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Abstract. Spontaneous resting-state neural activity or hemodynamics has been used to reveal functional con-
nectivity in the brain. However, most of the commonly used clustering algorithms for functional parcellation are
time-consuming, especially for high-resolution imaging data. We propose a density center-based fast clustering
(DCBFC) method that can rapidly perform the functional parcellation of isocortex. DCBFC was validated using
both simulation data and the spontaneous calcium signals from widefield fluorescence imaging of excitatory
neuron-expressing transgenic mice (Vglut2-GCaMP6s). Compared to commonly used clustering methods such
as k-means, hierarchical, and spectral, DCBFC showed a higher adjusted Rand index when the signal-to-noise
ratio was greater than −8 dB for simulated data and higher silhouette coefficient for in vivo mouse data. The
resting-state functional connectivity (RSFC) patterns obtained by DCBFC were compared with the anatomic
axonal projection density (PDs) maps derived from the voxel-scale model. The results showed a high spatial
correlation between RSFC patterns and PDs. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1
.NPh.6.4.045014]
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1 Introduction
Spontaneous resting-state neural activity or hemodynamics has
been used to reveal functional connectivity in the brain.1–5 The
network topology of functional connectivity can deepen the
understanding of the relationship between brain function and
structure. Resting-state functional magnetic resonance imaging
obtains whole brain cerebral blood oxygen level-dependent
signals to analyze the functional connection and provides impor-
tant references for diagnoses of neurophysiological disease.6–8

However, fMRI reflects hemodynamic fluctuations, which does
not directly indicate neural activity. Investigating resting-state
functional connectivity (RSFC) using direct neural signals, such
as spontaneous fluctuation of calcium signals, can enable under-
standing of the mechanisms underlying the link between func-
tional connectivity and brain structure.9–11 Because datasets for
neural optical imaging usually have high spatiotemporal resolu-
tion, automatic fast clustering methods for widefield fluorescent
calcium-signal imaging can help to improve the efficiency of
RSFC analysis.

Current data-driven functional clustering methods can be
grouped into two broad categories. The first is the nonclustering
family, which includes algorithms based on probability distribu-
tion models, regional growth methods, decomposed signal and
extracted components, self-organization mapping, dictionary
learning,12 and edge detection.13 The probability density parti-
tion algorithm models the brain neural activity and uses an

optimization method to find the optimal solution.14–16 Regional
growth chooses a few specific pixels or even all pixels in the
cerebral cortex as seed points, and then the growth area is
merged based on similar criteria until the region size is greater
than the set threshold.17,18 The most common algorithm for
extracting brain signal components used in fMRI is the indepen-
dent component correlation algorithm,19–21 which extracts blind
source information from original data and can perform denois-
ing. This method requires repeated calculations to obtain the
optimal number of components. Sparse decomposition generates
as few atoms as possible to represent the original brain informa-
tion by learning an overcomplete dictionary22,23 and can remove
redundant information and improve analysis efficiency. Self-
organizing maps show results as a neural network output layer.24

The other category is the clustering family that includes
k-means,15,25–28 hierarchical clustering,28,29 spectral cluster-
ing,27,30–32 affinity propagation,23,33 fuzzy c-means,34 and den-
sity-based clustering.35,36 Some of these methods are sensitive
to the initial selection (e.g., k-means, spectral clustering, and
fuzzy c-means). As the same data may produce different clus-
tering results, the method may repeat the calculation several
times to obtain the best solution and require the iterative con-
vergence to a cluster center. Some methods hierarchically inte-
grate similar brain activity pixels into a cluster tree to identify
the hierarchical relationship of clusters. However, it also leads to
longer calculation time (e.g., hierarchical clustering). The meth-
ods based on density clustering treat clusters as high-density
regions separated by low-density regions.35,36 Rodriguez and
Laio35 proposed a density-based algorithm that locates cluster
centers using a criterion based on density peak, which can
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automatically calculate the cluster number and offers fast calcu-
lation. However, this method calculates the density for each
pixel by summing the number of links whose geometric distan-
ces to the remaining pixels are less than the threshold, which is
not suitable for analyzing the characteristics of neural activity
signals, as the latter represents functional rather than distance
clustering, and the correlation map of adjacent seed pixels are
usually spatially continuous.

In this study, we propose a density center-based fast cluster-
ing algorithm (DCBFC) that is suitable for calcium-sensitive
optical fluorescent imaging. To make the density peak-based
clustering strategy useful for clustering the functional connec-
tivity, the temporal Pearson’s correlation is used to calculate the
similarity between the time courses of pixel pairs in the DCBFC.
Furthermore, a strategy of adaptive threshold is proposed for
calculating the candidate cluster center based on the character-
istics of in vivo calcium imaging data of a mouse cortex to
improve the homogeneity of the intracluster and the hetero-
geneity of the intercluster. We tested our method using both
simulated data and in vivo mouse data and compared our algo-
rithm with the other clustering algorithms [k-means, hierarchi-
cal, spectral, principal components analysis (PCA)-k-means,
PCA-hierarchical, and spectral-threshold clustering]. Using the
adjusted Rand index (ARI)37 as a criterion, we evaluated the
clustering performance of the algorithms on simulated data.
The silhouette coefficient (SI)28,31,38–40 was used to quantify the
homogeneity and heterogeneity of functional clusters on in vivo
mouse data, and the processing time was also evaluated. The
results show that the DCBFC has good performance and
requires only a short calculation time. Finally, the functional
connection maps obtained by the DCBFC are compared with
the axonal projections labeled by recombinant adeno-associated
virus (rAAV)-mediated tracing methods in Allen Mouse
Connectivity. We used voxel-scale model41 to construct the
whole isocortical projection connectivity at a scale of 100-μm
voxels. The average connection diversity/average connection
strength (ACD/ACS) relationships of projection connectivity are
calculated and compared with the ACD/ACS relationships of
RSFC obtained by DCBFC. Because some clusters obtained
by the DCBFC may cover more than one brain function area
defined by cytoarchitecture, the main brain regions involved
in each cluster are collectively referred to as “functional mod-
ule” for convenience of expression. The codes used to generate
the results are publicly available at https://github.com/miuleee/
DCBFC.git and https://github.com/miuleee/FCvsPD.git.

2 Materials and Methods

2.1 Density Center-Based Fast Clustering

Our method attempts to rapidly obtain the functional parcella-
tion by characterizing the cluster centers based on the following
two criteria of density peak derived from Ref. 35.

• A cluster center is assumed to be the cortical functional
connection hub that tightly connects the surrounding pix-
els in a single functional module. The average Pearson’s
correlation coefficients between one central point, and its
connected pixels should preferably be as high as possible.

• The correlation coefficient between two central hubs
should be as low as possible. The temporal correlation
coefficient between each pair of candidate centers must

be smaller than the average correlation coefficient of any
functional module.

Based on the two aforementioned properties, we propose an
approach that attempts to directly obtain the central pixels by
calculating a composite variable γ Eq. (8), which represents the
ability of a pixel to become a candidate center. A pixel with a
greater γ value is more likely to become a central point. A sche-
matic of DCBFC is given in Fig. 1 and described as follows.

2.1.1 Functional similarity matrix and threshold for
determining cluster centers

Neural signals in the same functional module fluctuate synchro-
nously. After preprocessing of the measured data, we quantify
the synchronization of calcium oscillations by calculating the
functional similarity matrix [Fig. 1(c)]. Similarity between two
pixels can be defined in many ways, and Pearson’s correlation
coefficient between time series of the recorded pixels was used
to measure similarity in this study, given by the following
equation:

EQ-TARGET;temp:intralink-;e001;326;528Rtði; jÞ ¼
P

F
f¼1½piðfÞ − piÞðpjðfÞ − pj�

ðF − 1Þσiσj
; (1)

where the functional similarity matrix Rt is the temporal corre-
lation coefficient matrix (N × N, in which N is the number of
pixels), Rtði; jÞ is the correlation coefficient between pixels i
and j, F is the frame number, p is the mean value of the time
series for each pixel, and σ is the standard deviation of p.

A threshold is applied to the similarity matrix to extract the
strong connections used to determine the candidate central pix-
els. The threshold value for the correlation matrix will affect the
final clustering results. An appropriate threshold should balance
the compactness within a cluster and the heterogeneity between
different clusters. To determine the threshold, clustering tests
were conducted on the resting-state data of the calcium signal
recorded from mice brains at 0.1 to 1 and 0.1 to 4 Hz filtering
bands with thresholds ranging from hjRtji − σðjRtjÞ to hjRtji þ
2σðjRtjÞ at intervals of 0.025σðjRtjÞ, where hjRtji is the average
of all elements in Rt and σðjRtjÞ is the corresponding standard
deviation. The SI (see Sec. 5.3)28,31,38–40 and average cluster
number are used as the measures for clustering performance.
For the functional connectivity patterns obtained from the spon-
taneous calcium signal, a high SI value means that the correla-
tion coefficients of the calcium-signal time series of the pixels
contained in a functional module are as high as possible, and the
correlation coefficients between the pixels in other functional
modules are as low as possible. The closer the SI is to 1, the
better the clustering effect. As shown in Fig. 2, the blue and
orange-dotted lines show average SI and average cluster num-
ber, respectively, for different thresholds, where the cluster num-
ber increases gradually with α. We expected to be able to obtain
a greater number of clustering numbers on the premise that its
corresponding SI value is sufficiently large. The mean SI of all
thresholds is shown as the green-dotted line in Fig. 2. It can be
seen that the SI decreases at the beginning and approximately
flattens around the green-dotted line in the interval from α ¼ 0
to α ¼ 1. It then gradually decreases as the threshold increases.
We then chose the threshold value corresponding to the transi-
tion of the SI curve from the flat to the declining period [i.e.,
rtthre ¼ hjRtji þ σðjRtjÞ]. The rtthre was used for both simulated
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and in vivo mouse data to ensure a high performance and large
number of clusters simultaneously.

2.1.2 Determining cluster centers

Equations (2) and (3) were used to obtain the thresholded
similarity matrix R 0

t , in which all the elements whose absolute
values were below the threshold were set to 0. The element in
row i and column j of R 0

t is denoted as rij, which represents
the thresholded correlation coefficient between pixels i and j
(i; j ∈ ½1; N�). DCBFC clusters data by splitting the similarity
matrix R 0

t . Here Hi is the number of nonzero values of row i’th
of R 0

t given as in Eq. (4). If Hi is lower than the cutoff index nc
(usually set as 1% to 2% of N35), then pixel i may not be con-
sidered as a candidate cluster center. In Eq. (5), we set φðHiÞ to
zero to prevent pixel i from being selected.

EQ-TARGET;temp:intralink-;e002;326;142rij ¼ rijχðrijÞ; j ∈ ½1; N�; (2)

EQ-TARGET;temp:intralink-;e003;326;90χðrijÞ ¼
�
1; if jrijj > rtthre
0; otherwise

; (3)

Fig. 1 DCBFC Sketch. Step i: (a) Raw time-series fluorescent calcium images are acquired and proc-
essed with a 0.1- to 4-Hz bandpass. Then, (b) the preprocessed images are obtained by global signal
regression. Step ii: (c) The similarity matrix using Pearson’s correlation between the time series is calcu-
lated. Then, a dataset fDg ¼ f1; : : : ; Ng is initialized. Step iii: The composite index γ values of all pixel are
calculated, and (d) these values are sorted in descending order. The red-dotted line corresponds to the
threshold γthre. The pixels whose γ values are greater than γthre are chosen as candidate central pixels.
Step iv: The central pixels (e, black stars) of the current loop are screened out. Step v: Those pixels that
are similar to the central pixels are removed from fDg, and the similarity matrix of the remaining pixels is
used for the next loop. Steps iii–v: are repeated until no central pixels are available to select. Step vi: (f) All
central pixels are obtained. Step vii: (g) All the other pixels in the image are assembled to the clusters
corresponding to their central pixels. Step viii: The seed pixel functional connection maps corresponding
to all pixels in the same cluster are averaged, and (h) the RSFC patterns of all clusters are obtained.

Fig. 2 Explore the threshold of DCBFC through experimental testing.
Blue line and orange-dotted line, respectively, indicate average SI
and average cluster number of different thresholds. Green-dotted line
indicates the mean of all SI. In this study, the trading-off between
SI and number of clusters was concerned. The threshold was set
to be hjRt ji þ σðjRt jÞ.
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EQ-TARGET;temp:intralink-;e004;63;752Hi ¼
X
j

χðrijÞ; (4)

EQ-TARGET;temp:intralink-;e005;63;707φðHiÞ ¼
�
1; if Hi ≥ nc
0; otherwise:

(5)

Two quantities were defined as criteria to determine the clus-
tering center: the rank degree δi (the average of the absolute cor-
relation coefficients that are greater than the rtthre between the
i’th pixel and all other pixels) and the maximum correlation
coefficient αi between pixel i and the other pixels whose δ val-
ues are higher than the δ value of pixel i. The reason we use the
average correlation coefficient instead of the sum of multiple
correlation coefficients is to ensure there is a chance for those
pixels that have a specific seed-point correlation map, but with
a small probability of occurrences in the correlation maps of all
pixels, to be selected as cluster centers. Then, the pixel with the
largest δ value is screened out and its α value is set to 0.

EQ-TARGET;temp:intralink-;e006;63;551δi ¼
φðHiÞ
Hi

X
j

jrijj; (6)

EQ-TARGET;temp:intralink-;e007;63;492αi ¼
8<
:

0; if δi ¼ maxðδÞ�
riljl ¼ arg max

j∈½1;N�;δj>δi

ðrijÞ
�
; otherwise: (7)

Finally, a composite index γ is defined as

EQ-TARGET;temp:intralink-;e008;63;443γi ¼

8>>><
>>>:

∞; if ΨðδiÞ ≠ 0 andΨðαiÞ ¼ 0

or δi ¼ maxðδÞ
0; if ΨðδiÞ ¼ 0 andΨðαiÞ ¼ 0
ΨðδiÞ
ΨðαiÞ ; otherwise

; (8)

EQ-TARGET;temp:intralink-;e009;63;355ΨðxÞ ¼ x −minðxÞ
maxðxÞ −minðxÞ ; (9)

where δ and α are normalized to the same orders of magnitude.
The γ of all pixels are sorted in descending order. The sorted γ
[Fig. 1(d)] rapidly falls off at the beginning and decreases slowly
thereafter. This sorted γ curve can be fitted by a formula such as
½k1 · expðk2∕xÞ − expð−k3∕xÞ�∕k4 through an experimental
test. Let γ0 be the largest rational number of γ. We then calculate
the threshold γthre by the formula γthre ¼ ðγ0 − 1Þ∕eþ 1. Pixels
with γ values greater than γthre are cluster central candidates.
If ΨðδiÞ and ΨðαiÞ both encounter 0, γi will be set to zero.
This pixel may represent a slave point in one cluster.

To determine exhaustively the central pixels using the sim-
ilarity matrix Rt, we initialize a dataset fDg ¼ f1; : : : ; Ng that
contains all pixels and perform a screening of the cluster centers
in each loop: the pixels whose γ are greater than γthre are
extracted from current dataset fDg as candidate centers.
Then, the correlation coefficients between all pairs of candidate
centers are evaluated. For the two candidates whose correlation
is greater than rtthre, the candidate with a lower γ will be
removed from the list of candidate centers. The candidates that
have not been deleted will then be selected as cluster centers.
Before the next loop begins, the nc pixels that are most similar
to each central point are removed from the dataset fDg together
with the determined cluster centers. In addition, the pixels
whose correlation coefficient with the removed nc pixels is

greater than rtthre are also removed from the dataset fDg. Then,
the loop is repeated for new centers until all cluster centers are
screened out (Fig. 1, steps iii to v).

2.1.3 Clustering all pixels to form the functional modules

After all cluster centers are obtained [Fig. 1(f)], all other pixels
must be assembled to the clusters corresponding to the obtained
central pixels. A pixel will be assigned to a center pixel with
which it has the highest correlation among all the central pixels.
Considering that the signal-to-noise ratio (SNR) of the sponta-
neous calcium activity signal with a single central pixel may
be low, assembling a cluster based on it may reduce the com-
pactness of the intracluster. Therefore, we used an averaged cal-
cium signal for each cluster. To determine the pixel sets fCig
(i ¼ 1; 2; : : : ; k) used to obtain the averaged calcium signal, the
γ values of all the pixels of the image are first sorted in descend-
ing order. Then, the number ofm pixels (i.e., less than 1% of the
total number of pixels) were allocated (i.e., according to the
order of the γ values, from high to low) to the central pixel
if its correlation coefficient with the central pixel is greater than
rtthre. The mean spontaneous calcium activity signal over the m
pixels in the pixel set fCkg is regarded as the calcium activity
signal sequence of the cluster corresponding to a central pixel.
Then, each pixel is clustered into its most correlated cluster (i.e.,
with the highest correlation coefficient with the averaged cal-
cium signal) [Fig. 1(g)]. Finally, the seed functional connection
maps corresponding to all pixels in the same cluster are averaged
to construct the RSFC of isocortex [Fig. 1(h)].

In this manner, DCBFC can automatically obtain the main
resting-state functional modules, which makes further func-
tional connection analysis more convenient.

2.2 Data Preparation

2.2.1 Simulation data

To evaluate the feasibility of DCBFC in processing resting-state
optical imaging data, the simulated data were constructed using
a linear superposition of the simulated cortical neural activity
images and the background cortical images. The simulated cort-
ical neural activity for each pixel consisted of multispike time
series, as introduced by Pnevmatikakis et al.42 The background
images were 1800 frames of autofluorescence images of resting-
state C57BL/6J mouse cortex collected by the same optical im-
aging system used for the following calcium-signal imaging.

To validate DCBFC, we generated a simulated dataset con-
taining the artificial functional modules as labeled ground truth
in the following manner. First, we created a template pattern
with a specific number of functional modules in the cerebral cor-
tex and generated simulated cortical neural activity signals for
each pixel. Pixels within the same module were highly corre-
lated. Second, the background cortical images containing the
physiological noises were superimposed on the simulated cort-
ical neural activity images.

To evaluate the performance of DCBFC under different lev-
els of SNR, we changed the amplitude ratio between the neural
and background signals to obtain simulation data with different
SNR ranges. Simulated data were also produced with different
numbers of functional modules and different image sizes
(64 × 64, 128 × 128, and 256 × 256) as follows.

i. Number of functional modules: 7, SNR level: −16 to
10 dB, time points: 1800, repeat times: 3.
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ii. Number of functional modules: 11, SNR level: 5 dB,
time points: 1800, repeat times: 3.

iii. Number of functional modules: 11, SNR level: −10 dB,
time points: 1800, repeat times: 3.

iv. Number of functional modules: 50, SNR level: 5 dB,
time points: 1800, repeat times: 3.

v. Number of functional modules: 50, SNR level: −10 dB,
time points: 1800, repeat times: 3.

2.2.2 Animal data acquisition and preprocessing

All procedures were approved by the Committee for the Care
and Use of Laboratory Animals at Huazhong University of
Science and Technology. We generated Vglut2-GCaMP6s trans-
genic mice (n ¼ 4, at approximately 6 weeks of age) by crossing
the homozygous Vglut2-ires-cre (Jax. #016963) and RCL-
GCaMP6s (Ai96; Jax. #024106) strains. The presence of
GCaMP expression was determined by genotyping each animal
with polymerase chain reaction amplification.

Mice were anesthetized with isoflurane (1.5% in O2) and
placed in a stereotaxic apparatus. The body temperature was
maintained at 37°C� 0.5°C. We made an intact skull window
according to Ref. 43. A homemade fixed steel sheet was
attached to the occipital bone with dental cement. The intact
skull was directly covered with a thick layer of dental adhesive
(C&B-Metabond, Parkell, Edgewood, New York). Before the
mixture became solid, a circular cover glass was gently placed
on the skull without forming bubbles.

Widefield fluorescent calcium imaging was recorded through
a transparent window (∼8 × 8 mm). We focused the camera
∼400 μm below the surface to reduce the effects of blood
vessels. The cranial window was illuminated with a blue light-
emitting diode (480 nm, FF01-480/40-25, Semrock), and the
fluorescence GCaMP signal was acquired through a green light
bandpass filter (530 nm, FF01-535/50-25, Semrock). We cap-
tured the spontaneous calcium-signal images using a SCMOS
camera (16 bits, 6.5 × 6.5 μm, HAMAMATSU ORCA-
Flash4.0 V3 C13440-20CU) at 10 Hz for 3 min each epoch.

A mouse cortical atlas was adapted from the Allen Institute
Brain Atlas. We registered the Vglut2-GCaMP6s mice brain by
marking bregma and an arbitrary marker on the sagittal suture
according to the Allen Atlas. To remove the contribution of
global physiological characteristics and other global fluctuations
during imaging, the spontaneous activity of each pixel point in
the recording sequence was subtracted from their mean fluores-
cence values for the entire time course. Then, a bandpass filter
was used to the demean time courses to custom frequency bands
temporally (e.g., 0.1 to 4 Hz). Finally, we used global signal
regression to remove potential global sources of noise (e.g.,
respiratory and cardiac noises).44

2.3 Clustering Performance Evaluation

The performance of DCBFC was assessed in terms of calcula-
tion time, receiver operating characteristic curve (ROC),45

ARI,37,39 SI,28,31,38–40 and Dice’s coefficient.31,46 We used both
simulation and animal experimental data to evaluate the perfor-
mance of DCBFC and compared it with commonly used clus-
tering methods, including k-means, hierarchical, and spectral
clustering. It should be noted that DCBFC clustering uses a
thresholded similarity matrix to calculate the candidate central
pixels when determining the cluster center, which can be

regarded as dimensionality reduction of data. For better evalu-
ation of the speedup of DCBFC as compared with other algo-
rithms, we used PCA to reduce the dimensionality of the time
series for all pixel points for k-means and hierarchical clustering
(referenced as PCA-k-means, PCA-hierarchical), in which the
first q principal components corresponding to 90% of the total
eigenvalues were chosen, resulting in a reduction of the data
from N × T to N × q. For spectral clustering, singular value
decomposition (SVD) was used to extract the eigenvectors of
the Laplacian matrix and conduct k-means clustering for the
extracted K eigenvectors. Thus, SVD reduces the dimensional-
ity from N to K. In addition, we used the thresholded similarity
matrix R 0

t (N × N) used in DCBFC as the weighted matrix for
spectral clustering (referred to as spectral-threshold clustering).

All clustering programs described in the following sections
were run on the same PC [Intel® Core (Xeon®) CPU E5-2687W
v3 @3.10 GHz, RAM 256 GB], and all methods were tested
using MATLAB code.

2.3.1 ROC test

The ROC curves (see Sec. 5.1) were plotted to analyze the rela-
tionship between artificial functional modules [Fig. 3(a)] and
the functional connectivity maps obtained by DCBFC using the
simulated data.

2.3.2 ARI test

Given the truth labels and clustering assignments, ARI (see
Sec. 5.2) can measure the similarity between them. In the range
of ARI as [−1, 1], −1 indicates a bad clustering implement and
1 indicates a perfect match. Because the real clustering labels of
simulation data are known, ARI is usually used to evaluate the
performance of clustering algorithms with truth label assign-
ments. K-means clustering, PCA-k-means clustering, and spec-
tral clustering were repeated 50 times each turn, and the best
clustering result was used. In this manner, we could compare
the antinoise abilities and computation times of the different
algorithms at diverse scales. We also tested the performance
of seven clustering methods on different cluster numbers (see
Fig. S1 in the Supplementary Material).

2.3.3 SI and Dice’s coefficient test

Because no ground truth labels exist when clustering in vivo
neural activity of brain regions, the clustering performance
evaluation ARI is not applicable. Therefore, we adopted the SI
(see Sec. 5.3) as a metric.28,38–40

To compare the reproducibility of the clustering results,
Dice’s coefficients for different methods were calculated to
evaluate the similarity between the clustering results obtained
at the group and individual levels.31,46 The range of Dice’s coef-
ficient was [0, 1], where 0 means no similarity and 1 means a
complete match.

The functional modules were clustered to obtain the individ-
ual-level clustering result for each epoch. Each individual-level
clustering result was then converted into an N × N adjacency
matrix A, in which Aij ¼ 1 if pixels i and j were in the same
cluster; otherwise, Aij ¼ 0.31 All adjacency matrices of the indi-
vidual level were subsequently summed to obtain group adja-
cency matrix Ag. Then, the correlation coefficient matrix of
Ag was clustered by DCBFC to obtain the clustering result for
the group level.
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2.4 Comparing RSFC with Anatomic Connectivity of
Axonal Projection

To further validate the functional connectivity obtained, we
compared RSFC with the anatomic connectivity of axonal
projection obtained using the voxel-scale connectivity model
proposed by Knox et al.41 to construct the whole isocortical con-
nectivity at a scale of 100-μm voxels. The model interpolates
projection intensity in source space and enabled us to easily
analyze the connectivity both in voxel and region scales.

The axonal projection data were downloaded from the Allen
Mouse Brain Connectivity Atlas website;47 the detailed informa-
tion is listed in Table S2 in the Supplementary Material. Because
no anatomy projection experimental data on the isocortex are
found for the Vglut2-IRES-Cre line (widely expressed in most
areas of the brain, except very sparse expression in the striatum
and restricted populations within cerebellum, medulla, and
pons), we used projection data from 185 experiments using sev-
eral other types of mice, including C57BL/6J and excitatory Cre
driver mice, which express in intratelencephalic neurons (project
to both ipsilateral and contralateral cortex).48 All experiments
used rAAV tracers for the labeling of axonal projections.
These data were used to fit the voxel-scale model and derive the
projection connectivity of the whole isocortex. Experiments
were selected based on the following characteristics: (1) the
experiment should not have large volume saturated in the injec-
tion region, and (2) the experiment should not have only few
projection volumes outside of the injection site.

We used the Nadaraya–Watson connectome estimator with a
radial basis function (RBF) kernel introduced by Knox et al.41

to estimate the projection connectivity (https://github.com/
AllenInstitute/mouse_connectivity_models). The voxel-scale
connectivity model was constructed to include the connectivity
projections from all voxels within the isocortical. The model fits
the bandwidth of the RBF kernel by employing nested cross
validation with held-out injection experiments.

To explore the relationship between RSFC and projection
connectivity, we first calculated the spatial correlation between
RSFC patterns obtained by different clustering methods and the

projection density (PD) maps11 (see Sec. 5.5). We filtered the
coordinate positions of mice isocortex according to information
about brain regions provided in the Allen Mouse 3D Reference
Model annotation and based on the coordinates of structure
centers. The two-dimensional (2-D) normalized PDs were
derived from the voxel-scale model41 and considered only the
projection pathways of the brain regions on the isocortex. We
compared the RSFC map with axonal PD patterns both in region
and voxel scales: (1) the regional RSFC maps, RSFCreg, versus
regional PD patterns, PDreg (Fig. 6). (2) The RSFC maps of
central seed obtained by DCBFC, RSFCDCBFC;cen, versus the
PD patterns, PDcen, of the same cortical location (Fig. S2 in the
Supplementary Material).

In addition, to explore quantitatively whether the functional
links between the functional modules obtained by DCBFC had
the anatomical connections, we calculated the functional con-
nection strength (see Sec. 5.4) between different functional
modules49,50 and compared them with the normalized projection
connection density (see Sec. 5.6) between these functional mod-
ules. The average connection strength (ACS) of one functional
module is used to quantify the overall strength of its connections
across the whole isocortex. In addition, the average connection
diversity (ACD) of different functional modules was calculated
(see Secs. 5.4 and 5.6), which was derived from the Shannon
entropy51 and has been used in fMRI.49,50 Connection diversity
quantifies the uncertainty that one functional module will con-
nect to another. Module with low ACD prefers to connect with
only a few functional modules. Module with high ACD trends to
evenly connect with other regions across the whole isocortex.
Here, “high” and “low” are relative values (i.e., relative to other
functional modules, the connection strength or diversity is high
or low). We normalized the ACS and the ACD to [0, 1] and
regarded the normalized value that was greater than 0.5 as
relatively high; otherwise, it was relatively low.

To conduct this analysis, DCBFC was used to obtain auto-
matically the functional connection patterns of spontaneous neu-
ral activities in Vglut2- GCaMP6s mice (epoch ¼ 6), and the
functional modules are formed at the group level. In the bilateral

Fig. 3 ROC analysis. Use ROC curves to analyze the relationships between artificial functional modules
and functional connectivity maps with different SNR levels (SNR: −16 to 10 dB). Averaged functional
connection maps were generated for each ROI and seven series of ROC curves were plotted above.
(a) Simulation template, (b) module 1, (c) module 2, (d) module 3, (e) module 4, (f) module 5, (g) module
6, and (h) module 7.
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hemisphere, some symmetrical regions are clustered into one
functional module [e.g., top of Fig. 4(c), white arrow], whereas
others are divided into two. We merged the symmetrical regions
as a functional module. Eight modules, represented as M2, M/S,
BF, RSP/M, V, HL, FL, and PtA/SSp-tr, were then analyzed
[Fig. 8(a)].

3 Results

3.1 Clustering Performance Evaluation

3.1.1 ROC test

Figure 3 provides the ROC curves of functional connectivity
patterns obtained by DCBFC at different SNR levels in the
simulated data. The results show that a strong correspondence
existed between the functional connection map and simulated
functional module, even when the SNR ratio is very low.
For all modules [see Figs. 3(b)–3(h)], the clustering results and
true labels had the strongest correspondence (100% sensitivity
and 100% specificity) in a broad range of thresholds (0.1130 to
0.7070) with SNR equal to 10 dB. When the SNR was −16 dB,
the strongest correspondence of module 1 [Fig. 3(b)] exhibited
73.8% sensitivity and 64.4% specificity. The values for the other
regions (at −16 dB) were as follows: module 2 [Fig. 3(c), 91.6%
sensitivity and 88.9% specificity], module 3 [Fig. 3(d), 68.2%
sensitivity and 50.5% specificity], module 4 [Fig. 3(e),
56.8% sensitivity and 62.4% specificity], module 5 [Fig. 3(f),
71.3% sensitivity and 65.8% specificity], module 6
[Fig. 3(g), 63.8% sensitivity and 57.6% specificity], and module
7 [Fig. 3(h), 65.6% sensitivity and 62% specificity].

3.1.2 ARI test

Simulated cortical neural activity data with different image sizes
(64 × 64, 128 × 128, and 256 × 256) were clustered using dif-
ferent methods. Table 1 shows the ARI values of the results
obtained by the clustering algorithms for the aforementioned
three image sizes, with Rt as the similarity matrix. It was
observed that DCBFC had significantly higher ARI values than
those of k-means [two-way ANOVA tests, false discovery rate

(FDR) correction, p < 0.001], spectral clustering (p < 0.001),
PCA-k-means (p < 0.001), and spectral-threshold clustering
(p < 0.001 for 64 × 64, p < 0.01 for the others).

The clustering performances of different methods for various
numbers of clusters (4, 11, and 50 functional modules, respec-
tively) are shown in Fig. S1 in the Supplementary Material.
When the SNR level was greater than −8 dB, the ARI value
of DCBFC approximated 1. With the addition of spatial back-
ground noise, DCBFC had the highest ARI value [blue line in
Fig. S1(a) in the Supplementary Material].

3.1.3 Functional parcellation obtained with in vivo data

Figure 4 shows the group-level functional clustering results
of the Vglut2-GCaMP6s mice data (128 × 128 image size,
epoch ¼ 6) using different clustering methods (DCBFC, k-
means, hierarchical, and spectral clustering). The results were
registered in the Allen Mouse Brain Atlas [Fig. 4(b)] using the
two markers on the skull [Fig. 4(a), red points]. In this study,
DCBFC obtained 12 functional modules at the group level
[upper left of Fig. 4(c), epoch ¼ 6]. Because the other clustering
methods needed to set a specific number of clusters, the same
number of functional modules as the DCBFC was used for
k-means, hierarchical, and spectral clustering.

Figure 4(c) shows the functional modules clustered by
DCBFC, k-means, hierarchical, and spectral clustering, and the
corresponding functional connectivity maps are shown in the
right of Figs. 6(a)–6(d). The functional connectivity maps illus-
trate that a correlation of spontaneous neural activity existed
between the bilateral brain regions. Some regions that symmet-
rically connect between the bilateral hemispheres may have
been clustered into the same functional connection module
[upper left of Fig. 4(c), white arrow]. Some functional connec-
tion modules clustered by DCBFC were highly correlated to the
anatomy brain areas (i.e., visual areas and primary somatosen-
sory barrel field), whereas others may have covered more than
one brain area, such as primary motor cortex, secondary motor
cortex, and somatosensory area [upper left of Fig. 4(c), green
arrow], which reflect the interconnection between different brain
function areas.

Fig. 4 Comparison with other existing methods for in vivo Vglut2-GCaMP6s mouse data. Two markers
(bregma and one arbitrary marker) were made on the sagittal suture (a) and registered with the Allen atlas
(b). (c) The clustering results of DCBFC, k-means, hierarchical, and spectral clustering at group level
(epoch ¼ 6). All pixels are color-coded based on the functional module to which they belong. Some func-
tional modules may contain more than one brain region.
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3.1.4 SI and Dice’s coefficient test

The average SI values of all experimental epochs for different
clustering algorithms were 0.35, 0.33, 0.31, 0.32, 0.33, 0.31,
and 0.34, for DCBFC, k-means, hierarchical, spectral, PCA-
k-means, PCA-hierarchical, and spectral-threshold clustering,
respectively, which indicate that the functional modules
obtained by DCBFC had the highest synchronization between
intercluster heterogeneity and intracluster homogeneity. The
average Dice’s coefficients under all experimental epochs for
the aforementioned methods were 0.65, 0.64, 0.58, 0.64,
0.63, 0.59, and 0.64, respectively, indicating that DCBFC had
the highest reproducibility.

3.1.5 Computation time

Figure 5 illustrates the relative speedup performance of DCBFC
compared to the other methods for three image sizes of the simu-
lated data. We observed that hierarchical clustering, which links
cluster objects step by step to generate a complete tree, had the
longest computation time. The ratio of computing time between
hierarchical clustering and DCBFC was in the range of 211.9 to
2855×. Because k-means clustering must be calculated 50 times
to obtain an optimal result, its calculation time was longer than
that of DCBFC 3.7 to 16;542×. Sometimes the iterations of
k-means clustering were difficult to converge [Fig. 5(c), blue
bar, 16;542×], which incurs a very long clustering time. The
computation time for spectral clustering was affected by the
number of functional modules, which was 1.1 to 133.2× longer
than DCBFC in the case of 50-functional modules. After PCA
was used to reduce the dimensionality of data, the computing
times of k-means (PCA-k-means, Fig. 5, steel blue bar,
2.0 to 25.5×) and hierarchical clustering (PCA-hierarchical,
Fig. 5, sky blue bar, 41.7 to 2171×) were greatly reduced.
Spectral-threshold clustering (1.3 to 330.4×) was not always
faster than spectral clustering (Fig. 5 dark blue and black bars),
which means that the threshold similarity matrix used in
DCBFC was not the key to improving the speed. DCBFC still
had a very short calculation time. In all cases, the calculation
time of DCBFC was lower than those of the other methods.

Table 2 shows the average computing time of each algorithm
for clustering Vglut2-GCaMP6s transgenic mice data. For the
128 × 128 image size, the computation speedup of DCBFC was
51.3, 837.5, 1.6, 16.0, 289.2, and 1.5× faster than that of k-
means, hierarchical, spectral, PCA-k-means, PCA-hierarchical,
and spectral-threshold clustering, respectively. To better demon-
strate the advantages of DCBFC in terms of computing time,
we clustered the images at a higher resolution (256 × 256,

epoch ¼ 3). DCBFC was 13.0, 1406.0, 1.1, 2.1, 1308.1, and
1.6× faster than the other aforementioned methods, respectively.

3.2 Relationship between RSFC and Axonal
Projection Connectivity

3.2.1 Spatial correlation between isocortical axonal
projection maps and RSFC maps

In Fig. 6, the left plot of each subfigure shows the normalized
regional PDmaps PDreg corresponding to 12 functional modules
derived by the clustering methods [Fig. 4(c)]. The right side of
the subfigures shows the RSFC maps corresponding to the
modules. Figures 6(#1)–6(#12) represent M2 (secondary motor
area), M/S (portions of motor areas combined with portions
of primary somatosensory areas), L_BF (left primary somato-
sensory barrel field), R_BF (right primary somatosensory barrel
field), HL (primary somatosensory lower limb), L_FL (left pri-
mary somatosensory upper limb), R_FL (right primary somato-
sensory upper limb), RSP/M (retrosplenial area combined with
motor areas), L_V (left visual areas), R_V (right visual areas),
L_PtA/SSp-tr (left posterior parietal association areas combined
with primary somatosensory trunk), and R_SSp-tr/PtA (right
posterior parietal association areas combined with primary
somatosensory trunk). Figure 6(a) shows that all functional con-
nectivity maps obtained by DCBFC had similar axonal projec-
tion patterns, in which the minimum and maximum spatial
correlation coefficients were 0.75 and 0.91, respectively. It is
worthy to note that when the contralateral hemispheric connec-
tions existed in the RSFC map, the corresponding axonal pro-
jections also exhibited these long-range connections.

The spatial correlation coefficients between the regional
RSFC maps obtained by different clustering methods and the
corresponding regional PD patterns were calculated. The aver-
age spatial correlation coefficients for each method were 0.8288
(DCBFC), 0.8266 (k-means), 0.8156 (hierarchical), 0.8230
(spectral), 0.8271 (PCA-k-means), 0.8234 (PCA-Hierarchical),
and 0.8262 (spectral-threshold). The average spatial correlation
coefficient of DCBFC was slightly higher than that of other
methods.

We also compared the RSFC maps of central pixels found
using DCBFC with the PD patterns of the same cortical location
obtained using the voxel-scale connectivity model, as shown in
Fig. S2 in the Supplementary Material. The RSFCDCBFC;cen and
PDcen patterns both showed a long-range link to contralateral or
ipsilateral hemisphere for some brain regions. For example,
we can see a functional connection between M2 and BF
[Figs. S2(d)–S2(f) in the Supplementary Material] existing
in both bilateral hemispheres,28 which can also be found in

Table 1 Simulation testing: comparing the ARI of DCBFC with the other clustering methods using different picture size.

Image size DCBFC K-means Hierarchical Spectral PCA-k-means PCA-hierarchical Spectral-threshold

64 × 64 0.94� 0.08 0.76� 0.10** 0.95� 0.07ðp ¼ 0.989Þ 0.81� 0.03** 0.74� 0.08** 0.90� 0.10ðp ¼ 0.050Þ 0.89� 0.10**

128 × 128 0.99� 0.02 0.80� 0.09** 0.99� 0.01ðp ¼ 1.000Þ 0.80� 0.07** 0.75� 0.08** 0.99� 0.01ðp ¼ 1.000Þ 0.92� 0.09*

256 × 256 0.99� 0.01 0.83� 0.07** 0.99� 0.00ðp ¼ 1.000Þ 0.84� 0.12** 0.77� 0.08** 0.99� 0.00ðp ¼ 1.000Þ 0.94� 0.07*

Note: Two-way ANOVA tests with FDR correction were used to compare the significant difference between ARI of DCBFC and the other methods.
*p < 0.01.
**p < 0.001.
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the PD when the injection site of the PD map is M2 or BF. It
should be noted that the average spatial correlation coefficient
between the RSFC maps of the central pixels (RSFCDCBFC;cen)
obtained by DCBFC and the relevant normalized PD (PDcen)

patterns with the same location was lower than that between
the regional RSFC maps (RSFCDCBFC;reg) and regional normal-
ized PD (PDreg) patterns (0.69� 0.07 versus 0.83� 0.05).
In addition, the average spatial correlation coefficient between

Table 2 Experimental testing: comparing the average computing time of DCBFC to the other methods under different image size.

Image Size DCBFC K-means Hierarchical Spectral PCA-k-means PCA-hierarchical Spectral-threshold

128 × 128 5.6� 0.4 s 286.7� 247.0 s 4677.1� 1565.9 s 9.2� 1.1 s 89.3� 92.6 s 1614.9� 66.0 s 8.6� 0.8 s

256 × 256 79.8� 1.6 s 1038.0� 166.7 s 31.2� 0.5 h 88.3� 2.0 s 166.4� 90.9 s 29.0� 1.2 h 131.0� 4.8 s

Note: Hierarchical and PCA-hierarchical were calculated in hours (h) at 256 × 256 image size. Others were measured in seconds (s).

Fig. 5 The relative speedup performance of DCBFC to the other methods (using Rt as the similarity
matrix). Data were tested on three types of image resolutions: 64 × 64, 128 × 128, and 256 × 256.
(a) 11-functional modules type data with 5 dB SNR level. (b) 11-functional modules type data with −10 dB
SNR level. (c) 50-functional modules type data with 5 dB SNR level. (d) 50-functional modules type data
with−10 dB SNR level. Compared with the other methods (k-means, hierarchical, spectral, PCA-k-means,
PCA-hierarchical, and spectral-threshold clustering), DCBFC, respectively, provides a 3.7 to 16;542× per-
formance boost over k-means clustering, a significant 211.9 to 2855× performance boost versus hierar-
chical clustering and almost 1.1 to 133.2× performance boost versus spectral clustering. Compared with
k-means and hierarchical clustering using PCA, DCBFC also has 2.0 to 25.5× and 41.7 to 2171× perfor-
mance boost. And has 1.3 −330.4× performance gain versus spectral-threshold clustering.
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Fig. 6 Comparing the RSFCreg derived from different clustering methods (DCBFC, hierarchical, k-
means, and spectral clustering) with the PD patterns (top views) PDreg derived from the voxel-scale
model. (a)–(d) Left, the 2-D normalized isocortical PD maps constructed by the regionalized voxel-scale
model, where the bottom left shows the injection_structure(s); right, functional connectivity maps
obtained by clustering methods, where the lower left shows the brain region(s) covered by each func-
tional connection module. The top of each pair of subfigures shows the spatial correlation coefficient of
the two maps. Each row represents the connection maps for one of functional modules. The white circle
represents the bregma mark.
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RSFCDCBFC;reg and RSFCDCBFC;cen maps was 0.94� 0.05.
Correspondingly, the average spatial correlation coefficient
between PDreg and PDcen maps was 0.74� 0.12. The average
spatial correlation between the RSFC maps and PD patterns
across all seed pixels was 0.55� 0.09.

3.2.2 ACS and ACD analysis of RSFC and axonal
projection

Figure 8(b) shows the resting-state connection strength csðu; vÞ
between the different functional modules clustered by DCBFC,
where only significant connections were shown (t-test, FDR
correction, p < 0.01). Figure 8(c) shows the projection connec-
tion strength between different functional modules; only the
connections whose PD is greater than 1.20 × 10−04 are shown.
The results reveal that all significant functional connections
between functional modules clustered by DCBFC could be
found in the axonal projection connectivity derived from the
voxel scaling model. In addition, projection connectivity, shown
in Fig. 8(c), had several additional connections (dashed line) that
were not apparent in the resting-state functional connection,
such as the connection between PtA/SSp-tr and M2, PtA/
SSp-tr and V, BF and HL, M2 and HL, and BF and V.

The functional connections between M2, M/S, FL, and BF
shown in Fig. 8(b) were also found in previous studies.28,52,53

When M2 was the injection structure [Fig. 8(c)], the axonal pro-
jections were found to be transmitted to ipsilateral M/S, FL, BF
modules, and the contralateral hemisphere [Fig. S2(d) in the
Supplementary Material], which is consistent with the func-
tional connection. M/S also had axonal projections toward
FL. The injection site in motor area could project to SSp-m,
FL, and the contralateral hemisphere [Fig. S2(a) in the
Supplementary Material]. Table 3 shows that M/S closely con-
nected only to certain isocortical functional modules in both
RSFC and projection connectivity. The ACS between M/S
(or M2) and all the other modules in the isocortex was relatively
weak. The ACD of FL was relatively high both in RSFC and
projection connectivity. ACS of FL was relatively high for
RSFC but was relatively low for projection connectivity.
BF could project to M2, PtA/SSp-tr, and FL and also had a
long-range link to the contralateral hemisphere [Figs. 6(#3) and
6(#4)]. BF, HL, and PtA/SSp-tr had a relatively high ACS in
terms of both RSFC and projection connectivity. PtA/SSp-tr was
evenly connected to the other modules (high ACD). The projec-
tion pathway of the injection site in the visual cortex could be
remotely connected to the posteromedial secondary motor areas
[Figs. 6(a#9) and 6(a#10)], and this situation also occurred when
the source and target sites were exchanged [Figs. 6(a#8)
and 8(c), RSP/M and V]. It is interesting that the RSP, which
may correspond to the default mode network described in

humans,28,49 showed both functional and projection connection
with the visual, PtA/SSp-tr, HL, and posteromedial motor areas.
Visual cortex preferentially connected to specific isocortical
functional modules (e.g., link between V and RSP/M) in both
RSFC and projection connectivity. ACD of RSP/M was rela-
tively low for RSFC but was relatively high for projection
connectivity. The ACS between RSP/M (or V) and all other
modules in the isocortex was relatively weak. From Table 3, the
results indicated that some modules with relatively high ACD
(such as BF clustered by DCBFC) had few significant connec-
tions to other modules in Fig. 8.

4 Discussion

4.1 Influence of Number of Clusters for DCBFC

The other methods compared with DCBFC require a preset
number of clusters. For the result described in Sec. 3.1.4, the
clustering number of k-means was set as that obtained by
DCBFC. To further discuss whether the clustering performance
of DCBFC was also better than that of other methods for differ-
ent number of clusters, the SI values of the results obtained by
different methods were compared for the number of clusters
ranging from 4 to 20. The number of clusters for DCBFC was
changed by adjusting the threshold according to the method
described in Table S1 in the Supplementary Material.

Figure 7 demonstrates SI values of brain functional modules
clustered by DCBFC are higher than those clustered by k-means
clustering (p ¼ 0.0045), hierarchical clustering (p < 0.001),
spectral clustering (p < 0.001), PCA-k-means clustering
(p ¼ 0.0150), PCA-hierarchical clustering (p < 0.001), and
spectral-threshold clustering (p < 0.001) at a significance level
of 0.05 (two-way ANOVA test with FDR correction).

Table 3 The normalized ACD and ACS of different modules.

M/S V PtA/SSp-tr M2 RSP/M BF HL FL

ACDnorm;RSFC 0.000 0.106 0.610 0.404 0.426 1.000 0.482 0.740

ACDnorm;Proj 0.270 0.000 0.847 1.000 0.588 0.474 0.868 0.723

ACSnorm;RSFC 0.450 0.000 1.000 0.488 0.495 0.504 0.950 0.895

ACSnorm;Proj 0.000 0.211 1.000 0.199 0.241 0.585 0.533 0.288

Fig. 7 DCBFC and other methods were compared for different num-
ber of clusters. The average SI values of different cluster numbers
(from 4 to 20) of each method are shown (epoch ¼ 6).
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4.2 Influence of SNR on the Clustering
Performance

In this study, we tested the antinoise performance of different
clustering methods and used ARI37 to evaluate the performances
of different methods in clustering simulation data based on
ground truth class assignment knowledge.

For simulation data, in the 4-functional modules test [see
Fig. S1(a) in the Supplementary Material], with the addition
of spatial background noise, DCBFC had the highest ARI values
[blue line in Fig. S1(a) in the Supplementary Material] even at
high noise levels. K-means clustering [green line in Fig. S1(a) in
the Supplementary Material] and hierarchical clustering [red
line in Fig. S1(a) in the Supplementary Material] clustered the
data by calculating the correlation coefficients (r value) of each
pair of time series, and they were influenced by the shape of the
functional modules and background noise. This may have
caused the pixels in different functional modules to cluster into
the same module. Following PCA dimension reduction, the
clustering performances of k-means [PCA-k-means, yellow line
in Fig. S1(a) in the Supplementary Material] and hierarchical
clustering [PCA-hierarchical, pink line in Fig. S1(a) in the
Supplementary Material] improved, indicating that PCA dimen-
sion reduction was effective in eliminating spatial noise. For the
other simulation data testing, without the addition of spatial
background noise [see Table 1 and Figs. S1(b) and S1(c) in the
Supplementary Material], spectral-threshold clustering, which
employed the thresholded similarity matrix R 0

t (N × N) used
in DCBFC as the weighted matrix for spectral clustering, had
a higher ARI value than that of spectral clustering when using
zero as the threshold for the similarity matrix (two-way ANOVA
tests, FDR correction, p < 0.001 for all).

4.3 Time Consumption for Clustering

DCBFC clustering used a thresholded similarity matrix to cal-
culate the candidate central pixels during the step of determining
the cluster center, which could be regarded as dimensionality
reduction of data. To better evaluate the speedup of DCBFC
compared with other algorithms, dimensionality reduction pre-
processing was also applied to other clustering methods for
comparison, such as PCA-k-means, PCA-hierarchical, and spec-
tral-threshold clustering. The results showed DCBFC remained
faster than other methods. Figure 5(c) shows that an abnormal
calculation time existed for k-means (blue bar, 16;542×) which
was much longer than other cases. This was because some
clustering algorithms using iterative solution, such as k-means,
spectral clustering, etc., may sometimes encounter slow iterative
convergence due to the selection of initial value.

4.4 Difference of Clustering Methods for Functional
Parcellation

Figure 4(c) reveals that the functional modules divided by
different methods are slightly different. Compared to DCBFC,
k-means and spectral clustering divided the RSP/M, M2, and
BF regions into more subregions, hierarchical clustering did the
same for the M2 and BF regions. DCBFC derived the PtA/SSP-
tr module, which was not differentiated from the other cortex
regions by the other methods. The objective of DCBFC is to
have the central pixels of different clusters be remote from each
other and to aggregate all pixels based on their similarity to the
central pixels. K-means and spectral clustering use the average

time series of all the pixels in each cluster to update the current
cluster center in each iteration so that they usually obtain higher
intracluster correlation than DCBFC does. The average correla-
tion coefficients between different functional modules derived
using different methods were 0.40 (DCBFC), 0.46 (k-means),
0. 43 (hierarchical), and 0.45 (spectral), which indicated the
clusters obtained by DCBFC had largest distance between each
other. The average similarities within the same functional mod-
ule for different methods were 0.62 (DCBFC), 0.64 (k-means),
0.62 (hierarchical), and 0.63 (spectral). The intercluster similar-
ity of DCBFC was the lowest, whereas k-means and spectral
clustering were the highest (these relationships were still main-
tained for different number of clusters, data not shown).
Therefore, k-means and spectral clustering obtain more subre-
gions may be due to their high intracluster similarity and low
intercluster distance.

Comparing the RSFC patterns of aforementioned subregions
with the corresponding normalized PD maps [e.g., Figs. 6(a),
6(b)#8 versus Figs. 6(c), 6(d)#7, 6(d)#8; Figs. 6(a)#1 versus
Figs. 6(b)–6(d)#1, Figs. 6(b)–6(d)#11], we can see that the aver-
age spatial correlation coefficients between RSFCreg patterns
and their corresponding PDreg maps for these subregions were
smaller than that for only one region.

As previously mentioned, from the perspective of functional
clustering, when we hope that the functional connectivity mod-
ule can be closely in contact within the same cluster and be far
away from other clusters, SI can be used as an evaluation index
for clustering performance. The results showed that DCBFC had
the highest SI value and could rapidly cluster the connection
matrix.

4.5 Links between RSFC and Anatomy Projection
Connection

We describe the links between RSFC and anatomy projection
connection from two respects.

1. The spatial correlation coefficients of two types
of patterns reflect the spatial similarity between the
two maps on the top view. The results [Fig. 6(a)]
show that the spatial correlation coefficients between
RSFCDCBFC;reg and corresponding PDreg were in range
of [0.75, 0.91]. In addition, Fig. 8 shows that all the
significant functional connections between functional
modules can be found in the projection connectivity,
whereas projection connectivity has several additional
connections (dashed line) that are not shown in rest-
ing-state functional connection, such as the connec-
tions between PtA/SSp-tr and M2, PtA/SSp-tr and
V, BF and HL, M2 and HL, and BF and V. This may
be partly due to the difference between the strains of
mice used in projective connection fitting and that in
RSFC calculating. It may also be because the axonal
projection shows all existing anatomical output con-
nection through axons, but RSFC here only shows the
correlated spontaneous neural activity in the low fre-
quency (0.1 to 4 Hz). Moreover, the PDs connection
between two adjacent brain regions such as the con-
nection between BF and visual cortex might be over-
estimated when the virus is diffused from the injection
site to its surrounding area if the dose of virus is not
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well controlled, or the location of virus injection may
cover two adjacent function regions.

2. The ACD/ACS relationship is attempted to analyze
whether the connection diversities of RSFC and pro-
jection connection are also at the same level (higher or
lower) when their connection strengths are at the same
level (stronger or weaker). It was shown that both
ACD and ACS of axonal projection matched those
of RSFC in some cortical regions, such as M/S, V, and
PtA/SSp-tr. From Sec. 3.2.2, it could be seen that
although some functional modules were closely con-
nected to a few modules, their ACD values were rel-
atively high, such as the BF for RSFC. This was partly
because there were still weak connections between
these modules and other modules were not shown
besides those strong connections shown in Fig. 8.
Furthermore, ACD measures the difference of connec-
tion strengths between one functional module and all
the other cortical modules based on Shannon entropy.
If the difference of the connection strengths is large
(ACD value is low), this module will trend to coactiv-
ity with certain specific modules. If the difference of
connection strengths is small (ACD value is high),
the connections of this functional module are spread
evenly across the multiple brain regions.

5 Appendix

5.1 ROC

Given one artificial module, the values (true labels) of the pixels
within this module were set to 1 and other pixels were set to 0.
Then the functional connection maps obtained by DCBFC were
binarized with different thresholds (from −0.999 to 0.999, with

intervals of 0.001) at different SNR levels, in which the value of
the pixel was set to 1 if its correlation coefficient was greater
than the threshold value, whereas those of other pixels were set
to 0. Results were displayed using a series of ROC curves. For
each SNR level, the corresponding true positive rate (TPR or
sensitivity) versus false positive rate (FPR or 1-specificity) curve
is plotted under the background of artificial functional modules
(true label). In the equation FPR ¼ FP∕ðFPþ TNÞ, FP
denotes the number of pixels whose values are 1 in the binary
functional connection map but whose true labels are 0, and TN
denotes the number of pixels whose values are both 0. In the
equation TPR ¼ TP∕ðTPþ FNÞ, TP denotes the number of
pixels whose values are both 1, and FN denotes the number
of pixels whose values are 0 in binary functional connection
map but whose true labels are 1.

5.2 ARI

Given the truth labels and the clustering assignments, ARI
can measure the similarity between them. The range of ARI
is [−1, 1], where −1 indicates a bad clustering implement and
1 indicates a perfect match.
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where n is the total number of pixels,
� a
b

	
¼ a!

b!ða−bÞ! represents

the combinatorial number, nij denotes the number of pixels at
the intersection between artificial functional module i and clus-
ter j, ni· denotes the number of pixels of artificial functional
module i, and n·j denotes the number of pixels of cluster j.

Fig. 8 Relationship between resting-state connectivity of Vglut2-GCamp6s mice and the axonal projec-
tion connectivity. (a) DCBFC was used to cluster mice data, and the two hemispherically symmetric
functional modules were combined to form eight functional modules for analysis (M2, secondary motor
cortex; M/S, motor areas and somatosensory areas; BF, barrel field cortex; RSP/M, retrosplenial area
andmotor cortex; V, visual area; HL, hindlimb region; FL, forelimb region; PtA/SSp-tr, parietal association
areas and primary somatosensory trunk area). (b) The connection strength (undirected) between differ-
ent isocortical functional modules. Note that this shows only significant connections (t -test, FDR correc-
tion, p < 0.01). The value on the link denotes the ACS between two modules. (c) A corresponding
projection (directed) connectivity derived from the voxel-scale model shows only the connections with
a normalized connection density greater than 1.20 × 10−04. The color of the projection arrow is the same
as the injection site. Dashed lines indicate the additional connections of the voxel-scale model that are
different from DCBFC.
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5.3 SI

The aim of SI is to identify whether the functional modules are
compactly in contact with each other within the same cluster and
are remote from interclusters. Suppose that K is the ensemble of
all clusters and pixel i belongs to cluster Ci,

EQ-TARGET;temp:intralink-;e011;63;690SI ¼ 1

N

XN
i¼1

bðiÞ − aðiÞ
maxfaðiÞ; bðiÞg ; (11)

EQ-TARGET;temp:intralink-;e012;63;630aðiÞ ¼ 1

jCij − 1

X
j ∈ Ci

j ≠ i

½1 − rði; jÞ�; (12)

EQ-TARGET;temp:intralink-;e013;63;575bðiÞ ¼ min
Cl∈K;i∈=Cl

�
1

jClj
X
j∈Cl

½1 − rði; jÞ�
�
; (13)

where −1 ≤ SI ≤ 1, and SI increases when the heterogeneity
between interclusters and the homogeneity within the same
cluster increases simultaneously. Variable aðiÞ is the average
dissimilarity between pixel i and all other pixels in its own clus-
ter. Variable bðiÞ is the minimum dissimilarity between pixel i
and all other interclusters, which means the average dissimilarity
between pixel i and the next nearest cluster for it.

5.4 Connection Strength and Connection Diversity

In this study, we only explored the positive correlation connec-
tions. The connection strength between modules u and v,
namely, csðu; vÞ, is defined as the average value of their positive
time correlation coefficients given as

EQ-TARGET;temp:intralink-;e014;63;397csðu; vÞ ¼ 1

NuNv

X
i∈u

X
j∈v

wþ
ij; (14)

where NuðorNvÞ is the number of pixels in module uðor vÞ and
wþ
ij denotes the positive time correlation coefficient between

pixels i and j. Let K be the assemblage of all modules and
n the total number of modules. The ACS from module u to the
other regions is defined as ACSu, formulated as

EQ-TARGET;temp:intralink-;e015;63;292ACSu ¼
1

n − 1

X
v∈K;v≠u

csðu; vÞ: (15)

The ACD for module u is defined as ACDu, formulated as

EQ-TARGET;temp:intralink-;e016;63;234ACDu ¼ −
1

logðn − 1Þ
X

v∈K;v≠u

�
suðvÞ
su

log
suðvÞ
su

�
; (16)

EQ-TARGET;temp:intralink-;e017;63;175suðvÞ ¼ csðu; vÞ; (17)

EQ-TARGET;temp:intralink-;e018;63;154su ¼
X

v∈K;v≠u
suðvÞ; (18)

where ACDu ∈ ½0;1�. When module u preferentially connects to
a few other modules, the value of the connection diversity will
be close to 0. Module u has a diversity value close to 1 when it
trends to evenly connect with other modules across the cerebral
cortex.

5.5 Projection Density Map (Top Views)

According to the code (i.e., the voxel-scale model) provided
by Konx et al. (https://github.com/AllenInstitute/mouse_
connectivity_models), we derived PD maps for all functional
modules (K PDs total) by summing and normalizing the PD
value of all I to VI layers of isocortex. Therefore, the PDs were
scaled to [0, 1]. Finally, we derived K PDs (PDreg) correspond-
ing to K functional modules clustered by different clustering
methods. In addition, we derived the K cortical projection
PDcen maps whose injection site had the same cortical location
with the K central pixels found by DCBFC.

5.6 Normalized Connection Density between
Different Functional Modules

The normalized connection density of projection connectivity
was used in comparison with connection strength derived from
RSFC. The projection connections from each voxel of the iso-
cortex were first derived using the voxel-scale model. We then
obtained the normalized connection density between different
modules:

EQ-TARGET;temp:intralink-;e019;326;517csðu; vÞ ¼ 1

NuNv

X
i∈u

X
j∈v

wij; (19)

where NuðorNvÞ is the number of voxels located in module
uðor vÞ and wij indicates the PD value from voxel i to voxel
j. The average projection connection strength from module u
to the other modules (ACSu) and the average projection connec-
tion diversity of module uðACDuÞ are given in Eqs. (15) and
(16) in Sec. 5.4, respectively.
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