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Abstract. The aim of this work is to develop an effective brain–computer interface (BCI) method based on func-
tional near-infrared spectroscopy (fNIRS). In order to improve the performance of the BCI system in terms of
accuracy, the ability to discriminate features from input signals and proper classification are desired. Previous
studies have mainly extracted features from the signal manually, but proper features need to be selected care-
fully. To avoid performance degradation caused by manual feature selection, we applied convolutional neural
networks (CNNs) as the automatic feature extractor and classifier for fNIRS-based BCI. In this study, the hemo-
dynamic responses evoked by performing rest, right-, and left-hand motor execution tasks were measured on
eight healthy subjects to compare performances. Our CNN-based method provided improvements in classifi-
cation accuracy over conventional methods employing the most commonly used features of mean, peak, slope,
variance, kurtosis, and skewness, classified by support vector machine (SVM) and artificial neural network
(ANN). Specifically, up to 6.49% and 3.33% improvement in classification accuracy was achieved by CNN com-
pared with SVM and ANN, respectively. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction

1.1 Brain–Computer Interface

A brain–computer interface (BCI) is a means of communication
between the human brain and external devices. BCIs are typi-
cally designed to translate the neuronal activity of the brain to
restore motor function, or to control devices.1–9 The major com-
ponents of an effective BCI system are: (1) acquisition of brain
signals using a neuroimaging modality, (2) signal processing
and analysis to obtain features representative of the signal,
and (3) translation of features into commands to control
devices.7 Well-designed BCI systems have proven to be helpful
for patients with severe motor impairment, and have improved
their quality of life. For instance, many studies have been suc-
cessfully conducted with patients who have suffered a
stroke,10,11 have amyotrophic lateral sclerosis,12,13 or have spinal
cord injury (SCI),14,15 in which BCI systems have allowed them
to control external devices.

BCI systems have been developed based on invasive16,17 as
well as noninvasive4,18 neuroimaging modalities, including
electroencephalography (EEG),18–23 magnetoencephalography

(MEG),10,24 electrocorticography (ECoG),16 functional magnetic
resonance imaging (fMRI),25–27 and functional near-infrared
spectroscopy (fNIRS).12,23,28–33 BCI systems based on MEG,
ECoG, fMRI, and EEG generally suffer from bulkiness, high
cost, high sensitivity to head movements, low spatial and tem-
poral resolution, and low signal quality. fNIRS-based systems
are known to be more advantageous, in that they can provide
moderate temporal and spatial resolution.

1.2 Functional Near-Infrared Spectroscopy-Based
Brain–Computer Interface System

In the last few decades, fNIRS has been recognized as a prom-
ising noninvasive optical imaging technique for monitoring the
hemodynamic response of the brain using neurovascular cou-
pling. Neurovascular coupling in the cerebral cortex captures
the increases in oxygenated hemoglobin (HbO) and reductions
in deoxygenated hemoglobin (HbR) that occur during brain
activity. To accomplish this, fNIRS employs multiple light
sources and detectors, which emit and receive near-infrared
light (at wavelengths between 650 and 950 nm), respectively.
The emitted light passes through the scalp, tissue, and skull
to reach the brain.34–36 The relationship between light attenua-
tion (caused by absorption and scattering) and changes in the
concentration of HbO and HbR can be expressed by the
modified Beer–Lambert law (MBLL),34 since HbO and HbR
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have different absorption coefficients in the near-infrared
wavelengths.31,34,36

Several recent studies have focused on building fNIRS-based
BCI systems. In previous research, various types of experiments
have been performed to measure the accuracy of systems’ clas-
sification, using mental arithmetic,31,33 motor imagery,28–31

motor execution,23,30,33,37 and other approaches. This type of
research is particularly important since the final goal of the
BCI is to have a system which is able to interpret subject inten-
tion, and any misclassification in the BCI system can lead to
accidents for the user. Accordingly, improving classification
accuracy is the most essential feature of the BCI-based commu-
nication system.38,39 To this end, it is important to exploit appro-
priate classifiers as well as discriminant features that can
accurately represent the variability in the hemodynamic response
signal.40

Many of the studies on fNIRS-based BCI primarily focused
on different types of feature extraction techniques and machine
learning algorithms.40 For feature extraction, methods of iden-
tifying statistical properties such as mean, slope, skewness, kur-
tosis, etc., from time-domain signals40 filter coefficients from
continuous and discrete wavelet transforms (DWTs),41,42 and
measurement based on joint mutual information43 have been
used. In addition, for machine learning-based classification,
methods such as linear discriminant analysis,6,23,29,31,33,38 sup-
port vector machine (SVM),12,30,44 hidden Markov model,30

and artificial neural network (ANN)45 have received consider-
able attention.

Among the above-mentioned techniques for feature extrac-
tion, most of the studies have relied on extracting the statistical
values of the time-domain signal. However, reaching the highest
classification accuracy depends on different factors, such as
selecting the best set of combined features46 and the size of
the time window.31 In addition, classification accuracies vary
based on different mother wavelet functions for decomposi-
tion,41 which affect performance in a heuristic sense. To over-
come the limitations of these conventional methods, therefore,
an appropriate technique for feature extraction needs to be
determined.

1.3 Objective

The results of previous studies have demonstrated that convolu-
tional neural networks (CNNs) can successfully achieve high
classification accuracy in many applications, including image
recognition,47,48 artificial intelligence,49 speech detection, and
multiple time-series processing.50,51 Considering CNNs’ ability
to extract important features from a signal, CNNmay be suitable
for fNIRS-based BCI as well. Accordingly, our proposed
method utilizes CNN to automatically extract the features
from the hemodynamic response signal. To be specific, we
attempt to answer the following two arguments: (1) does
CNN outperform conventional methods in fNIRS-based BCI?
(2) How well does CNN work with the input data of the hemo-
dynamic response signal?

To address these questions, we compared the classification
accuracies of CNN with those of conventional methods when
used as the feature extractor and classifier in fNIRS-based
BCI.40 Then, we analyzed how the trained convolutional filters
in CNN optimized the features.

The rest of this work is organized as follows. In Sec. 2, the
properties of the conventional methods as well as CNN are
briefly introduced. Subsequently, data acquisition, preprocessing,

and the proposed CNN structures are described in Sec. 3.
Sections 4–6 cover the results, discussion, and conclusion,
respectively.

2 Background
This section describes the details of the commonly used fea-
tures, machine learning-based classifiers, and how the classifi-
cation performance is evaluated for BCI systems.

2.1 Features Extracted from the Input Signal

While a large body of previous studies have reported various
features which can be used to extract the hemodynamic signal,
the most commonly used features for fNIRS-based BCI are sig-
nal mean (μxi ), variance (σ2xi ), kurtosis (Kxi;j ), skewness (Sxi ),
peak, and slope where such features are computed as40

EQ-TARGET;temp:intralink-;e001;326;578μxi ¼
1

N

XN
j¼1

xi;j; (1)

EQ-TARGET;temp:intralink-;e002;326;528σ2xi ¼
P

N
j¼1 ðxi;j − μxiÞ2

N
; (2)

EQ-TARGET;temp:intralink-;e003;326;490Kxi ¼
P

N
j¼1 ðxi;j − μxiÞ4∕N

σ4xi
; (3)

and

EQ-TARGET;temp:intralink-;e004;326;436Sxi ¼
P

N
j¼1 ðxi;j − μxiÞ3∕N

σ3xi
; (4)

where N is the total number of samples of xi, xi is the i’th row of
the input x, xi;j is the j’th signal amplitude of the input xi, and
σ2xi is the variance of xi. The signal peak is computed by select-
ing the maximum value of xi, and the slope is computed using
linear regression.

2.2 Support Vector Machine

SVM is a discriminative classifier which optimizes a separating
hyperplane by maximizing the distance between the training
data.52 The decision boundary is obtained by

EQ-TARGET;temp:intralink-;e005;326;275 min

�
1

2
kwsk2

�
þ C

XL
i¼1

εðiÞ

s:t: yðiÞs ðxs · ws þ bsÞ − 1þ εðiÞ ≥ 0;

(5)

where ws is the weight vector, C > 0 is the regularization
parameter, εi > 0 is the training error, yðiÞs is the true class
label for i’th input xs, and bs is the bias. Among these, C
plays an important role in reducing the error as well as accom-
modating the outliers through the training process of the data. In
other words, it controls the trade-off between the data training
error and the norm of the weights. As a matter of fact, determin-
ing a proper C is a vital step in training the SVM on the input
data.53
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2.3 Artificial Neural Network

ANN is a classifier, inspired by a biological brain’s axon, with
the ability to detect patterns in the training data set,54 which con-
sists of assemblies of interconnected artificial neurons that pro-
vide nonlinear decision boundaries. Typically, ANN consists of
multiple layers, respectively called the input layer, fully con-
nected hidden layer(s), and the output layer, with one or
more neurons in each layer (see Fig. 1). Through forward propa-
gation, the output values are computed based on the activation
function of the hidden layer(s) by

EQ-TARGET;temp:intralink-;e006;63;412oi ¼ a½wð1Þ · xþ bð1Þ�; (6)

EQ-TARGET;temp:intralink-;e007;63;381yi ¼ a½wð2Þ · oþ bð2Þ�; (7)

where oi is the output of the first fully connected hidden layer
calculated by using an activation function a to transform the
summation of bias value bð1Þ, and the multiplication of the
input vector x with the weight vector wð1Þ. Likewise, yi is
the output of the second fully connected hidden layer, which
is similarly calculated by using the input vector o of the second
layer, and the weight vector wð2Þ and the bias bð2Þ.

Through the first iteration of the training procedure, weight
values should be initialized. Proper weight initialization is one
of the important operations for improving the classification per-
formance of the networks.55 Afterward, the weight values are

updated by the backward propagation by comparing the com-
puted output values from the forward propagation with the
desired output values, using a loss function. This iteration is per-
formed until the minimum loss function value is achieved.54

To obtain a proper predictive model with ANN, several
hyperparameters, such as learning rate, batch size, and number
of epochs, should be considered. The learning rate is the param-
eter that controls how fast the weight values in the fully con-
nected layers can be updated during the training process.
Through the batch learning process, training data are separated
into several sets, and this is followed by propagation through the
training process, where the batch size is the number of samples
in each set.55 An epoch is defined as the total number of times
that the training procedure is completed.

2.4 Convolutional Neural Network

CNN is an effective classifier based on deep network learning. It
is highly capable of automatically learning appropriate features
from the input data by optimizing the weight parameters of each
filter, using forward and backward propagation to minimize
classification errors.56

CNN consists of several layers, which are called the input
layer, convolutional layer, fully connected hidden layer, and out-
put layer (see Fig. 2). In the convolutional layers, a convolu-
tional filter whose width is equal to the dimension of the
input and kernel size (height) of h is convolved with the
input data, where the output of the i’th filter is57

EQ-TARGET;temp:intralink-;e008;326;447oi ¼ w · x½i∶iþ h − 1�; (8)

where w is the weight matrix, x½i∶j� is the submatrix of input
from row i to j, and oi is the result value.

Then, in order to build the feature map (the input of the next
layer), the output of the convolutional layer is converted by an
activation function similar to ANN. After each convolutional
layer, additional subsampling operations such as max-pooling
and dropout are performed to enhance the performance.

Max-pooling57 is one of the common methods used to reduce
data size, and it stores only the important data. Dropout,58 which
helps CNN avoid overfitting during the training process, is a
regularization step that randomly drops out one or more hidden
nodes. As with ANN, the mentioned hyperparameters such as
learning rate, batch size, and number of epochs should be
investigated for CNN in order to improve the classification
performance.

Fig. 1 The common structure of ANN.

Fig. 2 The common structure of convolutional neural network.
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2.5 Cross Validation

k-fold cross validation is used to estimate the classification per-
formance of the predictive model.53,59 The first step in this proc-
ess is to divide the data into k-folds, where each fold contains an
identical amount of the input data. Then, one fold is used as a
test set, while the remaining folds are used as training sets (see
Fig. 3). Afterward, a classification procedure is applied to the
selected test and training sets. This process is performed for
each of the k-folds, and the corresponding accuracies obtained
from each test set are averaged to estimate the performance.

3 Method

3.1 Participants

Eight healthy subjects were recruited for the experiment (ages of
25.25� 3.81 years, three females, all right-handed). The sub-
jects were asked to avoid smoking and drinking alcohol or cof-
fee within 3 h prior to the experiment. None of the subjects had
been reported for any neurological or brain injuries. Written
consent forms were obtained from all subjects. The experiment
was approved by the Daegu Gyeongbuk Institute of Science and
Technology (DGIST) Institutional Review Board (DGIST-
170414-HR-004-01).

3.2 Data Acquisition

For data acquisition, LABNIRS (Shimadzu), an fNIRS device
with a multichannel continuous wave with three wavelengths
(780, 805, and 830 nm) and a sampling rate of 25.7 Hz, was
utilized. A total of 12 sources and 12 detectors, resulting in
34 measurement channels, were placed over the motor areas,
C3 and C4, according to the international 10–20 system
which corresponds to the motor cortex of the right- and left-
hand motor execution (see Fig. 4).60 The distance between
source and detector was 3 cm.

3.3 Experimental Procedure

The subjects sat on a comfortable chair in front of a computer
screen, which displayed the experimental tasks. In the experi-
ment, subjects were asked to perform a motor execution task
in order to generate a robust signal for better discrimination.
To be specific, while a black screen was displayed during the
rest task, an arrow pointing right or left was shown during
each of the right- or left-hand execution tasks, respectively.

All of the subjects were asked to relax before the experiment
in order to stabilize blood flow. For data acquisition, the subjects
were trained to relax during the rest tasks and to perform finger
tapping during the motor execution tasks. Each subject per-
formed 10 experiments of five sessions of right- and left-
hand motor executions, with two rest blocks per session (see
Fig. 5). All the blocks lasted 10 s, and each block became a
sample. The data for all the subjects were collected within
three days. We eventually obtained a total of 100 samples of
rest, 50 samples of right, and 50 samples of left-hand motor exe-
cution for each subject.

3.4 Acquired Data Preprocessing

3.4.1 Calculation of hemoglobin concentration changes

After signal measurement, we converted the signals of light
intensity into concentration changes of HbO and HbR by
MBLL, utilizing statistical toolbox NIRS-SPM.61 The MBLL
equation is given by
EQ-TARGET;temp:intralink-;e009;326;315�Δ½HbO�
Δ½HbR�

�
¼ 1

d · DPF

�
εHbOλ1 εHbRλ1

εHbOλ2 εHbRλ2

�−1�ΔODλ1

ΔODλ2

�
; (9)

Fig. 3 Cross-validation procedure.

Fig. 4 (a) A subject with optodes over motor area C3 and C4 based on the international 10–20 system
and (b) the source and detector configuration. Channel numbers 1 to 17 and 18 to 34 were placed over
motor areas C4 and C3, respectively.
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where Δ½HbO� and Δ½HbR� are the changes in HbO and HbR
concentration, respectively, d is the distance between the light
source and detector, DPF is the differential path length factor, ε
is the extinction coefficient at wavelength λ, and ΔOD is the
optical density change.

3.4.2 Filtering

The acquired hemodynamic signal contains various physiologi-
cal noises, including the heart rate at 0.8 Hz, respiration at
0.2 Hz, Mayer wave at 0.1 Hz, and very-low-frequency oscil-
lations at 0.03 Hz.36,38,40 Among various possible criteria, we
employed wavelet filtering to remove physiological noise.62

The wavelet transform is an efficient method of signal analy-
sis and performs by adjusting its window width in both time and
frequency domains. For denoising a signal S½n�, first, wavelet
coefficients are obtained by shifting and dilating the waveforms
of the so-called mother function ψ ½n�, and then important coef-
ficients are selected to reconstruct the signal by thresholding.
For a more comprehensive analysis, we also exploited multire-
solution analysis (MRA) which decomposes signals into a tree
structure using the DWT.41,63 Using MRA based on DWT, S½n�
can be approximated by expanding both low- and high-fre-
quency coefficients for M time points as

EQ-TARGET;temp:intralink-;e010;63;409S½n� ¼ 1ffiffiffiffiffi
M

p
X
k

Aϕ½j0; k�Φj0;k½n�

þ 1ffiffiffiffiffi
M

p
X∞
j¼j0

X
k

Dψ ½j; k�Ψj;k½n�; (10)

where Φj0;k½n� and Ψj;k½n� ¼ 1ffiffi
j

p ψðn−kj Þ are scaling and wavelet

mother functions, respectively, in which the mother function
ψ ½n� is dilated with scaling parameter j, translated by k
which is the number of decomposition levels, and represented
as Ψj;k½n�. Since these functions are orthogonal to each other,
taking the inner product results in obtaining the approximation
coefficients (low frequency) Aϕ½j0; k� ¼ 1ffiffiffiffi

M
p

P
nS½n�Φj0;k½n� and

the detailed coefficients (high frequency) Dψ ½j; k� ¼
1ffiffiffiffi
M

p
P

nS½n�Ψj;k½n�. By denoting

EQ-TARGET;temp:intralink-;e011;63;218aj0 ¼
1ffiffiffiffiffi
M

p
X
k

Aϕ½j0; k�Φj0;k½n�; (11)

and

EQ-TARGET;temp:intralink-;e012;63;160dj ¼
1ffiffiffiffiffi
M

p
X
k

Dψ ½j; k�Ψj;k½n�; (12)

Eq. (10) can be rewritten as

EQ-TARGET;temp:intralink-;e013;326;752S½n� ¼ aj0 þ
X
j

dj: (13)

In order to remove the undesired high- and low-frequency
noises, we exploited a 10-level wavelet decomposition with a
Daubechies (db5) mother function.62 In addition, we used a
bandpass frequency between 0.02 and 0.1 Hz, in which the com-
bination of low-frequency components d8 and d9 from the 10-
level decompositions was solely in the same 0.02- to 0.1-Hz fre-
quency range. Therefore, the filtered signal was reconstructed
based on d8 and d9 by Sdenoised½n� ¼ d8 þ d9. After filtering,
the hemodynamic response signals were normalized into
range (0,1) by subtracting with the signal mean and scaling.

3.5 Feature Extraction and Classification

After filtering, we trained and tested the classifiers for each indi-
vidual subject based on the extracted features. Following the
training step, we computed the classification accuracies from
both the conventional methods (SVM- and ANN-based
fNIRS) and the proposed method (CNN-based fNIRS). In
this section, we discuss the details of the conventional methods
and our proposed CNN structure.

3.5.1 Conventional methods

As mentioned, features were extracted after the filtering step,
followed by normalizing into range (0,1). The obtained input
data contained 408 feature dimensions (6 features ×2 signal
of HbO and HbR ×34 channels). Using such features with
the settings above, we evaluated the performance of the conven-
tional methods by observing the concentration changes of HbO
and HbR over all channels using SVM and ANN.

Before applying SVM, since such high-dimensional features
usually suffer from performance degradation in classifiers,64 a
principle component analysis (PCA) was utilized to decrease
the dimensions of the data. This reduces the aforementioned
effect by maximizing the variance using a smaller number of
principle components.52 Grid search53,65 was used to determine
the number of principle components and the C regularization
parameters in SVM, and the combination of both parameters
which yielded the highest classification accuracy was selected.

In this study, we report the results for linear SVM and multi-
ple structures of ANN (see Table 1). To be specific, structures of
ANN with one hidden layer (ANN1) and two hidden layers
(ANN2) were evaluated. For further comprehensive investiga-
tion, each structure of ANN was considered with various

Table 1 Structures of ANN.

Structure Hidden layer Neurons in each hidden layer

ANN1-a 1 128

ANN1-b 1 256

ANN1-c 1 512

ANN2-a 2 256, 128

ANN2-b 2 512, 256

ANN2-c 2 512, 128

Fig. 5 Experimental procedure includes rest and two motor tasks:
right- and left-hand motor execution.
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numbers of neurons. All of the aforementioned hyperparameters
were tuned for each subject (see Table 2).

3.5.2 Proposed structures of convolutional neural network

Instead of using other methods, we employed CNN as the fea-
ture extractor as well as the classifier in this study. As the input
data, the changes in HbO and HbR concentration over all chan-
nels were passed through CNN layers using the structures pre-
sented in Table 3. The input data for CNN were an M by N
matrix, where M is the number of points during 10 s that cor-
respond to the sampling rate (M ¼ time × sampling rate ≈ 257)
and N is the number of channels for both HbO and HbR (34
channels each of HbO and HbR). Similar to the process used
to evaluate the conventional methods, we considered two struc-
tures of CNN, that is, CNN with one convolutional layer

(CNN1) and three convolutional layers (CNN2). Furthermore,
each structure of CNN was considered with a distinct number
of filters (see Table 3).

All of the convolutional filters in the convolutional layers
performed one-dimensional convolution with the input data
along the vertical axis, as shown in Fig. 6. Each convolutional
layer consisted of filters with a kernel size of 3, and an
algorithm63 was used to update the weight values in the training
process. After each convolutional layer, max-pooling with a ker-
nel size of 2 was applied, followed by dropout with a dropout
rate of 50%. The first and second fully connected layers con-
tained 256 and 128 hidden nodes, respectively. The output
layer had 3 nodes corresponding to the three classes, which
were classified using softmax. For better understanding of
the structures mentioned here, the input and output sizes of
each layer in our proposed CNN2-a are summarized in Table 4.

Table 2 Hyperparameters of each individual subject for ANN.

Subject Parameters ANN1-a ANN1-b ANN1-c ANN2-a ANN2-b ANN2-c

1 Epochs 50 50 100 20 100 100

Batch size 64 64 16 16 16 32

Learning rate 0.001 0.0005 0.001 0.0005 0.001 0.001

2 Epochs 100 100 100 100 50 50

Batch size 16 16 32 16 16 16

Learning rate 0.0005 0.001 0.0005 0.0001 0.0005 0.001

3 Epochs 100 100 50 50 50 100

Batch size 16 16 64 64 32 32

Learning rate 0.0001 0.0001 0.0005 0.0001 0.0001 0.0001

4 Epochs 50 100 50 50 100 100

Batch size 16 32 64 32 32 64

Learning rate 0.0005 0.0005 0.0005 0.0005 0.0001 0.0005

5 Epochs 100 100 100 100 100 100

Batch size 32 64 64 16 64 64

Learning rate 0.0005 0.0005 0.0005 0.0001 0.001 0.001

6 Epochs 100 50 100 100 100 100

Batch size 16 16 32 16 16 16

Learning rate 0.001 0.001 0.0005 0.0005 0.0005 0.0005

7 Epochs 100 100 100 100 50 100

Batch size 16 32 16 16 16 64

Learning rate 0.0005 0.0005 0.001 0.0005 0.0005 0.001

8 Epochs 100 100 50 50 50 100

Batch size 64 64 32 32 32 16

Learning rate 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
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In the proposed structure, the activation functions of all
layers were set to a rectified linear unit (ReLU), which is a non-
linear function, as shown in66

EQ-TARGET;temp:intralink-;e014;63;317aðxÞ ¼
�
0; x < 0

x; x ≥ 0
: (14)

Unlike other activation functions, ReLU avoids a vanishing
gradient and in practice converges to the optimum point much
faster. Consequently, it improves the training process of deep
neural network architectures on large scale and complex
data sets.

In addition, the hyperparameters for training all the CNN
structures, including learning rate, number of epochs, and
batch size, were chosen for each individual subject using
Grid search (see Table 5). Adam was applied as a gradient
descent optimization algorithm, whose parameters β1, β2, and
ϵ were set to 0.9, 0.1, and 10−8, respectively.67

3.6 Visualization of Feature Extraction

Many previous studies of feature extraction in fNIRS-based BCI
have been reported in the past. Since appropriate features and
classifiers are desired in order to achieve high classification
accuracy, the proposed method of the CNN exploitation was

utilized in this study because of its automatic feature extraction
property.

To provide better insights into the feature extraction perfor-
mance, a visualization of the features extracted by the aforemen-
tioned methods is shown and compared. Because high-
dimensional data are difficult to visualize, the PCAwas applied
to reduce the dimensionality of the data.

In this study, we also compared the visualization of the
hemodynamic response signals with the features extracted by
conventional methods and convolutional filter, by plotting the
first two principle components of the PCA. The overall pro-
cedure to visualize signal features is shown in Fig. 7.

3.7 Computational Time in the Classification

In our work, various machine learning algorithms were applied
to classify tasks, including rest, right-, and left-hand motor exe-
cutions. For the ANN and CNN, we trained the model using
GPU GeForce GTX 1070.68 The data were divided equally
into 10-folds, and then nine folds were used as a training set.
To imitate the environment of a real application, a single sample
was fed through the trained model then the computational time
was measured. For training SVM, ANN, and CNN, the hyper-
parameters such as C regularization, number of epochs, and
learning rate were set to 1, 1, and 0.01, respectively.

4 Results

4.1 Measured Hemodynamic Responses

In the experiment, the changes in HbO and HbR concentration
were measured as the input data for classification. The average
of the hemodynamic response signals was obtained with respect
to the samples from subjects 1 and 2, across full sessions of each
task for rest, right-, and left-hand motor executions and are

Table 3 Structures of CNN.

Structure Convolutional layer Filters in each convolutional layer

CNN1-a 1 32

CNN1-b 1 64

CNN2-a 3 32, 32, 32

CNN2-b 3 64, 64, 64

Fig. 6 The input data consisted of the concentration changes of HbO
(red) and HbR (blue) overall channels. A convolutional filter ran
through the input data along the vertical axis.

Table 4 Input and output size of the CNN2-a.

Layer
Input
size

Output
size Properties

Convolutional layer 1 257, 68 257, 32 32 filters with kernel
size 3

Max-pooling 1 257, 32 128, 32 Kernel size 2

Dropout 1 128, 32 128, 32 Dropout rate 50%

Convolutional layer 2 128, 32 128, 32 32 filters with kernel
size 3

Max-pooling 2 128, 32 64, 32 Kernel size 2

Dropout 2 64, 32 64, 32 Dropout rate 50%

Convolutional layer 3 64, 32 64, 32 32 filters with kernel
size 3

Max-pooling 3 64, 32 32, 32 Kernel size 2

Dropout 3 32, 32 32, 32 Dropout rate 50%

Fully connected layer 1 1024 256 256 hidden nodes

Fully connected layer 2 256 128 128 hidden nodes

Output layer 128 3 3 hidden nodes
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shown in Figs. 8(a)–8(c), respectively. Each row of the input
data indicates signal amplitudes. These are represented by
red and blue colors, which imply the maximum and minimum
amplitudes, respectively. The beginning and the end of the tasks
correspond to 0 and 10 s, respectively.

As is widely known, neural activity induces typical changes in
cerebral blood oxygenation, resulting in increases in HbO con-
centration and decreases in HbR concentration.34 In our results,
a similar behavior in the hemodynamic response can be observed,
as shown in Fig. 8. To be specific, the signals obtained from chan-
nels over C3 show higher cortical activation of HbO over a period
of 5 to 10 s during the right-hand motor execution [see Fig. 8(b)],
whereas the signals over C4 have higher activation during the left-
hand motor execution [see Fig. 8(c)].

Figure 9 shows the averaged signals for the entire experiment
over all channels of the left and right hemispheres. It is obvious
that the change in HbO concentration is higher in the left

cerebral cortex during the right-hand motor execution [see
Fig. 9(b)], while it is larger in the right cerebral cortex during
the left-hand motor execution [see Fig. 9(c)]. The brain behav-
iors observed in Fig. 9 demonstrate that three-class discrimina-
tion, for rest, right-, and left-hand motor execution, can be
achieved, since they show different patterns of cortical activation
over the left and right hemispheres.

4.2 Classification Accuracies

To determine the classification accuracies of the SVM, ANNs,
and CNNs, we employed 10-fold cross validation to estimate
performance and to optimize hyperparameters, as we attempted
to discriminate the three classes of rest, right-, and left-hand
motor execution. In this section, the classification accuracies
of commonly used features classified by SVM and ANNs are
compared with those obtained by CNNs.

To be specific, the classification accuracies for all the tested
criteria for the individual subjects are presented in Table 6. As
expected, the results of all the individual subjects indicate that
the use of CNN was significantly superior to SVM and ANN.
For convenience of analysis, the average of the classification
accuracies of SVM, ANN, and CNN (86.19%, 89.35%, and
92.68%, respectively) are presented in Fig. 10, which confirms
the superior performance of CNN over the conventional meth-
ods. This superior performance is due to CNN’s ability to learn
the inherent patterns of the input data, by updating the weight
values of the convolutional filters.

The learning performance can be affected by the size of the
training set, and this is especially true for ANN and CNN, where
a larger-sized training set usually provides higher classification
performance. To examine the effect of the size of the data set on
the classification accuracy, the average classification accuracies
across all the subjects were obtained, based on different numbers
of samples.

To evaluate the classification performance, 10-fold cross val-
idation was utilized. For all the classification methods, the clas-
sification performance was found to increase with the number of
samples in the data set, and the classification accuracy of CNN
outperformed other tested methods for all numbers of samples
(see Fig. 11). Moreover, the CNN was also able to attain higher
accuracy with smaller numbers of samples; for instance, CNN
exceeded 90% accuracy with 120 samples, whereas ANN
required 200 samples to reach 89% accuracy.

4.3 Analysis of Feature Extraction Performance

To better understand the feature extraction performance, we
visualized the three classes of rest, right-, and left-hand
motor executions. To be specific, three classes were visualized
using the hemodynamic response signals, features extracted by
the conventional methods, and the output of the first layer con-
volutional filter, by plotting the first and second principle com-
ponents of PCA (see Fig. 12). The results for subjects 1 and 2
show that the features extracted by the convolutional filters are
better discriminated compared with commonly used features
and the hemodynamic response signals.

When considering just the binary classification of rest and
motor execution, both the conventional methods and CNN
resulted in well-separable features. However, for the binary clas-
sification of right- and left-hand motor executions, and for mul-
ticlass classification, it was clear that features extracted by the
convolutional filter were better discriminated as compared with
the conventional methods.

Table 5 Hyperparameters of each individual subject for CNN.

Subject Parameters CNN1-a CNN1-b CNN1-c CNN2-a

1 Epochs 100 100 100 100

Batch size 16 64 32 16

Learning rate 0.001 0.001 0.001 0.0005

2 Epochs 50 50 100 100

Batch size 32 16 16 64

Learning rate 0.0005 0.001 0.0005 0.001

3 Epochs 50 100 50 100

Batch size 16 64 64 32

Learning rate 0.0001 0.0005 0.001 0.0005

4 Epochs 100 100 100 100

Batch size 32 32 16 16

Learning rate 0.0001 0.001 0.0001 0.0005

5 Epochs 50 50 100 100

Batch size 64 16 32 64

Learning rate 0.001 0.0005 0.001 0.001

6 Epochs 100 100 50 100

Batch size 16 32 16 32

Learning rate 0.0005 0.0001 0.001 0.001

7 Epochs 50 100 100 100

Batch size 64 32 64 16

Learning rate 0.001 0.001 0.0005 0.0005

8 Epochs 50 100 100 100

Batch size 64 32 64 16

Learning rate 0.001 0.001 0.0005 0.0005
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4.4 Convolutional Filters of Convolutional Neural
Network

One might notice that CNN is able to recognize the patterns of
three different classes by updating its filters’ weight values.
Therefore, to further investigate the convolutional filters of

CNN, we examined the first layer of CNN to determine whether
it is able to identify the distinguishable channels from the input
or not. By training the data using forward and backward
propagations, we let CNN learn how to emphasize some chan-
nels containing distinguishable signals by increasing the corre-
sponding weight values, since each column of convolutional

Fig. 7 The overall procedure to visualize signal features, including the hemodynamic response signal,
commonly used features in fNIRS-based BCI, and output of the convolutional filter (feature map). The first
and second principle components of the signal features are illustrated for the visualization.

Fig. 8 Average hemodynamic response of each execution task measured from subject 1 and 2: (a) rest,
(b) right-, and (c) left-hand motor execution. Each input presents concentration changes of HbO and HbR
overall 34 channels. Red and blue colors represent the maximum and minimum amplitude, respectively.
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Fig. 9 Average signal amplitude of subjects 1 and 2 across left (C3) and right (C4) hemisphere from full
sessions of each class: (a) rest, (b) right-, and (c) left-hand motor execution. Red and blue colors imply
HbO and HbR, respectively. Solid and dot lines are related to the C3 and C4 motor areas in that order.

Table 6 Classification accuracies of the individual subjects (%).

S1 S2 S3 S4 S5 S6 S7 S8 Average

SVM 88.50 79.00 84.00 84.50 90.50 97.00 99.00 67.00 86.19

ANN1-a 91.67 85.33 84.83 85.00 94.20 96.17 96.50 76.33 88.75

ANN1-b 92.83 83.83 84.67 87.67 94.30 96.00 96.33 75.00 88.83

ANN1-c 92.83 85.67 85.17 87.50 94.50 96.50 96.67 75.83 89.33

ANN2-a 93.67 86.67 84.33 87.50 95.67 96.50 96.83 75.67 89.61

ANN2-b 92.50 86.17 85.67 88.67 94.83 97.00 97.17 76.08 89.76

ANN2-c 92.17 88.00 85.50 87.00 94.83 97.00 97.67 76.17 89.79

CNN1-a 95.00 91.67 84.83 95.67 97.33 99.00 98.67 80.33 92.81

CNN1-b 95.33 92.17 85.83 96.00 96.83 99.00 99.00 80.50 93.08

CNN2-a 94.33 91.83 82.17 95.00 96.67 98.67 98.33 82.17 92.40

CNN2-b 92.83 93.17 83.33 94.33 96.50 99.00 98.17 82.00 92.42
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filter interacts with each channel from the input data. To
approximate the most distinguishable channel, each column
of the convolutional filter was averaged after training. Then,
the channel of all of the samples of the input data with the high-
est weight value of the averaged convolutional filter was
selected for visualization.

In order to visualize the essential information, the most dis-
tinguishable channels from all the samples were selected. Two
examples of the CNN filter weight values from subject 1 are
shown in Fig. 13, where each row represents the most distin-
guishable signal from a single sample and the red and blue
colors indicate the maximum and minimum amplitudes, respec-
tively. We found that over a period of 5 to 10 s, there were
remarkable differences in the signals chosen from both filters
for the three classes of rest, right-, and left-hand motor
execution.

Subsequently, in Fig. 13(a) which represents the rest task,
both filters have low signal amplitude. Figure 13(b) represents
the right-hand motor execution, in which filter 1 shows a
higher signal amplitude than filter 2. In the same manner,
Fig. 13(c) shows the left-hand motor execution, in which
filter 2 exhibits a higher signal amplitude compared with filter
1. Therefore, it can be concluded that filter 1 can detect

right-hand motor execution, and filter 2 detects left-hand
motor execution.

4.5 Computational Time

The computational time for each of the classification algorithms,
i.e., SVM, ANN, and CNN, was averaged across all subjects and
structures (see Table 7). For the training process, the computa-
tional time for CNN was ∼2 and 183 times greater than ANN
and SVM, respectively. For testing time, the computational time
for CNN was ∼6 and 81 times greater than ANN and SVM,
respectively. The computational time for CNN in the training
and testing process was longer than ANN and SVM, as its struc-
ture is deeper and more complex. However, it provides a better
performance in terms of classification accuracy.

5 Discussion
The primary aim of the present study was to evaluate the use
of CNN versus conventional methods in fNIRS-based
BCI, particularly in light of the automatic feature extraction
property of CNN. The proposed and conventional methods
were investigated to compare their respective classification
accuracies.

Fig. 10 Average classification accuracies of the individual subjects.

Fig. 11 Average classification accuracies across all the subjects, based on different number of samples.
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Fig. 12 The visualization of the hemodynamic response signals, commonly used features, and output of
the convolutional filter from (a) subject 1 and (b) subject 2.

Fig. 13 Each filter trained by subject 1 represents signals from a channel in every samples correspond-
ing to the highest weight value. The filters represent three classes in the classification: (a) rest, (b) right-,
and (c) left-hand motor execution.
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In the experiment, motor execution tasks performed by
healthy subjects were utilized to obtain strong and robust hemo-
dynamic response signals. However, in real applications, motor
imagery can produce a greater impact than motor execution
tasks, in both healthy users and in patients with severe motor
impairment. A previous study reported that the cortical activa-
tion resulting from motor execution is similar to motor imagery.6

Hence, it is feasible that a healthy user or a patient without a
brain injury, such as SCI, will be able to use motor imagery
for commands instead of motor execution. Further investigation
of the use of motor imagery, and the study of patients with neu-
rological disorders, will be explored in the future.

The results of the classification accuracies in Fig. 10 imply
that the proposed method using CNN outperforms the conven-
tional methods. To be specific, the analysis of signal features by
visualizing the first and second principle components demon-
strates that the features extracted by the convolutional filter
yield better discriminating features than conventional methods,
because it is capable of learning appropriate features from the
training data.

Additionally, the channels corresponding to the highest
weight value in the trained CNN filter demonstrate that the con-
volutional filter emphasizes the discriminating signal from the
training data. It is also worthwhile to note that while the perfor-
mance of feature extraction for the binary classification of rest
and motor execution was similar for both the conventional and
proposed methods, since they showed well-discriminated fea-
tures, the proposed method performed better for multiclass
data. This is because the convolutional filter is able to transform
mixed data into well-separated data.

Consequently, the proposed method will be appropriate for
various systems that require multitasks to command. For in-
stance, a brain-controlled wheelchair requires multiclass classi-
fication to control the wheelchair in several directions. Although
the proposed method requires a longer time for training, it per-
forms better in multiclass classification.

The number of samples used to train the classifier directly
affects classification accuracy, especially in the complex classi-
fier, as shown in Fig. 11. For a small number of samples, the
classification performances of SVM, ANN, and CNN were sim-
ilar. However, as the number of samples increased, the complex
classifier was able to achieve higher accuracy than the simple
classifier, though the computational time to train was much
greater than that of the simple classifier.

This means there is a trade-off between accuracy and ease of
use when building the appropriate BCI system. The user must
take a longer time to train the complex classifier to obtain a high-
performance classifier. When an application requires ease of
use over safety, the conventional methods might be more appro-
priate, since a shorter time and smaller-sized training set are
desired.

On the other hand, in the case of vital applications, systems
to control assistive technology devices for a patient with motor
impairment require very high accuracy, since any misclassifica-
tion would probably lead to a serious accident. Consequently, in
such cases the proposed method is recommended even if it takes
a longer time, because it achieves higher accuracy with a smaller
number of samples (see Fig. 11).

6 Conclusions
To enhance the classification accuracy of an fNIRS-based BCI
system, we applied CNN for automatic feature extraction and
classification, and compared those results with results from con-
ventional methods employing SVM and ANN, with features of
mean, peak, slope, variance, kurtosis, and skewness. From the
measurement results for rest, right-, and left-hand motor execu-
tion on eight subjects, the CNN-based scheme provided up to
6.49% higher accuracy over conventional feature extraction
and classification methods, because the convolutional filters
can automatically extract appropriate features.

The results confirmed that there was an improvement in
accuracy when using CNN over the conventional methods,
which can lead to the practical development of a BCI system.

Since classification accuracy is the most essential factor for
many BCI applications, we will explore further improvements in
the accuracy of fNIRS-based BCI by implementing various deep
learning techniques, as well as combining fNIRS with other neu-
roimaging modalities. To investigate clinical applications, we
will also undertake experiments with patients.
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