we
provide supplemental content which is available in Ref. 52,
or can be requested by e-mail from the corresponding author.
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