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Abstract. Intraoperative optical imaging is a localization technique for the functional areas of the human brain
cortex during neurosurgical procedures. However, it still lacks robustness to be used as a clinical standard. In
particular, new biomarkers of brain functionality with improved sensitivity and specificity are needed. We present
a method for the computation of hemodynamics-based functional brain maps using an RGB camera and a white
light source. We measure the quantitative oxy and deoxyhemoglobin concentration changes in the human brain
cortex with the modified Beer–Lambert law and Monte Carlo simulations. A functional model has been imple-
mented to evaluate the functional brain areas following neuronal activation by physiological stimuli. The results
show a good correlation between the computed quantitative functional maps and the brain areas localized by
electrical brain stimulation (EBS). We demonstrate that an RGB camera combined with a quantitative modeling
of brain hemodynamics biomarkers can evaluate in a robust way the functional areas during neurosurgery and
serve as a tool of choice to complement EBS. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1
.NPh.6.4.045015]
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1 Introduction
Noninvasive functional brain mapping is an imaging technique
used to localize the functional areas of the patient brain. This
technique is used during brain tumor resection surgery to indi-
cate to the neurosurgeon the cortical tissues which should not be
removed without cognitive impairment. Functional magnetic
resonance imaging (fMRI)1 is widely used to localize patient
functional areas. However, after patient craniotomy, a brain shift
invalidates the relevance of neuronavigation to intraoperatively
localize the functional areas of the patient brain.2 In order to
prevent any localization error, intraoperative MRI has been
suggested but it complicates the surgery gesture which makes
it rarely used. For these reasons, electrical brain stimulation
(EBS)3 is the gold standard for the identification of brain
functional areas. For instance, Roux et al.4 demonstrated that
language fMRI data obtained with naming or verb generation
tasks, before and after surgery, were imperfectly correlated with
electrical brain mapping. The overall results of their study dem-
onstrated that language fMRI could not be used to make critical
surgical decisions in the absence of EBS.

In 1977, Jöbsis5 demonstrated that the blood and tissue
oxygenation changes in the brain can be measured using near-
infrared (NIR) light. Then Chance et al.6 demonstrated that
optical imaging (visible and NIR light) can monitor the brain
activity with the determination of concentration changes of
oxygenated hemoglobin (Δ½HbO2�), deoxygenated hemoglobin
(Δ½Hb�), blood volume (Δ½Hb� þ Δ½HbO2�), and cytochrome
oxidase. Since then, numerous works have demonstrated the
ability of optical imaging to detect functional areas thanks to

hemodynamics.7–13 The motivation for this paper is derived
from the necessity to analyze the hemodynamics in brain tissue
following the neuronal activation, which are closely linked to
the blood oxygenation level-dependent (BOLD) contrast used
in functional MRI studies.

During neurosurgery, the craniotomy gives a direct access to
the brain cortex. Intrinsic optical imaging14–16 can be used
intraoperatively to localize the patient hemodynamic activity
in the cerebral cortex. The intrinsic signal refers to the cortical
reflectance changes14,17 due to hemodynamic response. A hyper-
spectral camera,18,19 or a single-wavelength illumination in
conjunction with a low-noise CCD camera,16,20 can be used to
acquire the intrinsic signal. The time course of this signal is
characterized by the early hemodynamic responses in brain tis-
sue related to neuronal activity (initial dip) followed by a larger
response that corresponds to the BOLD signal in fMRI studies.17

This technique is a powerful tool to understand the cognitive
functions at the neural circuit level15 and to define more
precisely the hemodynamic response following a physiological
stimulus.21,22 In some studies, a spectroscopic analysis of the
intrinsic signal is computed to assess the cortical hemoglobin
concentration changes. New approaches consist in using an
RGB21,23 or hyperspectral18 camera with a continuous wave
white light source18,21,24 or pulsed narrow bandpass illumination
sources.23,25 These setups have the main advantages of being
usable in real time18,25 and directly in the operative room.
Steimers et al.23 analyzed an exposed rat cortex with an RGB-
LED light source and an RGB camera. The results of their work
indicate that semiquantitative functional maps (in arbirary units)
can be processed with the modified Beer–Lambert law. But the
optical mean optical path lengths were not taken into consider-
ation. Bouchard et al.25 developed an ultrafast device made up
of two-pulsed LEDs and a monochromatic camera to assess in
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real time the hemoglobin concentration changes in blood vessels
using the modified Beer–Lambert law. Inhomogeneities of the
optical properties were not taken into consideration since an aver-
aged path length provided by Monte-Carlo simulation was used
in the model. Pichette et al.18 used a hyperspectral camera and
continuous wave white light illumination to assess in real time
the absorbance changes. In their study, the blood vessels and the
gray matter pixels were automatically segmented by comparing
measured reflectance spectra to blood and gray matter simulated
reflectance spectra. This allowed the blood vessels to be masked
to reduce their influence on absorbance change measurements.
In these works, qualitative or quantitative brain maps are not
compared to the patient hemodynamic response.26 So it remains
difficult for the neurosurgeon to efficiently localize the functional
brain areas with an RGB camera.

The objective of the present work is to supply the methodo-
logical tools for the construction of quantitative functional brain
maps based on the analysis of the cortical reflectance spectra
acquired by a digital RGB camera. For each camera pixel, the
intrinsic signal was converted into oxy- and deoxygenated
hemoglobin concentration changes using the modified Beer–
Lambert law. This law was computed with estimated mean opti-
cal path lengths calculated by Monte-Carlo simulations. These
mean optical path lengths are chosen according to the local opti-
cal properties of the patient brain. Three Monte-Carlo models
have been investigated for the study of the light propagation
in cortical tissue such as gray matter, surface blood vessel, and
buried blood vessel. We propose in our study to complement the
intrinsic optical imaging approaches with statistical analyses
inspired by the BOLD fMRI method. The Pearson correlation
coefficient is calculated between the expected hemodynamic
response26 and each measured concentration changes time
courses to accurately localize the functional areas of the patient
brain. The brain areas identified by intraoperative electrical
stimulation showed a good correlation with the quantitative
brain maps processed with the proposed method. These results
could help to get robust intraoperative brain area identification
based on RGB imaging.

2 Materials and Methods
A schematic overview of the computation of the functional
quantitative maps can be seen in Fig. 1. Once the video was
acquired, the following computational steps were applied. The
first image was manually segmented into three classes (gray
matter, surface blood vessel, and buried blood vessel). This seg-
mentation step aims to associate each camera pixel to the appro-
priate optical mean path length used in the Beer–Lambert law;
see Sec. 2.4. For each frame of the video, the brain repetitive
motion was compensated, then data were corrected and filtered.
The details of each step are given in Sec. 2.3. A functional model
was applied to preprocessed data to compute functional quanti-
tative maps; see Sec. 2.4.

2.1 Experimental Setup

The imaging system is composed of an RGB CMOS camera
(BASLER acA2000-165uc) in conjunction with an Edmund
Optics camera lens (f ¼ 50 mm f∕2 − f∕22), a continuous
wave white light source (OSRAM Classic 116-W 230-V light
bulb) and a laptop (processor: Intel Core i5-7200U, 2.50 GHz ×
4, RAM: 15.3 GiB); see Fig. 2. During data acquisition, the
camera also acquired residual light since the operative room
lights were on. Data were directly acquired by the laptop via
an USB link. A C++ software acquired and processed the
images using open source tools such as Qt (v5.9.4), openCV
(v3.2.0),27 FFTW (v3.3.7),28 and pylon (BASLER library). 8 bits
RGB images were acquired every 33 ms (the sampling rate is
set to 30 frames per second) with a resolution which at best is
400 ppi (the minimum size of a square pixel is 64 × 64 μm).

2.2 Patient Inclusion and Experimental Paradigm

The study was conducted at the neurologic center of the Pierre
Wertheimer hospital in Bron, France. Three patients presenting a
low-grade glioma close to the motor cortex area were included
in the study. All experiments were approved by the local ethics
committee of Lyon University Hospitals (France). All participat-
ing patients signed written consent. The videos were acquired
successively after the patient craniotomy and before the brain
tumor resection operation. During the acquisition of the videos,
the three patients were awake and under anesthesia (awake
surgery).

For videos 1, 2, 3, and 5, the stimulation of the motor cortex
was achieved through a repetitive and alternative hand opening
and closing at ≈1 Hz. For videos 1, 2, and 5, the hand move-
ment was performed by the patient himself. For video 3, the
hand movement was induced by an external person. Video 4 was
acquired during the stimulation of the sensory cortex through
repetitive fingers and palm caresses at ≈1 Hz. These caresses
were performed by an external person. For the five videos, the
paradigm consisted of three steps: 30 s of rest, followed by 30 s

Fig. 1 Overview of the method. Fig. 2 Schematic of the imaging system.
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of stimulation, and 30 s of rest. All information regarding the
patients and the video acquisition is summarized in the Table 1.

The neurosurgeon performed EBS after RGB imaging to
localize patient brain motor and sensory areas. This technique
stimulates a neural network in the brain through the direct or
indirect excitation of its cell membrane by using an electric cur-
rent. A bipolar electrode (Nimbus Medtronic neurostimulator)
was used in this study. The electrodes are 5 mm apart. A bipha-
sic current was used (pulsating frequency: 60 Hz and pulse
width: 1 ms). The current intensity varied during the measure-
ments. At the beginning, the current was set to 1 mA, then the
current was increased up to 6 mA. EBS introduces an artificial
nonphysiologic signal into the brain. For sensorimotor func-
tions, EBS creates a “positive” effect which is mimicking a
sensorimotor behavior. When the motor areas were electrically
stimulated, the patient twitched his fingers. When the sensory
areas were electrically stimulated, the patient expressed that
he felt a sensation in his fingers.

2.3 Preprocessing

2.3.1 Manual image segmentation

The first image of the video sequence was segmented with a
semiautomated procedure into three classes: gray matter, surface
blood vessel, and buried blood vessel. Pixels were clustered into
four clusters using the K-means algorithm from the C++ library
OpenCV (v3.2.0).27 The components of each cluster were man-
ually sorted and attributed to the three classes. The cluster com-
ponents that have not been selected corresponded to saturated
areas (specular reflection) and were discarded. As the video
is motion compensated, the segmentation of the first image is
valid during the whole video sequence. The segmentation
method is able to detect blood vessels with a diameter larger
than 500 μm. The blood vessels with a diameter smaller than
500 μm are included in the gray matter class. This segmentation
step aims to associate each camera pixel to the appropriate

optical mean path length used in the modified Beer–Lambert
law; see Sec. 2.4.

2.3.2 Motion compensation

After craniotomy, the brain surface undergoes a repetitive
motion due to the patient breath and cardiac pulsation. This
motion as well as potential video camera motion prevents accu-
rate video analysis. The motion compensation aims to ensure
that each camera pixel corresponds to the same cortical area all
along data acquisition. Sdika et al.29,30 proposed a repetitive
motion compensation algorithm. This algorithm is split into two
parts. First, the basis of the repetitive motion is learned from few
initial frames of the video (50 frames), then, each video frame is
registered to the reference image (first image of the video). To
ensure that motion compensation worked in normal operation,
each registered image is compared to the reference image using
the normalized cross covariance (NCC):

EQ-TARGET;temp:intralink-;e001;326;557NCCðtÞ ¼ n
P

I0IðtÞ −
P

I0
P

IðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½nP I20 − ðP I0Þ2�½n

P
IðtÞ2 − ðP IðtÞÞ2�

p :

(1)

IðtÞ is the image registered at time t and I0 the reference image
(first frame). n denotes the number of pixels of the images. The
more the NCC value tends toward 1, the more the images IðtÞ
and I0 are similar. The NCC curve can be compared with six
reference NCC curves that have been computed with six regis-
tered videos, validated by Sdika et al.’s algorithm.29,30 A linear
regression is applied on each reference NCC curve to get their
slope and intercept. The reference videos do not have the same
recorded duration or the same sampling rate than the acquired
video. The linear regression aims to rebuild the reference NCC
curves in the temporal domain of the acquired video.

Let NCCi
ref be the reference NCC curve i [i ∈ ð1;6Þ]

and NCC
j
mes the NCC curve of the registered video j

[j ∈ ð1;5Þ]. The acceptable NCC variation range is defined
as the area between the horizontal lines yref1 ¼ 1 and

yref2 ¼ min½μrefðtÞ − σrefðtÞ�, with μrefðtÞ ¼
P

6

i¼1
NCCi

ref
ðtÞ

6
and

σrefðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

6

i¼1
½NCCi

ref
ðtÞ�2

6
− ½μrefðtÞ�2

q
. The NCC dispersion

range of the registered videos is defined as the area between the
curves y1ðtÞ ¼ μmesðtÞ − σmesðtÞ and y2ðtÞ ¼ μmesðtÞ þ σmesðtÞ.
The motion compensation of the five videos is validated if the
NCC dispersion range of the registered videos is included in
the acceptable NCC variation range.

2.3.3 Data filtering

According to Chance et al.,6 low-frequency modulation of light
absorption is linked to cortical activity. These frequencies of inter-
est can be visualized in the expected hemodynamic response
spectrum. The hemodynamic response of the brain in relation
to the neural activities (cortical stimulus) can be expressed by the
hemodynamic impulse response function (HIRF).26 In our appli-
cation, the expected hemodynamic response can be obtained by
convolving HIRF with the window function P representing the
experimental paradigm; see Fig. 3. The expected hemodynamic
response is the ideal representation of the hemodynamic response
of the patient whose validity is discussed in Sec. 4. A low-pass
filtering was implemented by multliplying the signal by a

Table 1 Information about the patients and the acquisitions.

Patient Acquisition

ID Gender Age Video ID Stimulation type
Surgical
window

1 M 29 Video 1 Right-hand movement
performed by the
patient

Left hemisphere

2 F 36 Video 2 Left-hand movement
performed by the
patient

Right hemisphere

Video 3 Left-hand movement
performed by an
external person

Video 4 Left-hand caresses
performed by an
external person

3 F 33 Video 5 Left-hand movement
performed by the
patient

Right hemisphere
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Blackman window (cut off frequency: 0.05 Hz; see Fig. 3) in
the Fourier domain.

2.3.4 Data correction

According to Oelschlägel et al.,24 data preprocessing is manda-
tory to correct the slow drift of the collected intensity due to
the cortical tissue desiccation during the video acquisition.
The assumption is that the beginning and the end of the video
corresponded to the same patient physiological state. So we con-
sidered that these intensity values had to be identical. Linear
regressions were computed on the measured RGB time courses,
then the calculated regression lines was subtracted to original
data to compensate the slow drift of the collected intensity.

2.4 Functional Model

The standard approach for the analysis of the reflected spectra is
based on the modified Beer–Lambert law. The assessment of
the concentration changes depends on the determination of the
mean optical path length of the detected photons; see Eq. (3).
For the purpose of measuring more precisely the hemoglobin
concentration changes, three different cortical tissues have been
modeled; see Fig. 4. Monte-Carlo simulations were processed to
estimate their mean optical path length which were assigned to
pixels belonging to the segmented classes; see Sec. 2.3.1.

2.4.1 Modified Beer–Lambert law

The modified Beer–Lambert law can be expressed as a matrix
system:31

EQ-TARGET;temp:intralink-;e002;326;4042
64
ΔARðtÞ
ΔAGðtÞ
ΔABðtÞ

3
75 ¼

2
64
ER;Hb ER;HbO2

EG;Hb EG;HbO2

EB;Hb EB;HbO2

3
75 ×

"
Δ½Hb�ðtÞ

Δ½HbO2�ðtÞ

#
; (2)

where

EQ-TARGET;temp:intralink-;e003;326;338Ei;n ¼
Z

ϵnðλÞDiðλÞSðλÞLðλÞdλ: (3)

ΔAiðtÞ is the absorbance changes measured at time t:

EQ-TARGET;temp:intralink-;e004;326;284ΔAiðtÞ ¼ log10

�
R0
i

RiðtÞ
�
; (4)

where RiðtÞ is the reflectance intensity measured at time t by the
camera color channel i (red, green, or blue), R0

i is the reference
reflectance intensity measured by the camera color channel i
(average of the reflectance intensity over the duration of the first
rest step of the experimental paradigm; see Sec. 2.2). εn is the
extinction coefficient of the chromophore n (in Lmol−1 cm−1).
Δ½Hb� is the deoxygenated hemoglobin molar concentration
changes (in mol L−1) and Δ½HbO2� the oxygenated hemoglobin
molar concentration changes (inMol L−1). Our model takes into
consideration the receiving spectrum of the RGB camera and the
emission spectrum of the light source. The spectral sensitivity of
the detector i of the RGB camera is represented by DiðλÞ and
SðλÞ is the normalized intensity spectrum of the light source.
LðλÞ is the wavelength-dependent mean optical path length
of the photons traveled in tissue. Hemoglobin concentration
changes are obtained by matrix inversion once the matrix E has

Fig. 3 (a) HIRF.26 (b) The green curve represents the experimental paradigm P and the black curve the
expected hemodynamic response which is obtained by convolving HIRF with P. (c) The black curve
represents the expected heamodynamic response spectrum and the red curve, the transfer function
of a Blackman window (cut off frequency: 0.05 Hz) in the Fourier domain.
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been calculated. However, the mean optical path length LðλÞ
needs to be determined.

2.4.2 Mean optical path length determination

The mean optical path length LðλÞ was obtained by Monte-
Carlo simulations using MCX software.32 Three cortical tissues
were modeled under a homogeneous white light illumination;
see Fig. 4. Model 1 represents a 2-mm diameter blood vessel
on the surface of the cortical tissue, model 2, a 2-mm diameter
blood vessel buried under 1-mm of cortical tissue, and model 3,
a cortical tissue without a large blood vessel. The cortical tissue
is composed of gray matter perfused by capillaries.

Each voxel of the modeled tissues included the information
of optical parameters (absorption, reduced scattering, anisotropy
coefficients, and refractive index). A homogeneous illumination
was achieved by scanning the emission point of the light source
along the entire model surface. A white light illumination has
been simulated by scanning the optical parameters along the
entire illumination spectrum (from 400 to 1000 nm in steps
of 10 nm). A total of 50 × 50 × 61 × 3 simulations were com-
puted. 50 × 50 represents the number of simulations used to
illuminate the modeled cortical tissues in a homogeneous way.
61 denotes the number of emitted wavelength and 3 the number
of modeled cortical tissues. The optical parameters were taken
from the literature and correspond to a nominal physiological
condition. References 33–35 have been used for the blood
vessel parameters, and Refs. 35–38 for the gray matter
parameters.

The size of the modeled tissues has been chosen in accor-
dance with the photon sensitivity profile39 computed for the
detector situated at the center of the top face of model 3. A
detector collects all the photons reaching the surface in a square
area of 1 mm2. Model 3 has been chosen because the photons
traveling through the cortical tissue without a large blood vessel
have a greater probability to have a long trajectory than the
photons traveling through the cortical tissue with a large blood
vessel. The photon sensitivity profile is roughly represented as a
half sphere of radius of 12.5 mm. To avoid any photon loss and
inexact results due to the boundary conditions (a simulation of
the travel of a packet of photon stops when this packet of photon
leaves the volume), the size of the models is set to 50 × 50 × 50
voxels with a resolution of 1 mm3. This allows us to precisely

compute the mean optical path length of the photons reaching
the detectors located at the top face of the volume.

For the three models, the mean optical path length L of all
detected photons is calculated; see Fig. 5. For λ < 580 nm, the
mean path length of model 1 is on average 39% smaller than the
one of model 3. The one of model 2 is on average 4% smaller
than the one of model 3. For λ > 580 nm, the mean path length
of model 1 is on average 42% smaller than the one of model 3.
The one of model 2 is on average 34% smaller than the one of
model 3. When the blood vessel is buried under 1 mm of gray
matter (model 2), a smaller proportion of photons is absorbed in
model 2 than in model 1. However, this blood vessel still has
a large impact on the photon propagation.

2.4.3 Quantitative functional brain map

Two quantitative functional brain maps were computed by
selecting the Δ½Hb� and Δ½HbO2� time courses which were cor-
related with the expected hemodynamic response. The Pearson
correlation measurement aims to highlight the hemodynamic
response associated with the experimental paradigm and ignore
any other hemodynamic variations. Only positive correlations
were considered, so the Δ½Hb� time courses were multiplied
by −1. Two quantitative functional brain maps were defined
as the Hb and HbO2 concentration changes averaged over
the duration of the patient hand stimulation (see Sec. 2.2). The
quantitative maps were only processed for pixels for which
the Pearson correlation coefficient was higher than the Pearson
correlation coefficient threshold (PCCT) value:

EQ-TARGET;temp:intralink-;e005;326;217QMapCðx;yÞ ¼
�
Cðx;yÞ; if rCðx;yÞ ≥ PCCT

nonprocessed; otherwise:
; (5)

where

EQ-TARGET;temp:intralink-;e006;326;161Cðx; yÞ ¼
PN2

n¼N1
Δ½C�ðn; x; yÞ

N2 − N1

: (6)

QMapC is the chromophore C quantitative functional brain
map. C represents either HbO2 or Hb. ðx; yÞ denotes an image
pixel position. n is the frame index, N1 and N2 are the patient
hand stimulation starting and ending frame indexes. rCðx; yÞ
denotes the Pearson correlation coefficient calculated between

Fig. 4 Representation of modeled cortical tissues. Volumes are made up of 50 × 50 × 50 voxels with a
1-mm3 resolution. Red voxels represent large blood vessels and gray voxels cortical tissues. A black
arrow symbolizes a Monte-Carlo simulation for an emission of 106 packets of photons at a given position.
Model 1 represents a 2-mm diameter blood vessel on the surface of the cortical tissue, model 2 a 2-mm
diameter blood vessel buried under 1 mm of gray matter, and model 3 a cortical tissue without a large
blood vessel.
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the chromophore C concentration changes time course at the
image pixel position ðx; yÞ and the expected hemodynamic
response. C represents the Δ½C� value averaged over the patient
activity period. A 5 × 5 median filter is applied to the quantita-
tive functional maps. This induced a decrease of the resolution
of the quantitative functional map from 400 to 80 ppi.

2.4.4 Definition of activated cortical areas

In our study, an activated cortical area is a functional area that is
associated with the patient hand stimulation; see Sec. 2.2. The
Δ½Hb� and Δ½HbO2� time courses of an activated cortical area
should be highly correlated with the expected hemodynamic
response, whereas the ones of a nonactivated cortical area should
not. TheHb andHbO2 values [see Eq. (6)] of an activated cortical
area should be significantly different from the values of a non-
activated cortical areas. Based on these assumptions, an activated
cortical area can be statistically defined. Let CortNF be a cortical
area which has not been identified as functional by the EBS, and
CortF a functional area of interest identified by EBS. The CortNF
and CortF areas are defined according to four quantitative

distributions [Hb, HbO2, rHb, and rHbO2
; see Eqs. (5) and (6)].

Welch’s T tests were computed to score the differences between
the mean values of the CortNF and CortF areas. These means were
denoted hHbi, hHbO2i, hrHbi, and hrHbO2

i. If all four tests reject
the null hypothesis at 1% significance level, the CortF area is
defined as an activated cortical area.

3 Results

3.1 Motion Compensation

In Fig. 6, the blue rectangular area corresponds to the acceptable
NCC variation range defined as the area between the horizontal
lines yref1 ¼ 1 and yref2 ¼ 0.995 (see Sec. 2.3.2). The red area
corresponds to the NCC dispersion range of the five unregis-
tered videos (see Sec. 2.3.2). The green area corresponds to the
NCC dispersion range of the five registered videos. The NCC
dispersion range of the five registered videos is included in the
acceptable NCC variation range, whereas the NCC dispersion
range of the five unregistered videos is not. This validates the
motion compensation of the five videos.

Fig. 6 Validation of the motion compensation. The blue area corresponds to the acceptable NCC varia-
tion range. The red area corresponds to the NCC dispersion range of the five unregistered videos and
the green area corresponds to the NCC dispersion range of the five registered videos.

Fig. 5 The red, blue, and gray curves represent the computed wavelength dependent mean optical path
length of models 1, 2, and 3, respectively (see Fig. 4).
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3.2 Quantitative Functional Maps

The Hb and HbO2 quantitative functional maps of videos 1–5
are represented in Fig. 7. The colorbar represents the scale of
variation of the QMapHb and QMapHbO2

values in μmol L−1; see

Eq. (5). Mi−j designates the motor area i of the patient j iden-
tified by EBS; see Sec. 2.2. Si−j designates the sensory areas i of
the patient j identified by EBS; see Sec. 2.2. Cj designates a
cortical area of the patient j which has not been identified as
a functional area by the EBS. These areas are delimited with

Fig. 7 Hb and HbO2 functional maps computed for the five videos. For videos 1, 2, 3, and 5, the stimu-
lation of the cortex was achieved through a repetitive and alternative hand opening and closing at ≈1 Hz
(movement performed by the patient: videos 1, 2, and 5; movement induced by an external person: video
3). For video 4, the stimulation of the cortex was achieved through a repetitive fingers and palm caresses
at ≈1Hz (the caresses were performed by an external person). The Hb and HbO2 functional maps are
computed for different PCCT values. The colorbar represents the scale of variation of the QMapHb and
QMapHbO2

values in μmol L−1 [see Eq. (5)]. Mi−j designates the motor area i of the patient j identified by
EBS. Si−j designates the sensory areas i of the patient j identified by EBS. Cj designates a nonactivated
area of the cortex of the patient j . A 5 × 5 median filter is applied to the functional maps.
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white circles of 10 pixels diameter for video 1 and 30 pixels
diameter for videos 2 to 5. For each video, Hb and HbO2 quan-
titative functional maps are plotted according to four PCCT
values (0, 0.3, 0.5, and 1). Only the Δ½Hb� and Δ½HbO2� time
courses whose Pearson correlation coefficient is higher than the
PCCT value are considered in Eq. (5). The highest QMapHb and
QMapHbO2

values are situated at the level of the blood vessels
surrounding the motor and sensory areas.

3.2.1 Video 1

The stimulation of the cortex was achieved through a repetitive
and alternative hand opening and closing at ≈1 Hz (the move-
ment was performed by the patient). For PCCT ¼ 0, all QMap
values except the ones associated with the saturated pixels are
processed. For PCCT ¼ 0.3, the QMap values situated at the
level of the M1−1, M2−1, M3−1, S1−1, and S2−1 areas are com-
puted. Some QMap values are also processed at the left side of
the image. For PCCT ¼ 0.5, the QMap values situated at the
level of the M1−1, M2−1, M3−1, S1−1, and S2−1 areas are com-
puted. Some QMapHbO2

values are processed at the left side of
the image.

We defined five points of interest within video 1 to explore in
more details the hemodynamic time courses in the different
brain areas. In Fig. 8(a), the point M1 is situated at the center
of theM1−1 area. The point S1 is situated at the center of the S1−1
area. The point A is situated on the blood vessel above theM1−1
area. The point B is localized on a blood vessel which is not
linked with the functional areas. The point C represents a point
gray matter situated far away from the functional areas. The
Δ½Hb� and Δ½HbO2� time courses of these points of interest can
be compared in Fig. 8(b).

From 0 to 35 s, the Δ½Hb� and Δ½HbO2� values of the point
M1 oscillate above and below 0 μmol L−1. From 35 to 56 s,
the Δ½Hb� values decrease from 0 to −1.7 μmol L:−1 and the
Δ½HbO2� values increase from 0 to 3 μmol L−1. From 56 to 68 s,
the Δ½Hb� and Δ½HbO2� values revert to 0 μmol L−1. From 68 s
to the end of the acquisition, the Δ½Hb� and Δ½HbO2� values
oscillate again above and below 0 μmol L−1. From 0 to 35 s,
the Δ½Hb� and Δ½HbO2� values of the point S1 oscillate above
and below 0 μmol L−1. From 35 to 45 s, the Δ½Hb� values
decrease from 0 to −1.0 μmol L−1 and the Δ½HbO2� values

increase from 0 to 1.9 μmol L−1. From 45 to 68 s, the Δ½Hb�
and Δ½HbO2� values revert to 0 μmol L−1. From 68 s to the end
of the acquisition, the Δ½Hb� and Δ½HbO2� values oscillate again
above and below 0 μmol L−1. From 0 to 35 s, the Δ½Hb� and
Δ½HbO2� values of the point A oscillate above and below
0 μmol L−1. From 34 to 43 s, the Δ½Hb� values decrease from
0 to −7.4 μmol L−1 and the Δ½HbO2� values increase from 0 to
14.3 μmol L−1. From 43 to 68 s, the Δ½Hb� and Δ½HbO2� values
revert to 0 μmol L−1. From 68 s to the end of the acquisition, the
Δ½Hb� and Δ½HbO2� values oscillate again above and below
0 μmol L−1. The Δ½Hb� and Δ½HbO2� curves of the points B and
C oscillate without any understandable correlation with the
experimental paradigm. The Δ½Hb� variations of the point B are
≈3.6 times greater than the ones of the curves C. The Δ½HbO2�
variations of the point B are ≈5.3 times greater than the ones of
the curves C.

The Hb, HbO2, rHb, and rHbO2
values [see Eq. (5)] of the

curves plotted in Fig. 8(b) are represented in Table 2. The
points M1 and A have the highest Hb and HbO2 values
(Hb ≤ −1.16 μmol L−1 and HbO2 ≥ 1.82 μmol L−1). The Hb

and HbO2 values of the points S1 and B are in the same order
of magnitude. The point C has the lowest Hb and HbO2 values.
The points M1, S1, and A have higher rHb and rHbO2

values
(rHb ≥ 0.76 and rHbO2

≥ 0.68) than B and C points (rHb ≤ 0.04

and rHbO2
≤ 0.06).

3.2.2 Video 2

The stimulation of the cortex was achieved through a repetitive
and alternative hand opening and closing at ≈1 Hz (the move-
ment was performed by the patient). In Fig. 7, for PCCT ¼ 0, all
QMap values except the ones associated with the saturated pix-
els are processed. High QMap values are computed at the level
of the blood vessels situated at the left and right side of the
images. For PCCT ¼ 0.3, the QMap values situated at the level
of the M1−2, S1−2, S2−2, and S3−2 areas are computed. Some
QMap values are also processed at the right side of the image.
For PCCT ¼ 0.5, the QMap values situated at the level of the
S1−2 and S2−2 areas are computed. Some QMapHbO2

values are
processed at the level of the M1−2 area.

Fig. 8 (a) Localization of points of interest. (b) Hb and HbO2 concentration changes time courses of
the points of interest defined in (a).
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3.2.3 Video 3

The stimulation of the cortex was achieved through a repetitive
and alternative hand opening and closing at ≈1 Hz (the
movement was induced by an external person). In Fig. 7, for
PCCT ¼ 0, all QMap values except the ones associated with the
saturated pixels are processed. High QMap values are computed
at the level of the blood vessels situated at the left and right side
of the images. For PCCT ¼ 0.3, the QMap values situated at the
level of the M1−2, S1−2, and S3−2 areas are computed. Some
QMap values are also processed at the right side of the image.
For PCCT ¼ 0.5, the QMap values situated at the level of the
M1−2 and S1−2 areas are computed.

3.2.4 Video 4

The stimulation of the cortex was achieved through a repetitive
fingers and palm caresses at ≈1 Hz (the movement was induced
by an external person). In Fig. 7, for PCCT ¼ 0, all QMap val-
ues except the ones associated with the saturated pixels are
processed. High QMap values are computed at the level of the
blood vessels situated at the left and right side of the images.
For PCCT ¼ 0.3, the QMap values situated at the level of the
S1−2 and S2−2 areas are computed. The QMap values are also

processed at the level of the blood vessel drawing the junction
between the motor and the sensory areas. Some QMap values
are processed at the center of the images. For PCCT ¼ 0.5, some
QMap values situated at the level of the S1−2 area are computed.

3.2.5 Video 5

The stimulation of the cortex was achieved through a repetitive
and alternative hand opening and closing at ≈1 Hz (the move-
ment was performed by the patient). In Fig. 7, for PCCT ¼ 0, all
QMap values except the ones associated with the saturated
pixels are processed. For PCCT ¼ 0.3, the QMap values situ-
ated at the level of the M1−3 and M2−3 areas are computed.
The QMap values are also processed at the level of the blood
vessels surrounding these areas. QMap values are processed
at the center and at the top of the images. For PCCT ¼ 0.5,
some QMap values situated at the level of the M1−3 area are
computed.

3.3 Statistical Analysis

The functional areas of the patient exposed cortex which have
been identified by EBS are compared to a reference cortical area
C. This area C has not been identified as functional by the EBS.
The objective is to compute the activation criterion introduced in
Sec. 2.4.4 on each functional area to evaluate our method sen-
sitivity. For each video, an ANOVA and Kruskal–Wallis H-test
have been separately computed on the Hb, HbO2, rHb, and rHbO2

distributions of the areas defined in Fig. 7. These tests reject the
null hypothesis that two or more distributions have the same
population mean. Each video is studied separately. For each dis-
tribution of each video, a Welch’s T-test is computed between
the sample Xi−j and Cj (X represents either the motorM or sen-
sory S areas i of the patient j defined in Fig. 7) with the null
hypothesis that the two samples have identical mean values.
In Figs. 9 and 10, the distribution of the Hb and HbO2 values
of the areas defined in Fig. 7 are represented. In Figs. 11 and 12,
the distribution of the rHb and rHbO2

values of the areas defined

Table 2 Hb, HbO2 values (in μmol L−1) and rHb, rHbO2
values of the

curves plotted in Fig. 8(b).

Hbðμmol L−1Þ rHb HbO2ðμmol L−1Þ rHbO2

M1 −1.16 0.76 1.82 0.68

S1 −0.60 0.84 1.22 0.83

A −4.08 0.78 7.8 0.79

B −0.79 0.02 1.07 0.06

C −0.07 0.04 0.10 0.08

Fig. 9 Distribution of the Hb values of the areas defined in Fig. 7. The black diamonds represent the
mean values of the distributions (hHbi) and the half length of the blue lines the standard deviation values.
Each video is studied separately. The notation i� indicates a T -test’s statistical significance for the
comparison of the means of the distribution i and Cj (j represents the patient id).
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in Fig. 7 are represented. In these graphs, the black diamonds
represent the mean values of the distributions and the half length
of the blue lines the standard deviation values. The notation
* indicates that the null hypothesis is rejected with the respect
of the Bonferroni correction (p value<0.01∕N, where N is the
number of samples per video). An area Xi−j is defined as acti-
vated if the null hypothesis is rejected for the Hb, HbO2, rHb,
and rHbO2

distributions; see Sec. 2.4.4.
In Fig. 9, for video 1, the hHbi values of the motor and

sensory areas are smaller than or equal to −0.46 μmol L−1.
The hHbi value of the C1 area is equal to 0 μmol L−1. The hHbi

values of the motor and sensory areas are statistically different
from the one of the C1 area. For video 2, the hHbi values of
the motor and sensory areas are smaller than or equal to
−0.71 μmol L−1. The hHbi value of the C2 area is equal to
0.10 μmol L−1. The hHbi values of the motor and sensory areas
are statistically different from the one of the C2 area. For video
3, the hHbi values of the M1−2, S1−2, and S3−2 areas are smaller
than or equal to −0.40 μmol L−1. The hHbi value of the S2−2
area is equal to 0.11 μmol L−1. The hHbi value of the C2 area
is equal to −0.02 μmol L−1. The hHbi values of the motor and
sensory areas are statistically different from the one of the C2

Fig. 10 Distribution of the HbO2 values of the areas defined in Fig. 7. The black diamonds represent the
mean values of the distributions (hHbO2i) and the half length of the blue lines the standard deviation
values. Each video is studied separately. The notation i� indicates a T -test’s statistical significance for
the comparison of the means of the distribution i and Cj (j represents the patient id).

Fig. 11 Distribution of the rHb values of the areas defined in Fig. 7. The black diamonds represent the
mean values of the distributions (hrHbi) and the half length of the blue lines the standard deviation values.
Each video is studied separately. The notation i� indicates a T -test’s statistical significance for the com-
parison of the means of the distribution i and Cj (j represents the patient id).
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area. For video 4, the hHbi value of the M1−2 is equal to
0.06 μmol L−1. The hHbi values of the S1−2, S2−2, S3−2, and
C2 areas are smaller than or equal to −0.18 μmol L−1. The
hHbi values of theM1−2 and S1−2 areas are statistically different
from the one of the C2 area, whereas the ones of the S2−2 and
S3−2 areas are not. For video 5, the hHbi values of the motor
areas are smaller than or equal to −0.28 μmol L−1). The
hHbi values of the C3 area is equal to 0.11 μmol L−1). The
hHbi values of the motor areas are statistically different from
the one of the C3 area.

In Fig. 10, for video 1, the hHbO2i values of the motor and
sensory areas are higher than or equal to 0.65 μmol L−1. The
hHbO2i value of the C1 area is equal to −0.23 μmol L−1.
The hHbO2i values of the motor and sensory areas are sta-
tistically different from the one of the C1 area. For video 2, the
hHbO2i values of the motor and sensory areas are higher than or
equal to 1.57 μmol L−1. The hHbO2i value of the C2 area is
equal to −0.16 μmol L−1). The hHbO2i values of the motor and
sensory areas are statistically different from the one of the C2

area. For video 3, the hHbO2i values of theM1−2, S1−2, and S3−2
areas are higher than or equal to 0.85 μmol L−1. The hHbO2i
value of the S2−2 area is equal to −0.43 μmol L−1. The
hHbO2i value of the C2 area is equal to 0 μmol L−1). The
hHbO2i values of the motor and sensory areas are statistically
different from the one of the C2 area. For video 4, the hHbO2i
values of the S1−2 and S2−2 areas are higher than or equal to
0.59 μmol L−1. The hHbO2i value of the M1−2 area is equal
to 0.08 μmol L−1. The hHbO2i values of the S3−2 and C2 areas
are higher than or equal to 0.15 μmol L−1. The hHbO2i values of
theM1−2, S1−2, and S2−2 areas are statistically different from the
one of the C2 area, whereas the one of the S3−2 is not. For video
5, the hHbO2i values of the motor areas are higher than or equal
to 0.57 μmol L−1. The hHbO2i value of the C3 area is equal to
−0.30 μmol L−1. The hHbO2i values of the motor areas are
statistically different from the one of the C3 area.

In Fig. 11, for video 1, the hrHbi values of the motor and
sensory areas are higher than or equal to 0.49. The hrHbi value
of the C1 area is equal to 0.15. The hrHbi values of the motor and
sensory areas are statistically different from the one of the C1

area. For video 2, the hrHbi values of the motor and sensory
areas are higher than or equal to 0.41. The hrHbi value of the
C2 area is equal to 0.09. The hrHbi values of the motor and sen-
sory areas are statistically different from the one of the C2 area.
For video 3, the hrHbi values of the M1−2, S1−2, and S3−2 areas
are higher than or equal to 0.48. The hrHbi values of the S2−2 and
C2 areas are smaller than or equal to 0.09. The hrHbi values of
theM1−2, S1−2, and S3−2 areas are statistically different from the
one of the C2 area, whereas the one of the S2−2 area is not. For
video 4, the hrHbi value of the S1−2 area is equal to 0.50. The
hrHbi values of the M1−2, S2−2, S3−2, and C2 areas are smaller
than or equal to 0.23. The hrHbi values of the S1−2 and S2−2 areas
are statistically different from the one of theC2 area, whereas the
ones of the M1−2 and S3−2 areas are not. For video 5, the hrHbi
values of the motor areas are higher than or equal to 0.30. The
hrHbi value of the C3 area is equal to 0.02. The hrHbi values of
the motor areas are statistically different from the one of the
C3 area.

In Fig. 12, for video 1, the hrHbO2
i values of the motor and

sensory areas are higher than or equal to 0.38. The hrHbO2
i value

of the C1 area is equal to 0.12. The hrHbO2
i values of the motor

and sensory areas are statistically different from the one of the
C1 area. For video 2, the hrHbO2

i values of the motor and sensory
areas are higher than or equal to 0.38. The hrHbO2

i value of the
C2 area is equal to 0.11. The hrHbO2

i values of the motor and
sensory areas are statistically different from the one of the C2

area. For video 3, the hrHbO2
i values of theM1−2, S1−2, and S3−2

areas are higher than or equal to 0.46. The hrHbO2
i values of the

S2−2 and C2 areas are smaller than or equal to 0.13. The hrHbO2
i

values of the motor and sensory areas are statistically different
from the one of the C2 area. For video 4, the hrHbO2

i value of the
S1−2 area is equal to 0.41. The hrHbO2

i values of theM1−2, S2−2,
S3−2, and C2 areas are smaller than or equal to 0.23. The hrHbO2

i

Fig. 12 Distribution of the rHbO2
values of the areas defined in Fig. 7. The black diamonds represent the

mean values of the distributions (hrHbO2
i) and the half length of the blue lines the standard deviation

values. Each video is studied separately. The notation i� indicates a T -test’s statistical significance for
the comparison of the means of the distribution i and Cj (j represents the patient id).
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values of the S1−2 and S2−2 areas are statistically different from
the one of the C2 area, whereas the ones of the M1−2 and S3−2
area are not. For video 5, the hrHbO2

i values of the motor areas
are higher than or equal to 0.25. The hrHbO2

i value of the C3 area
is equal to 0.06. The hrHbO2

i values of the motor areas are
statistically different from the one of the area C3.

According to the criteria defined in Sec. 2.4.4, the functional
areas represented in Fig. 7 are designated as activated or non-
activated cortical areas; see Table 3.

4 Discussion
In videos 1, 2, and 5 (see Table 1), the statistical results of
Table 3 indicate that the motor and sensory areas identified
by EBS correspond to the highlighted cortical areas of
Fig. 7. This demonstrates the ability of our functional model
to identify in a robust manner these functional areas. In videos
3 and 4, the motor and sensory cortex was explored in a more
subtle way. In video 3, the hand movement was induced by an
external person. All motor and sensory areas are defined as acti-
vated cortical areas except the S2−2 area. In video 4, the stimu-
lation of the cortex was achieved through a repetitive fingers and

palm caresses. Only the S1−2 area is defined as an activated cort-
ical area. These results seem to indicate that the S1−2 area could
be linked to somatosensory functions, whereas the S2−2 and S3−2
areas to sensorimotor functions. This indicates that our model
seems to be rather sensitive to subtle differences in the physio-
logical stimuli of the hand.

These results should be taken with caution because our func-
tional model needs to be improved. In particular, a physiological
a priori on the hemoglobin concentration change values could
be incorporated in the model. However, there is still no consen-
sus in the literature on such threshold values linked with a
physiological stimulus. In video 3, when the Hb and HbO2

distributions of the S2−2 area are statistically significant (see
Table 3), the hHbi and hHbO2i values of this area differ from
the area C2 in the sense of a deactivation of the cortical area,
which is difficult to interpret (the hHbi value of the S2−2 area
is higher than the one of the C2 area and the hHbO2i value
of the S2−2 area is smaller than the one of the C2 area). The
S2−2 area is defined as nonactive because its hrHbi value is not
statistically different from the one of the C2 area. This result
shows that our functional model is able to eliminate this non-
physiologic hemodynamic event by comparing the similarity
of the hemoglobin changes time courses to the expected hemo-
dynamic response. This confirms that our model is more robust
than models with a nonphysiological a priori. The same phe-
nomenon can be observed for the M1−2 area of video 4.

Our functional model has to be used with the EBS. Indeed,
it requires a reference cortical area which is defined as a non-
functional area by the EBS. The main limits are that the results
of the statistical analysis depend of the choice of the reference
and the definition of the cortical activation is not obtained
for each camera pixel but for a group of pixels. A more robust
definition of cortical areas will be explored in future works,
notably with the implementation of a SPM40 like analysis.

The Hb, HbO2, rHb, and rHbO2
noise levels in our measure-

ments were calculated by taking the standard deviation of the
mean values of 10 × 5 cortical areas which have not been iden-
tified as functional areas by the EBS (10 measurements were
realized in each of the five videos). The Hb and HbO2 noise
levels are equal to 0.26 μmol L−1, and the rHb and rHbO2

noise
levels are equal to 0.07. In video 4, the S2−2 area is not defined as
an activated area only because the hHbi value is not statistically
different from the one of the C2 area. The mean values of the
other distributions are statistically different from the ones of the
C2 areas and the sign of the differences corresponds to the sense
of an activation of the cortical area. When comparing the hHbi,
hHbO2i, hrHbi, and hrHbO2

i values of the S2−2 and C2 areas, the
differences between these values are approximately equal to
the noise levels. Thus by increasing the signal-to-noise ratio,
the activated cortical areas could be determined in a more
robust way.

The five videos have been studied separately, so no general
PCCT value was proposed to localize the activated cortical areas
in the five videos. The Hb, HbO2, rHb, and rHbO2

distributions of
the functional areas identified by EBS have different mean and
standard deviation values. For instance, the rHbO2

values of the
M1−2 area in video 2 range between 0.42� 0.25 and the ones of
the same motor area range between 0.53� 0.22 in video 3. The
rHbO2

values of video 3 are higher than the ones of video 2. This
may be due to a more constant hand movement in video 3 than in
video 2. Indeed, in video 2, the patient has moved himself his

Table 3 Definition of the functional areas identified by EBS (repre-
sented in Fig. 7) as activated or nonactivated.

Video ID

Functional
areas

identified
by EBS

Statistical significance
Cortical
activation

measurementhHbi hHbO2i hrHbi hrHbO2
i

Video 1 M1−1 ✓ ✓ ✓ ✓ ✓

M2−1 ✓ ✓ ✓ ✓ ✓

M3−1 ✓ ✓ ✓ ✓ ✓

S1−1 ✓ ✓ ✓ ✓ ✓

S2−1 ✓ ✓ ✓ ✓ ✓

Video 2 M1−2 ✓ ✓ ✓ ✓ ✓

S1−2 ✓ ✓ ✓ ✓ ✓

S2−2 ✓ ✓ ✓ ✓ ✓

S3−2 ✓ ✓ ✓ ✓ ✓

Video 3 M1−2 ✓ ✓ ✓ ✓ ✓

S1−2 ✓ ✓ ✓ ✓ ✓

S2−2 ✓ ✓ ✗ ✓ ✗

S3−2 ✓ ✓ ✓ ✓ ✓

Video 4 M1−2 ✓ ✓ ✗ ✗ ✗

S1−2 ✓ ✓ ✓ ✓ ✓

S2−2 ✗ ✓ ✓ ✓ ✗

S3−2 ✗ ✗ ✗ ✗ ✗

Video 5 M1−3 ✓ ✓ ✓ ✓ ✓

M2−3 ✓ ✓ ✓ ✓ ✓
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hand, whereas the movement was induced by an external person
in video 3. In our study, the stimulation step of the experimental
paradigm (see Sec. 2.2) is not exactly constant during 30 s
(patient sleepness and irregular movement). This implies that
the experimental paradigm function plotted in Fig. 3 does not
exactly fit a window function. Since an ideal expected hemo-
dynamic response (convolution of the HIRF26 with a window
function) is compared to the Δ½Hb� and Δ½HbO2� time courses,
the rHb and rHbO2

distributions may differ depending on the
quality of the stimulus. Furthermore, habituation is known to
interfere with the linearity of the hemodynamic response during
a 30-s plateau. This would further modify the actual stimulus
from the ideal window function.

The model of the HIRF may be improved. The positive
BOLD signal used in MRI studies occurs in superficial cortical
layers (0 to 1 mm). This positive BOLD signal is often accom-
panied with a negative BOLD signal occurring in deeper cortical
layers (1 to 2 mm).41 The HIRF may be a conjunction of these
two BOLD signals. In our study, we consider that the theoretical
Hb impulse response function correspond to the opposite of the
HbO2 impulse response function. This assumption may intro-
duce some errors since it has been shown that these HIRFs
do not correspond to an opposite operation.42 It also has been
shown that the HIRF is different in the gray matter and in the
arterioles.42 To improve our functional model, several HIRFs
may be determined for each camera pixel depending on its bio-
logical attribution (gray matter, surface blood vessel, and buried
blood vessel). For this purpose, the segmentation step (see
Sec. 2.3.1) could be used.

The highest Hb and HbO2 values are localized at the level of
the blood vessels (see Table 2). Indeed, the partial volume effect
has less impact on the blood vessels than on the gray matter. So
the underestimation of the concentration changes is lower at the
level of the blood vessel than at the level of the gray matter. It is
also interesting to notice that the concentration changes of the
blood vessels which are not directly linked to the functional
areas are higher than those of gray matter pixels associated with
the sensory and motor areas; see Fig. 8. Similar observations can
be found in the literature.18,25 Pichette et al.18 proposed to mask
the blood vessels in order to render more clearly the smaller
hemodynamic changes in gray matter. The computation of
the quantitative maps in conjunction with the measurement of
the Pearson correlation coefficient between the concentration
changes time courses with the expected hemodynamic response
allows us to visualize the activated cortical areas without mask-
ing the blood vessels. With the results of this study, it is com-
plicated to understand the role of the blood vessels. Indeed,
it is impossible to get the direction of the blood flow and thus
conclude that a blood vessel is associated with a functional area.
A complementary imaging modality such as speckle imaging43

could help to interpret the role of these blood vessels.
In Sec. 2.4.2, three simple models for the light transport of

photons in cortical tissue are defined for the analysis of reflec-
tance spectra. These models are applied to each camera pixel
depending on its biological attribution (gray matter, surface
blood vessel, and buried blood vessel). This segmentation
allows us to approach the optical properties inhomogeneities
of a cortical tissue. If the mean path length of the gray matter
model (see the curve of model 3 in Fig. 5) was used for the com-
putation of the Δ½Hb� and Δ½HbO2� time courses of the surface
blood vessel point A, this would imply a 40% underestimation
of the Hb value and 35% underestimation of the HbO2 value.

In our model, the distance of a gray matter pixel to the nearest
blood vessel is not taken into consideration. We consider that the
mean path length associated with this pixel is model 3 curve in
Fig. 5. This is an approximation since the blood vessel still has
an impact on the photon propagation. To solve this problem,
a pixel-wise determination of the optical mean path length can
be implemented. This could be realized by fitting theoretical
reflectance spectra (computed for a great number of Monte-
Carlo models) with measured reflectance spectra. This compari-
son appears not to be an easy task since only three spectral
values can be obtained which are integrated over the broad
wavelength ranges covered by each detector. A hyperspectral
camera seems to be a more appropriate solution to answer this
problem with the acquisition of high-resolution reflectance
spectra. A similar method has been implemented by Pichette
et al.18 using a hyperspectral imaging device and a two class
image segmentation but does not take account of the distance
between cortical tissues and blood vessel.

The quantitative maps are displayed after the end the data
acquisition. Unlike Bouchard et al.’s25 work, our method is not
processed in real time. But it would be possible to develop a
real-time processing using a multithreading software architec-
ture and a code optimization using GPU (graphics processing
units).

5 Conclusion
A quantitative and noninvasive method for imaging the oxygen-
ated hemoglobin concentration changes (Δ½HbO2�) and deoxy-
genated hemoglobin concentration changes (Δ½Hb�) of a human
exposed cortex using a digital RGB camera was demonstrated in
the present report. The results showed that the method can be
used by the neurosurgeon to localize the motor and sensory
areas before a tumor removal surgery. The brain areas defined
as activated cortical areas by our functional model are well cor-
related with the functional areas localized by EBS. Our model is
based on quantitative measurements and physiological and stat-
istical comparisons. Each step of the model can be improved,
such as the noise level reduction, the consideration of a physio-
logical a priori in the statistical comparisons, or the precision of
the quantitative measurements. Indeed, the estimation of three
different path lengths associated with three different cortical tis-
sues was used to process the Beer–Lambert law. The Monte-
Carlo models used in our study remain an approximation of the
optical properties inhomogeneities of the patient brain. To
increase the accuracy of our method, a detailed tissue structure
that best matches the cortical pattern of the acquired images can
be implemented in the Monte-Carlo simulations. However, this
would imply the determination of a three-dimensional cortical
tissue from an RGB image and would require considerably more
computational time and a large amount of simulated data. These
directions will be explored in future works. The current work
demonstrates that an RGB camera combined with a quantitative
modeling of brain hemodynamics biomarkers could evaluate in
a robust way the functional areas during neurosurgery. This
strengthens the relevance of using a classical RGB camera for
functional intraoperative brain imaging.
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