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Abstract

Significance: Isolating task-evoked brain signals from background physiological noise (e.g.,
cardiac, respiratory, and blood pressure fluctuations) poses a major challenge for the analysis
of functional near-infrared spectroscopy (fNIRS) data.

Aim: The performance of several analytic methods to separate background physiological noise
from brain activity including spatial and temporal filtering, regression, component analysis, and
the use of short-separation (SS) measurements were quantitatively compared.

Approach:Using experimentally recorded background signals (breath-hold task), receiver oper-
ating characteristics simulations were performed by adding various levels of additive synthetic
“brain” responses in order to examine the sensitivity and specificity of several previously pro-
posed analytic approaches.

Results:We found that the use of SS fNIRS channels as regressors of no-interest within a linear
regression model was the best performing approach examined. Furthermore, we found that the
addition of all available SS data, including all recorded channels and both hemoglobin species,
improved the method performance despite the additional degrees-of-freedom of the models.
When SS data were not available, we found that principal component filtering using a separate
baseline scan was the best alternative.

Conclusions: The use of multiple SS measurements as regressors of no interest implemented in a
robust, iteratively prewhitened, general linear model has the best performance of the tested
existing methods.
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1 Introduction

Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique that provides the
opportunity to noninvasively monitor hemodynamic activity within the human brain. First dem-
onstrated by Jobsis,1 the fNIRS technique has been applied to a growing number of populations
and experimental studies over the last three decades (reviewed in Refs. 2 and 3). This technique
uses diffuse optical measurements in the red to near-infrared range (650 to 900 nm) to measure
changes in cerebral blood oxygenation and concentration. These signals are recorded between
optical light sources and detectors that are placed on the scalp over the region-of-interest. At the
typical source–detector separations used for functional brain imaging of around 25 to 35 mm,
light from the scalp can penetrate into the first few millimeters of the cerebral tissue, which
allows measurements of many cortical cognitive areas of the brain.2 However, since these mea-
surements are made across layers of the highly vascularized skin and skull, fNIRS measurements
are often heavily contaminated by these superficial physiological signals (e.g., blood pressure,
respiratory, and cardiac signals).4,5 These superficial systemic physiological noises can be mis-
interpreted as brain activity and can drive both high false positive and false negative estimates.6

Furthermore, these errors are particularly troublesome when there is a possibility of a task-
induced systemic change accompanying the evoked brain signals, as may be the case in studies
requiring physical movement or inducing anxiety resulting in respiratory and heart rate changes.5

Over the last two decades, there have been numerous proposed methods for addressing sys-
temic contamination in fNIRS measurements (see Table 1 for a summary of published methods).
In general, these methods can be categorized into either prefiltering or statistical approaches.
Prefiltering methods use a two-step process to first attempt to first remove or correct the noise
prior to running a statistical analysis model. For example, an algorithm could be applied to
remove the artifacts from raw data generating a filtered dataset. After filtering, a block averaging
or regression model is then applied to the filtered dataset to estimate the evoked hemodynamic
signals. In this case, any statistics on the estimates of brain activity are inherently conditional on
preprocessing steps.28 Aggressive prefiltering may reduce systemic contamination but poten-
tially lower sensitivity and introduce additional type-II statistical errors (false negatives).5

Examples of prefiltering methods include bandpass filter,11,12 principal component analysis

Table 1 Survey of different processings to remove systemic
noise in fNIRS signal

Processing Citation

Adaptive filter 7

AR-IRLSa,b 8 and 9

bPCAa 10

Bandpass filtera 11 and 12

GLM using SS filtera 13

ICA 11, 14, and 15

ICA using SS channels 16

Kalman filter 17 and 18

PCAa 19 and 20

SS as a regressora,b 13 and 21–24

OLSa,b 25

Wavelet analysis 26 and 27

aMethod implemented in this current work for comparison.
bStatistical approach.
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(PCA)/independent component analysis (ICA),14,19 adaptive filtering methods,7 and prefilters
designed from short-separation (SS) fNIRS measurements.13,21–24 A detailed review of the pre-
filtering corrections is provided by Pinti et al.28

An alternative to the two-step prefiltering/statistical analysis approach (see “b” in Table 1) is to
integrate the corrections directly into the statistical model in a single step. When using a statistical
approach for accounting for systemic noise, a model of the brain activity is generalized to account
for systemic physiology. The most common statistical method involves the addition of regressors
of no interest into a linear regression model to estimate task-related activity. For example, these
nuisance regressors could be external measurements of physiology (e.g., finger pulse oximeter or
a respiratory belt)12,17 or estimates of the scalp response from SS fNIRS measurements.13

However, a challenge of these regressor models is collinearity introduced between the task and
nuisance regressors, which can happen if the systemic physiological response is correlated with
the performance of the task. Collinearity in the regression analysis can destabilize it due to poor
mathematical conditioning of the model and can produce unpredictable results.

Alternatively, modifications to the statistical assumptions of the model itself can be made
through precoloring26 or prewhitening8,9 approaches. In both prewhitening and precoloring, the
linear model is generalized to correct errors due to the incorrect statistical assumptions that
physiological noise is uncorrelated, normally distributed and white (cf., structured or colored
noise). Precoloring and prewhitening methods, however, do not account for errors due to the
nonstationarity of the noise or its potential to be synchronized to the task (e.g., heart rate
increases during a walking task).5 These statistical corrections are not exclusive to the use
of nuisance regressors in the model or additional preprocessing stages and all approaches can
be used together creating a large array of possible analysis pipelines.5

The objective of this study was to compare the sensitivity and specificity of various previ-
ously published methods including the use of SS measurements. In this work, we compared
many possible combinations of various pipelines with/without preprocessing of PCA, SS-filter
with several different regression models [i.e., ordinary least-squares (OLS), iterative autoregres-
sive least-squares (AR-IRLS), and mixed-effects (ME) version]. We also investigated the use of
SS measurements as regression for solving general linear model (GLM). These various analysis
pipelines were quantitatively compared using receiver operating characteristic (ROC) analysis
using semisynthetic simulations29,30 (e.g., real experimental physiological data from a resting
state (RS) scan and a purposeful breath-hold (BH) task with known artificial “brain activity
signals” added to the simulations). In addition, we compared the performance of the models
based on the number of SS channels (from only the nearest one to all eight channels).
Based on the area under the curve (AUC) of the ROC comparisons, we found that the use
of SS measurements as regressors using AR-IRLS for solving GLM has the best performance
of the tested existing methods.

2 Theory

In Table 1, we summarize several studies that describe approaches to dealing with systemic noise
in fNIRS. There are two main categories of the existing approaches, which are prefilter and
statistical approach (b). Those included in this work for comparison are indicated with (a) in
the following section. Some of those papers used external measurements as the reference to
systemic physiological responses and/or to validate their proposed method.

2.1 Prefiltering Methods

In this section, we will briefly detail a few of the prefiltering methods that have been previously
proposed for fNIRS research and that were compared as part of this current study.

2.1.1 Baseline-derived principal components analysis

PCA is a prefiltering method to reduce spatial covariance in the fNIRS data and works on the
assumption that the systemic physiological signal can be identified by a strong spatial covariance
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structure. As introduced by Zhang et al.,19 the first several principal components of the spatial
covariance of the fNIRS data are removed to reduce global signals. In the orignal proposed
version of this, a separate baseline-only data file is used to derive the components, which are
then projected from a separate data file of interest:

EQ-TARGET;temp:intralink-;e001a;116;687U · S · VT ¼ YT
baseline · Ybaseline; (1a)

EQ-TARGET;temp:intralink-;e001b;116;644Yfiltered ¼ Y task −
Xn
i¼0

Y task · Vi; (1b)

where U is the left singular vectors returned as the columns of a matrix; S is the singular values
returned as a non-negative diagonal matrix in decreasing order; V is the right singular vectors
returned as the columns of a matrix, those U, S, and V computed by singular value decompo-
sition; Ybaseline and Y task are the vectors of measurements from resting data as a baseline and task;
and i is the index of number components.

The assumption in this model is that spatial structure due to the systemic noise is the same
between the baseline-only and task file and therefore a filter can be designed from the baseline
file and applied to the task file of interest. This is applied separately for the oxy- (HbO2) and
deoxy-hemoglobin (Hb) signals since these may have differing physiological contributions and
therefore differing spatial structure. In Eq. (1b), n is the number of spatial components to be
removed. Following the recommendation by Franceschini et al.,10 we have defined n to be the
number of components needed to explain 80% of the spatial covariance by removing the first
few eigenvectors of the baseline signal. That paper also speculated that removing too many
components would lead to potential suppression of the estimate brain signals and introduce
type-II error.

2.1.2 Principal components analysis

Similar to the baseline-derived PCA (bPCA) analysis, an alternative method is to use the same
data file to define the components to be removed. In this case, the decomposition [Eq. (1a)] is
applied from the spatial covariance of the task dataset instead of a separate baseline-only data
file. Because the principal components come from the same data file containing the task-based
signal, the assumption is that the global spatial features of the systemic noise comprise a stronger
component of the spatial covariance compared to the task-based signal. Equations (1a) and (1b)
are used with the substitution of the Y task (fNIRS data from the task file) in place of the separate
baseline (Ybaseline) data in Eq. (1a). Both the baseline-derived and single-file versions of the PCA
filter were originally included in the HOMER software program for NIRS analysis.31 A limi-
tation of this approach, however, is when the evoked brain signal of interest has a spatial extent
(covariance) on the same scale as the systemic physiology, which is often true when the fNIRS
probe contains only a few measurement channels and covers only the area of brain activity.

2.1.3 Short-separation prefiltering via unconstrained projection

Another possibility to reduce the systemic physiological noises is by recording from additional
dedicated SS measurements (see Ref. 32 for review). Since the penetration depth of fNIRS mea-
surements varies with the light source–detector spacing, SS measurements can be used to pro-
vide a local estimate of the hemodynamic changes in the skin layer, which can be used to design
filters. Brigadoi and Cooper33 investigated this SS measurement using Monte Carlo simulations
to find the optimum distance for short channel, which was determined to be 8.4 mm for adult and
2.15 mm for infant. It has been suggested that the distance between an SS channel and the long-
distance (LD) channels it is designed to filter should have a center-to-center distance of no more
than 15 mm.22

As a prefiltering method, SS data can be projected out of the longer-separation channels
(brain and skin) to better isolate the brain signals:

EQ-TARGET;temp:intralink-;e002;116;86Yfiltered ¼ ½I − Xshort · ðXT
short · XshortÞ−1 · XT

short� · Y long; (2)
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where Xshort is a matrix constructed from the collection of one or more SS time courses. In this
model, we call this “unconstrained projection “since there is no explict use of the spatial relation-
ships of measurements or the relative sensitivity of the short and longer measurement pairs
(cf., methods based on the optical forward model as described in the next section).

2.1.4 Short-separation prefiltering via image reconstruction

In comparison to the use of SS measurements as an unconstrained projection operator, an alter-
native approach is to attempt to introduce information about the relative sensitivity of measure-
ments to the brain and skin by way of the optical forward model, which describes how light
diffuses through the tissue. In particular, Gregg et al.34 introduced the idea of using a basic
fNIRS image reconstruction model to project out the superficial noise signals based on the
expected sensitivity of each measurement to the skin and assumptions about the lower spatial
frequency of the signals in the superficial layer (see Refs. 23 and 35 for similar studies). In this
work, we implemented image reconstruction-based correction using the model:

EQ-TARGET;temp:intralink-;e003;116;555YT
filtered ¼ ½I − L · S · ðST · LT · L · Sþ λ · IÞ−1 · ST · LT� · YT; (3)

where L is the partial optical forward model (matrix) describing the sensitivity of all fNIRS
measurements (both short distance and LD) to a skin layer, λ is the stabilizing hyperparameter,
and S is a low-spatial frequency basis set to impose spatial smoothing on the reconstructed image
of the skin. For example, S could be constructed from a Gaussian smoothing kernel for the skin
layer36 or spatial wavelets.37,38

2.2 Statistical Methods

Compared to the prefiltering methods described above, the second category of analytic methods
incorporates the corrections into the statistical model in a single step. Specifically, in most fNIRS
brain studies, a linear regression model of some form is used. We note that this statement covers
deconvolution, canonical regression, and block averaging as the three common variations of a
linear regression model used in fNIRS.39 For discussion of the relationship of block-averaging to
the weighted back-projection solution of the equivalent regression model in the limit of non-
overlapping events (see Ref. 40). In these statistical correction models, rather than applying
a separate preprocessing step to remove noise, terms are added in the regression model to remove
systemic physiology. In this case, the regression statistics include estimates for the effect of these
superficial terms.

2.2.1 Short-separation regression models

An alternative for using SS measurements to prefilter the data is to include it as additional regres-
sors (-of-no-interest) in the linear model. In the same manner as the prefiltering methods pre-
viously described, a combination of one or more SS channel time courses can be included into a
matrix (Xshort) that is concatenated to the regression matrix (design model; Xtask) describing the
task-based regressors:

EQ-TARGET;temp:intralink-;e004;116;209Y ¼ ½Xtask Xshort � ·
�
βtask
βshort

�
þ ε; (4)

where βtask and βshort are the activity strength of task activation and SS channel, respectively, and
ε is the error terms. Of note, one limitation of this approach is when the physiology revealed by
the SS measurements shows task-induced changes, this can create collinearity issues in the over-
all model, which destabilize estimates of the evoked signal.

2.2.2 Generalized linear models

Generalized linear models, which introduce transformations of the model via prewhitening8,26 or
precoloring,26 can be applied to solve the regression model and reduce false-positive rates (FPRs)
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introduced by serially correlated noise in the data. A detailed review of this topic is provided by
Huppert.5 In this work, we compared OLS approach and AR-IRLS model described by Barker
et al.8 In brief, the AR-IRLS model is first solved using robust regression and the residual noise,
then fit to an AR model. The AR filter (computed by an Akaike model order) is applied to both
sides of the original linear regression model and then resolved and repeated until convergence
(see Ref. 5 for discussion).

2.2.3 Mixed-effects models

Finally, in this work, we introduce an ME version of the linear regression model. The motivation
for this model was that in the standard regression model, the weights of the SS terms are esti-
mated independently for each LD channel of interest. Thus there is no part of the standard regres-
sion model that imposes that the SS contributions are expected to be more global and consistent
across the fNIRS probe. In the ME model, we assume that these weights for the SS regression
terms all come from a single-distribution pooled across all the channels. This is done in an iter-
ative and data-driven way, which empirically determines the variance of this distribution. If the
systemic response is experimentally very global, then the distribution will become narrow and
the SS regression coefficients for a given channel of interest will be more statistically informed
by the other channels. Conversely, if the systemic response is very heterogeneous, the variance of
this prior distribution becomes very broad and this is a noninformative statistical prior. The ME
regression model is given by the following equations:

EQ-TARGET;temp:intralink-;e005a;116;483Y ¼ Xtask · β þ Zshort · Γþ ε; (5a)

EQ-TARGET;temp:intralink-;e005b;116;440Γ ∈ Nð0; σ2Þ: (5b)

Note Zshort is the same as the previously defined Xshort but is renamed (X → Z) here to reflect the
common usage of the terminology in an ME model. The random effects coefficients (Γ) are
assumed to have a zero-mean normal distribution with variance σ2, which is pooled across the
entire probe (all channels). In this work, we use an iterative expectation–maximization approach
to solve this model. (i) Given an initial guess of σ2 (initially set to infinity), the variance weighted
solution to Eq. (5a) is solved to estimate the task coefficients (fixed effects; β) and physiology
regressors (random effects; Γ) for each LD fNIRS source–detector channel. (ii) Next, the esti-
mate of the variance is updated by computing the mean absolute deviation (MAD) of the esti-
mates of the random effects across the channels (σ ¼ 1.4826 �MAD). The MAD is used to
maintain the zero-mean estimate. (iii) The model is then re-estimated, and the processes repeated
until convergence. By performing the regularized ME estimation, we are also able to stabilize the
collinearity issues associated with task-induced superficial physiological changes. This also
imposes a prior on the physiological noise estimates by assuming the coefficients come from
a single spatially global variance distribution.

3 Materials and Methods

In this work, we compared the performance of the various physiological correction methods
listed above. The main contribution of this paper is to compare the performance of the existing
methods for removing the systemic physiological noises. To our knowledge, there has not been
a full quantitative comparison of existing method to remove the systemic physiological effects
in fNIRS signal using sensitivity–specificity analysis.

3.1 Subjects

In order to provide data for testing the performance of the various models, 12 subjects partici-
pated in the experiment (5 males, 7 females; age range 20 to 50 years; all right-handed). The
subjects were informed about the experimentation and written consent was obtained. This study
was approved by the University of Pittsburgh Institutional Review Board.
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Each subject performed seven scans consisting of one resting and six task scans. The subjects
performed the experiment with their open eyes for both resting and task sessions. The task ses-
sions (i.e., walking, imagine walking, and BH) consisted of a 25-s task period followed by a 30-s
rest period and was repeated 5 times.

The duration of the entire experiment was about 35 min. Subjects were instructed on how to
complete the paradigm. First, for the RS, the subjects were to avoid body motion and to remain
relaxed in the standing position for 5 min without employing any mental effort. Next, for the
walking task, subjects were verbally instructed to walk at the pace of the treadmill (5 km per
hour). For the imagine walking, subjects were verbally instructed to stand still but imagine walk-
ing. Finally, for the BH task, the subjects were verbally instructed to hold their breath for 25 s. At
the beginning of the test, subjects were secured into a harness attached to a support to ensure their
safety. The experimenter gave auditory verbal commands to begin each task. The seven tasks were
done into following order: RS, walking task 1, imagine walking 1, BH 1, walking task 2, imagine
walking 2, and BH 2. The walking and imagined walking tasks were not included in the main
analysis of this study, but they are presented in Figs. S1 and S2 in the Supplementary Material.

The BH task triggers a vasomotor response to change in systemic oxygenation and blood
flow levels. We argue this represents an extreme scenario for a physiological change. Therefore,
this is the most challenging test for the SS methods. In the data processing, we used the BH data
to model two different types of simulations: (i) the worst-case scenario when the physiological
response is co-occurring with the task stimulus onsets (denoted BH-locked) and (ii) when
physiological signals occur in the background but are random jittered with respect to the stimulus
timing (denoted BH random) [see Fig. 2(b)]. In all cases, a simulated evoked response was added
to half of the channels of experimental fNIRS data at a specific contrast-to-noise ratio
(CNR ¼ 0.7, which was chosen as a level where the ROC analysis would not give trivial sat-
uration effects between the models and is in line with the previous study41) in order to compute
the ROC analysis. CNR in this work was defined as the peak magnitude of the added evoked
response to the standard deviation (σ) of the oxy- or deoxy-hemoglobin data. The equation σ ¼
1.4826 �MAD [median absolute deviation] was used as a robust estimator of standard deviation
to reduce the effects of strong outliers. The CNR was adjusted on a per channel basis. We also
examined simulations at CNR of 0.5, 0.7, 1.0, and 2.0 for a subset of the results to examine the
effect of data quality on the results. In the case of the BH-locked, those events match with the
instruction to the subject when they have to hold their breath, whereas in the BH-random, we
made the random events in our data processing. Thus in both cases, the level of background noise
was the same. The same simulations were applied to the RS data.

3.2 Data Acquisition

The experimental data were recorded using a commercial NIRScout (NIRx GmbH, Berlin,
Germany) continuous fNIRS system. A prototype cap using SS measurements from NIRx was
used on the standard layout. The distances between source and detector were 30 and 7.5 mm for
LD and SS channels, respectively. In this study, the relative center-to-center distance between SS
and nearest LD channels is between 13.4 and 15.5 mm. The data were recorded at a sampling rate
of 7.8125 Hz for two wavelengths (760 and 850 nm). As Fig. 1 shows, a total of 30 channels (22
channels for LD and 8 channels for SS channels) were measured from 8 sources (red circle),
7 detectors for LD channel (blue rectangle), and 1 detector (split to 8 detectors) for SS channel
(green diamond). The blue solid-line represents the LD channel and the green dotted-line is the
SS channel. All the optodes were placed on the scalp above the motor cortex area. Detector 4 was
set to coincide with the Cz location in the international 10–20 system, as shown in Fig. 1. The
room lights were turned off during the experiment to minimize signal contamination from the
ambient light. Additionally, the ambient light was blocked using an opaque scuba diving cap
over the cap holding the optodes.

3.3 fNIRS Data Processing

Several publications have described the processing technique to reduce the systemic physiologi-
cal noises in Sec. 2 (see Table 1). These algorithms are mainly focused in the implementation of
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data processing to get better topographic and/or tomographic images. Figure 2(a) summarizes
the possible or common filtering solutions with/without SS channels when reducing the systemic
physiological noise. There are three major stages in the processing. (i) Three datasets contain
observations from two different tasks: resting, BH (random), and BH (locked) data. This process-
ing includes converting the raw data to hemoglobin data (HbO2 and Hb) using the modified
Beer–Lambert law. (ii) There are four different preprocessing steps in the second stage: without
preprocessing, bPCA, PCA, and SS channel as a prefilter. In addition, there are two types of SS
as filter: via unconstrained projection and via image reconstruction. It is noted that the SS filter
via unconstrained projection as a prefiltering step is the common procedure in the literature (see

Fig. 1 FNIRS optodes configuration. Blue solid-line and green dotted-line represent the LD
(n ¼ 22) and SS (n ¼ 8) channels, respectively. Detector 4 coincides with the Cz location in the
International 10–20 System.

(a) (b)

(c)

Fig. 2 In this work, many combinations of preprocessing and statistical models (GLM) were
applied to the three types of simulated data. (a) The 60 (3 × 4 × 5) combinations of processing
that were used in this study. Examples of (b) the experimental resting and (c) BH data are shown,
which were used to generate the three types of semisynthetic data sets by adding known evoked
responses to a subset of the experimental data. (c) The timing of the stimulus events used in the
BH-locked and BH-random simulations.
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Table 1). (iii) In the third stage, GLM analysis is implemented with several different algorithms:
OLS and AR-IRLS with/without SS channels as a regression and ME processing using AR-IRLS
with SS channel. In this study, we also compared the regression models with either oxy-, deoxy-
hemoglobin ½XshortðHbO2jHbÞ] and both [XshortðHbO2þHbÞ]. In this study, a total of 60 (3 × 4 × 5)
combinations of processing were performed in ROC simulation [see Fig. 2(a)]. Furthermore,
PCA regression was applied to remove collinearity in the Xshort matrix. For PCA regression,
a orthonormal decomposision of the Xshort matrix is used and the nonzero components are used
as a reparameterization of the components. This strategy is to avoid multicollinearity problem in
regression analysis, which occurs when two or more independent variables are highly correlated.
This was only used to remove collinearity from using multiple short-seperation channels in the
model, but did not reduce any collinearity between the task regressors and the short-seperation
nuisance regressors. However, since the short-seperation regressors are not masked by the on/off
periods of the events in the same way that the task regressor terms are, we did not find strong
mathematical collinearity between the Xtask and Xshort regression terms. In addition, the nearest
n-channels (up to all SS channels) have been processed for SS investigation in the regression
model. The performance of each processing combination was compared using ROC analysis in
order to examine the sensitivity–specificity of the processing technique and control of type-
I error.

3.4 Short-Separation Processing

There are two ways to process the SS channels, that is, (i) SS channels as prefiltering methods
and (ii) SS channels as regression for solving GLM. For both methods, the definition of Xshort

can be flexible and in this work we examined the case where Xshort was composed of either oxy-
or deoxy-hemoglobin [XshortðHbO2jHbÞ] or both [XshortðHbO2þHbÞ]. We also examined both where
multiple SS channels were directly used as columns of Xshort and where a PCA regression was
applied to remove collinearity in the Xshort matrix (e.g., first m principal components computed
from the decomposition of the nearest n SS channels wherem ≤ n). In addition, for SS as regres-
sion, we varied the SS channels to include only the nearest n-channels up to the entire probe.

Figure 2(b) depicts the HbO2 for resting data. Figure 2(c) illustrates the difference between
BH (locked) and BH (random) stimuli (lower figure) usingHbO2 data for BH task (upper figure).
The BH (locked) stimuli (blue solid line) means that the timing of these simulated events
matched the BH timing. Meanwhile, the BH (random) stimuli (black dashed line) means that
onset and interstimulus interval between the simulated 25-s duration events were jittered ran-
domly (the interstimulus interval was jittered between 15 and 50 s) with respect to the actual BH.
We generated the random stimuli in resting data in our ROC simulation (see the next section).

All these different techniques including a demo script for this study were implemented in
MATLAB™ (Math-works, Natick, MA) 2018a as the part of an open-source AnalyzIR
toolbox.42 This toolbox is currently available online43 or by request to the corresponding author.

3.5 Sensitivity–Specificity Simulation

The ROC curve is a graphical plot frequently used to evaluate the performance of the various
algorithms. These curves are generated by simulating evoked responses in exactly half of the
data by adding a synthetic “activity” to the experimentally recorded baseline data at a specific
CNR. After running the data through the proposed analysis pipeline, the true positive and false
positive channels are tallied. This is repeated for thousands of repeated random selections. In this
study, for each iteration of the simulation, a resting, BH (random), and BH (locked) dataset are
randomly chosen from the entire dataset collected from the 12 subjects. Then a simulated “activ-
ity” response was generated and added to exactly (randomly selected) half of the LD channels
and then the same data are analyzed through the 20 (4 preprocessing × 5GLMmodels) algorithm
pipelines. After solving the GLM model, the null hypothesis of the β for each channel is zero,
which can be tested using a Student-t test. The p-values reported by this test can be used to
calculate the FPR (type-I error rate) for noise-only channels and the true-positive rate (TPR) for
the simulated response-containing channels given a p-value threshold (p-hat). In the AnalyzIR
toolbox,42 the ROC analysis is performed for both HbO2, Hb, and joint test (Hotelling’s T2 test)
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of HbO2–Hb. However, in this study, we often show the HbO2 result since the AUC of HbO2

slightly higher than Hb. All true positives are generated by adding simulated brain stimuli to
resting or BH data. In each iteration of simulation under resting or BH condition, the data of a
randomly selected subject under this specific condition are used as the physiological signal for
simulation. ROC analysis allows a complete sensitivity and specificity report in a coordinate
system.

An ROC curve is a plot of TPR (also known as sensitivity) versus FPR (or 1-specificity) at
various threshold settings. Each point on the ROC curve expresses the sensitivity–specificity pair
corresponding to a particular decision threshold. Here, we used 1 − p-value as the decision
threshold since a smaller p-value indicates the β is more significantly different from zero.
The accuracy is measured by the AUC whose statistical meaning is the probability the algorithm
ranks a randomly chosen positive (stimulus-containing) case higher than a negative (noise-only)
case in 1 − p-value, i.e., lower in p-value. Thus the AUC value of 1 represents a perfect test and
AUC of 0.5 represents random chance. Furthermore, we also estimated the control of the type-I
error by showing the relationship between empirical p-value (actual FPR extracted from the
ROC curve) against the theoretical FPR (denoted p-hat). If the null hypothesis is true, an appro-
priate analysis approach or statistical test should provide p-values uniformly distributed from 0
to 1. In this case, the relationship is displayed as points on an x axis (i.e., p-hat) and y axis (i.e.,
actual FPR) coordinate system. The ideal condition (“truth”) shows an identical value between
p-hat and FPR value, where the slope of that condition is equal to 1. A large positive deviation
means the model over-estimates the significance of events. Meanwhile, a dip below the slope of
unity means the model underestimates the significance of the results.

3.6 Effect of Short-Separation Data Quality

In addition to looking at the model performance using multiple SS channels, we also examined
the effect of the data quality of the SS channel. To do this, we added each single SS (1 of 8)
channel to the regression model and ran simulation ROC analysis for each data file. The quality
of the SS data was quantified using the scalp-coupling index (SCI) approach described in
Ref. 44, which is based on cross correlation of the two wavelengths of fNIRS data around the
cardiac frequency. The AUC for the ROC analysis was examined for datasets using SS data with
SCI in 0.10 bins from 0 to 1. For these simulations, only the BH data were used with a randomly
jittered simulated block design activation at a CNR of 0.7. Only the AR-IRLS version of the
GLM was examined.

4 Results and Discussion

For this study, we investigated 60 different processing combinations using three datasets as
shown in Fig. 2. Additionally, we also examined the SS channels as regressors and as a prefilter
model to include only the nearest n channels up to the entire probe. These additional models are
presented in the Supplementary Material for SS as a prefilter. In this main text, only the results
of using the entire set of 16 SS channels as a prefilter (8 channels by HbO2∕Hb) are presented.
All of the processes were simulated using our NIRS AnalyzIR toolbox.42 The ROC analysis
(sensitivity–specificity report) and control type-I error (p-hat and FPR report) was run from
1650 iterations of each processing pipeline.

4.1 ROC and Control Type-I Error Curves

Figures 3(a)–3(c) depict the AUC values from the ROC curves (sensitivity–specificity reports),
in the right panels (d)–(f), of the selected seven different processing pipelines using AR-IRLS.
From the 60 possible combinations (shown in Fig. 2), we selected 7 different processing
pipelines for presentation: (i) AR-IRLS without preprocessing (blue), (ii) preprocessing using
bPCA and AR-IRLS (black), (iii) prefilter using SS channels (SS-filter) [XshortðHbO2þHbÞ] via
unconstrained projection as a filter and AR-IRLS (magenta), (iv) prefilter using SS channels
(SS-filter) [XshortðHbO2jHbÞ] via unconstrained projection as a filter and AR-IRLS (dark-green),
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(v) preprocessing using all SS channels ½XshortðHbO2þHbÞ] via image reconstruction as a filter
and AR-IRLS (light-blue), (vi) AR-IRLS with SS channels XshortðHbO2þHbÞ] as a regression
(SS-regression) (green), and (vii) ME and AR-IRLS with SS-regression XshortðHbO2þHbÞ] (red).
It is noted that the SS-filter and SS-regression are using all SS channels for this figure. In this
figure, we only showed and compared those various processing pipelines using AR-IRLS since
we know from the previous works that the AR-IRLS has higher AUC than OLS.8,42 The resting,
BH with randomly jittered event timing (BH-random), and BH with events time-locked to the
hold (BH-locked) data are shown in the first [panels (a) and (d)], second [panels (b) and (e)], and
third row [(panels (c) and (f)], respectively.

Figure 3 compares the performance of the processing with/without SS channels. We found
that, in general, the processing performed better using additional SS channels as a prefilter
(SS-filter) in the prefilter as well as a regression (SS-regression) for solving GLM. We observed
that the approaches that used SS data either as a prefiltering step or within the linear model were
better than the PCA or bPCA methods or regression without SS. Thus SS data should be
recorded when possible. If SS data are not available, the bPCA method was the best alternative.
When using SS data, we found that regression approaches that incorporate these into regressors-
of-no-interest in the statistical model were better than using these as part of a prefiltering step.
We also noted that using both hemoglobin species in the regression model was better than using
only the species corresponding to the LD data of interest. Finally, we found that our new ME
variation of the GLM did have a slight improvement but since this algorithm is iterative and was
found to take around 10-fold longer to solve, the modest improvement of this approach was felt
to be impractical.

As expected, the performance of all the methods was best for the simulations involving just
the RS data and the AUC estimates were lower for the BH data with randomly jittered event
timing and lowest for the BH data with time-locked events. The values for all comparisons are
provided in Table 2. By performing a statistical test on the AUC difference using the method
proposed by DeLong et al.,45 we found the AUCs of the two methods using SSs as regressors
[see Fig. 3, (vi) and (vii)] are significantly larger than those of the remaining methods with
p-values < 0.05. Since, in general, one mostly cares about the range of p < 0.05 in the context
of reporting scientific findings, we further examined the partial AUC of the models for the range
of FPRs between 0 and 0.05. In this range, as shown in Fig. 3, the models show the largest
differences. The partial area under the ROC curve (pAUC)46 with FPR ≤ 0.05 was used as the
performance index for each method. For the RS data, the normalizes of pAUC for SS-regres-
sion + AR-IRLS [see Fig. 3(vi)] and SS-regression + ME + AR-IRLS [see Fig. 3(vii)] are

(a)
(d)

(b)
(e)

(c)
(f)

Fig. 3 Comparison of (a)–(c) the AUC from (d)–(f) sensitivity–specificity ROC curve. In every
panel, six selected different processing pipelines are investigated. (a), (d) Resting data; (b),
(e) BH with random stimulus marking; and (c), (f) BH with locked stimulus marking.
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0.32 [raw pAUC ¼ 0.016] and 0.34 [raw pAUC ¼ 0.017], respectively; whereas the pAUC for
SS-filter image [see Fig. 3(v)] is 0.20 [raw-pAUC ¼ 0.010]. By estimating the pAUC variance
using bootstrap,46,47 the Student’s t-test for the pAUC difference between the SS-regression and
SS-filter method was conducted, which suggested significant difference in pAUC with p-values
of p < 10−6 for the SS-regression + AR-IRLS method and p < 10−6 for the SS-regression +
ME + AR-IRLS method both in comparison to the SS-filter method.

In analysis shown in Fig. 3 and Table 2, we found similar results between the AR-IRLS
(autoregressively iterative robust least squares) model and OLS (not-shown) regression in terms
of the AUC. In general, there was only a modest improvement for the AR-IRLS approach in the
AUC, which is consistent with our previous work for fNIRS data with little to no motion-
artifacts.8,42 As previously detailed, the AR-IRLS model robust statistical estimator and
differences in the AUC of these methods is only expected in the presence of statistical outliers
(e.g., motion artifacts). However, as shown in Fig. 4, these two methods have substantially differ-
ent sensitivities to serially correlated noise, which causes high FPRs and uncontrolled type-I
error. Figure 4 shows the calculated FPRs against the p-hat at various thresholds from the ROC
curves. We compared the performance of the control type-I error between OLS (dashed-line) and
AR-IRLS (solid-line) for three different processing pipelines (i.e., without preprocessing, SS-
regression, and SS-regression followed by ME for AR-IRLS only). Those figures also compare
three resting, BH (random), and BH (locked) datasets as shown in panels (a)–(c), respectively.
Overall, AR-IRLS had a substantial significant improvement on the control for type-I error rates
for all three datasets. OLS processing with/without SS channels had high FPR or type-I error
(see dashed-line). This result shows that the use of SS channels as regression for OLS will not
substantially improve control of type-I errors. For example, in resting data, the FPR at the
p-hat < 5% are 70% and 64% for OLS and OLS with SS-regression, respectively. This means
that at an expected threshold of p < 0.05, the actual FPRs are around 60% to 70%. Meanwhile,
AR-IRLS performed better than OLS in control of type-I error (see solid line). The processing
using AR-IRLS is very close to the ideal case (where the reported p-value value is the same as
the FPR). For the AR-IRLS model, the FPR at the p-hat < 5% are 5% and 4% for AR-IRLS and
AR-IRLS with SS-regression, respectively. This finding is in agreement with the findings from
Barkeret al.,8 which showed that the AR-IRLS performed better than OLS in the presence of
physiological noise. AR-IRLS improves control of type-I errors, which shows the FPR was
reduced to 40% to 60% compared with OLS. For ME model, either OLS or AR-IRLS with
SS-regression has similar control type-I error (see green dashed-line and dark green solid-line).

For the RS, the control of type-I errors in the AR-IRLS model was near prefect. However, for
the BH data (both random and locked), the FPR of the AR-IRLS was elevated (e.g., 10% to 15%

Table 2 AUC values for various processing pipelines using AR-IRLS

Data
Pre-

processing
AR-
IRLS

SS-filtera +
AR-IRLS

SS-filterb +
AR-IRLS

SS-filter imagea +
AR-IRLS

SS-regressiona +
AR-IRLS

SS-regressiona +
ME + AR-IRLS

Resting None 0.66 0.71 0.70 0.71 0.75 0.75

PCA 0.68 0.71 0.72 0.69 0.76 0.76

bPCA 0.68 0.72 0.71 0.70 0.75 0.75

BH
(random)

None 0.60 0.65 0.64 0.65 0.70 0.71

PCA 0.63 0.67 0.67 0.66 0.72 0.72

bPCA 0.62 0.66 0.66 0.63 0.70 0.71

BH
(locked)

None 0.56 0.62 0.62 0.60 0.68 0.67

PCA 0.57 0.63 0.63 0.63 0.67 0.67

bPCA 0.61 0.65 0.64 0.62 0.68 0.68

aBoth of oxy- and deoxy-hemoglobin [XshortðHbO2þHbÞ].
bEither of oxy- or deoxy-hemoglobin [XshortðHbO2þHbÞ].
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at p < 0.05), but this was still substantially lower than the 70% FPR (at p < 0.05) of the OLS
method for this same data.

4.2 ROC Performance for Different CNR Levels

The results in Figs. 3 and 4 showed simulations at a CNR of 0.7. In Fig. 5, we also investigated
the performance of ROC analysis with various CNR levels from 0.5 to 2.0. Four different
processing pipelines have been compared in every panel: AR-IRLS without preprocessing
(blue), preprocessing using bPCA and AR-IRLS (black), prefilter using SS channels (SS-filter)
[XshortðHbO2þHbÞ] via unconstrained projection as a filter and AR-IRLS (magenta), and AR-IRLS
with SS channels [XshortðHbO2þHbÞ] as a regression (SS-regression) (green). In all pipelines, the
AUC values increased at higher CNR levels. It is expected that as CNR increases even more, the
AUC of the ROC plots will begin to saturate near AUC ¼ 1. However, over the physiological
range of CNR between 0.5 and 2.0, the AR-IRLS method with SS channels was the best
approach.

(a)

(b)

(c)

Fig. 5 Comparison of AUC from ROC analysis at various CNRs of 0.5, 0.7, 1.0, and 2.0 from
selected four different processing pipelines. (a) Resting data, (b) BH with random stimulus mark-
ing, and (c) BH with locked stimulus marking.

(a)

(b)

(c)

Fig. 4 Comparison of OLS and AR-IRLS of control type-I error reports from three different data
sets using selected six different processing pipelines. (a) Resting data, (b) BH with random stimu-
lus marking, and (c) BH with locked stimulus marking.
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4.3 Number of SS Channels

An open question in the previous work has been whether a separate SS channel is necessary for
every LD channel, or whether a single or limited number of SS channels may be sufficient to
measure the systemic physiological noises. If the systemic physiology is global, then having
many SS channels would likely be redundant. However, if the heterogeneity in blood vessel
sizes, volume fraction, or geometry may be different across the head, in which more SS channels
would be beneficial as suggested in the previous work by Ref. 22. To address this, we ran the
ROC analysis and compared the performance of the various processing pipelines using the near-
est SS channels from one- or two- up to eight-channel.

Figure 6 displays the AUC values of the sensitivity–specificity reports from various SS chan-
nels as regression for solving GLM (one or two nearest up to eight SS channels) without pre-
processing. Those figures also compare three different datasets: resting, BH (random), and BH
(locked) data as shown in panels (a)–(c), respectively. In this figure, we selected six different
processing pipelines: AR-IRLS [XshortðHbO2jHbÞ] (blue plus), AR-IRLS [XshortðHbO2þHbÞ] (red
circle), OLS XshortðHbO2jHbÞ] (green asterisk), OLS [XshortðHbO2þHbÞ] (black cross), ME + AR-
IRLS [XshortðHbO2jHbÞ] (magenta diamond), and ME + AR-IRLS [XshortðHbO2þHbÞ] (dark green
point). It is noted that the ME model needs at least two SS channels when it is solving the
GLM. We only showed the use of SS channels as regression to investigate the nearest SS chan-
nels since we know from the previous results that the SS-regressing has better performance than
SS-filter (see Fig. 3 and Table 2). For all simulations, data not shown, we found that OLS has
higher FPRs (type-II error) similar with the previous figure (see Fig. 4).

Overall, as shown in Fig. 6, the AUC values are increased accordingly as the processing has
more SS channels. Meanwhile, by increasing the number of SS channels, the performance has
slightly increased in AUC, which is indicated by a decrease of the FPR (data not shown). The top
two AUC values among six different processings without preprocessing are AR-IRLS [SS-all:
XshortðHbO2þHbÞ] (0.77, 0.72, and 0.73) and ME [SS-all: XshortðHbO2þHbÞ] (0.75, 0.73, and 0.71) for
resting, BH (random), and BH (locked) data, respectively. Chi-squared tests48 show they are not
significantly different with p-values 0.314, 0.617, and 0.246. However, the ME has better control
of type-I error. That is, AR-IRLS [SS-all: XshortðHbO2þHbÞ] are 18.6% (resting), 9.1% [BH (ran-
dom)], and 7.4% [BH (locked)]; and ME [SS-all: XshortðHbO2þHbÞ] are 16.5% (resting), 6.4% [BH
(random)], and 5.4% [BH (locked)] at a threshold of p < 0.05. It is also suggested that it is better
to use XshortðHbO2þHbÞ for various nearest SS channels, which is similar with the previous finding
in Fig. 3. However, the control of type-I error has slightly better performance using AR-IRLS

(a)

(b)

(c)

Fig. 6 Comparison of sensitivity–specificity of AUC without preprocessing using various nearest
SS channels for six selected processing. All these processing have been implemented using three
datasets: (a) resting, (b) BH (random), and (c) BH (locked) data.
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[XshortðHbO2þHbÞ]; that is, 19.9% (resting), 10.6% [BH (random)], and 8.2% [BH (locked)] using
AR-IRLS [XshortðHbO2þHbÞ] and 7.4% (resting), 9.1% [BH (random)], and 18.6% [BH (locked)]
using AR-IRLS [XshortðHbO2jHbÞ] using all SS channels. The p-values of the chi-squared test48 for
the differences between them are all < 0.0001, which indicates AR-IRLS [XshortðHbO2þHbÞ] per-
forms significantly better than AR-IRLS [XshortðHbO2jHbÞ].

In addition, we also processed all eight SS channels for all hemoglobin data (HbO2 and Hb)
by applying the singular value decomposition. We found that five SS channels are sufficient for
most files (across subjects and datasets), as five channels can explain more than 90% of the
variance (see the Supplementary Material). This finding supports the previous investigation for
various nearest SS channels (Fig. 6), in which five SS channels substantially improved the per-
formance. For example, in resting data {see Fig. 6(a); AR-IRLS [XshortðHbO2þHbÞ]}, the AUC
values are 0.66, 0.69, 0.73, and 0.77 for AR-IRLS without SS channels, with one SS channel,
five SS channels, and all eight SS channels, respectively. Meanwhile, the FPR of AR-IRLS (rest-
ing data) at a threshold of p < 0.05 are 8.2% (without SS channel), 7.0% (one SS channel), 8.3%
(five SS channels), and 8.2% (eight SS channels). In addition, the TPRs of AR-IRLS (resting
data) at a threshold of p < 0.05 are 27.7% (without SS channel), 32.5% (one SS channel), 43.7%
(five SS channels), and 52.1% (eight SS channels). This finding further supports the idea of the
optimum number of SS channels, which is sufficient to reduce the effect of systemic physio-
logical noises. It is better to have the additional SS channels in every source position. However,
we still can use several SS channels in some source position. These findings will help other
researchers who have limited number of optodes to find the optimum number of SS channels
for specific study.

4.4 ROC Performance per Quality of SS Data

We also examined the relationship of the proposed algorithms to the quality of the SS data. To
address these issues, we adopted the scalp coupling index (SCI) metric by Pollonini et al.,44

which is based on the cross correlation of the two wavelengths of optical data for each channel
around the cardiac frequency. In the best data, the cardiac signals at two wavelengths are corre-
lated, thus yielding an SCI close to 1. In contrast, noisy cardiac signals led to a lower SCI value
(close to 0). In addition, PHOEBE software used an SCI threshold of 0.8 to identify channels
with acceptable scalp coupling. Bandpass filtering between 0.5 and 2.5 Hz is used to limit the
signals to around the cardiac oscillation prior to compute the SCI is required. In our study, 57%
of SS data had SCI more than 0.8. In order to investigate the effect of data quality, an ROC curve
was computed for each of the BH data sets using only one of the eight SS channels for that data
as a regressor and iterating over all SS channels. The true and FPRs were aggregated for sim-
ulations using SS channels with an SCI in bins around 0.15� 0.05 to 0.95� 0.05 was com-
puted. Figure 7 shows the comparison of AUC values of the sensitivity–specificity reports from
various SCI values of SS channels as regression for solving GLM using AR-IRLS.

4.5 ROC Analysis Using Bandpass Filtered Data

The use of SS measurements as regressors within the GLM is not exclusive of additional pre-
processing. One of the common preprocessing steps in fNIRS is the use of bandpass filtering
(BPF). Generally, filtering can be used to reduce the effect of background physiological noise
(e.g., blood pressure fluctuations: ∼0.1 Hz, respiratory: ∼0.2 to 0.3 Hz, and cardiac: ∼1 Hz).
Low-pass filtering down to about 0.5 Hz can be used routinely to remove high-frequency cardiac
noise. However, the stopband on a high-pass filter needs to account for the timing of the brain
activity/task as well to avoid over-filtering into the response of interest. The incorrect selection of
cutoff frequency may reduce the performance of sensitivity–specificity analysis. We have pre-
viously detailed how autoregressive models embedded in the GLM offer generalized improved
performance compared to high-pass filtering.42 In this final section, we examined the addition of
both low- and high-pass filtering in addition to the use of SS regressors. In all cases, the filtering
was applied to both the data and SS regressor followed by the GLM and ROC analysis. We used
the BH dataset with randomly jittered additive “activity” for the simulations (BH-random)
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Figure 8 shows the comparison of the ROC analysis in BH (random data) using AR-IRLS
with/without SS-regressor for both HbO2 [panels (a) and (b)] and Hb [panels (c), (d)]. We inves-
tigated the combination of various levels: (i) no LPF [panels (a), (c)] and LPF: 0.5 Hz [panels (b),
(d)]; and (ii) HPF ([0, 0.005, 0.008, 0.016, 0.032, 0.064] Hz) [panels (a)–(d)]. Each panel shows
the AUC results of the model using BPF alone (black line) and BPF with SS regression terms in
the GLM (blue lines). The results of the model with no high-pass filter are shown as a dotted line
across the plots for reference. As shown in this figure, we found that high-pass filtering (either
with or without the use of SS regressors in the model) actually had a lower performance com-
pared to the GLM alone. In agreement with our previous reports,42 the autoregressive terms in the
GLM outperform a separate high-pass filter step. At low frequencies (0.005 and 0.08 Hz) for the
passband of the filter, the HPF had no effect, but significantly lowered the AUC for higher
frequencies where the filter is now cutting into the response of interest. Adding the low-pass
filter (top row versus bottom row) did improve the AUC of the models using SS-regression
compared to not filtering. However, this effect was mitigated when additional high-pass filtering
was also applied. Thus we strongly recommend using the autoregressive model over a prefilter-
ing high-pass step. In particular, using proper statistical models that are more robust to the effects
of physiology and motion-artifacts (e.g., AR-IRLS), we can get reasonable AUC and we also can
control FPRs (as discussed earlier) even without removing the noises using filter ahead of time.

(a) (c)

(b) (d)

Fig. 8 Comparison of AUC from ROC analysis at various cutoff frequencies of LPF ([0, 0.5] Hz)
and HPF ([0, 0.005, 0.008, 0.016, 0.032, 0.064] Hz) from (a), (b) HbO2 and (c), (d) Hb. In every
panel, BH (random) data using AR-IRLS with/without SS-regressor at various levels of HPF are
investigated.

Fig. 7 Comparison of ROC performances (AUC values) with respect to SCI values. The AUC for
the AR-IRLS + SS model using SS data of varied quality. Each bar shows the AUC for data using
SS channels with a specific SCI (bins of �0.05).
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5 Conclusions

In this paper, we examined the performance of various approaches to deal with the systemic
physiology, which contaminates fNIRS measurements. We examined both prefiltering methods,
as well as, statistical analysis methods incorporating physiological noise models into the GLM
including the use of SS channels as regressors of no interest. Sensitivity–specificity analysis was
used to compare the performance of the various analytic methods using synthetic additive
responses (truth) added to experimental RS and BH NIRS data. These simulations were used
to estimate the true positive and FPRs for the estimation of brain activity for varied algorithms,
types of physiological noise, and CNRs of the activation signal. Overall, we found that the use of
all available SS channel data as regressors of no interest in the statistical regression model was
the best approach based on the AUC of ROC analysis. Although all three of the approaches
tested to solve this regression model gave similar sensitivity–specificity results, we found that
the generalized linear model using an autoregressive robust least squares (AR-IRLS) approach
had far superior control of type I error in comparison to OLS methods. The third novel method of
an ME variation of the AR-IRLS model, which was introduced in this work and grouped the
parameter variance of the SS regressors separately from the task-based regressors, showed a
slight improvement in performance, but was felt to be unjustified at this time due to a substan-
tially higher computation cost of the iterative algorithm.

We found that the AR-IRLS regression model with SS regressors had near ideal control of
type-I error for the RS data. In comparison, the OLS model suffered from extremely high uncon-
trolled type-I error. For example, the actual FPR at the expected threshold of p < 0.05 was
actually 60% to 70% for OLS. At the same threshold, the FPR was near ideal at 5% for the
AR-IRLS model. When the timing of the simulated tasks was time-locked to the BH noise, this
FPR for AR-IRLS jumped to 10% to 15% at p < 0.05 (moderately uncontrolled type-I errors)
but still well below the 70% rate of the OLS method.

In examining the question of the ideal number and quality of the SS channels, we found that
the model was still improving with all eight available short channels added to the regression
model and using both oxy- and deoxy-hemoglobin signals. Since our system had a maximum
of eight SS channels, we do not know how much benefit could be gained by added even more
such channels, but from our data were clear that using more channels improved the performance
of the model in ROC analysis despite the added degrees-of-freedom associated with additional
regressors. Not unexpectedly, we also found that better quality SS data (based on the SCI as a
metric of quality) improved the method more than poor data. Poor data, however, did not seem to
hurt the AR-IRLS regression model too much and was similar to not using any SS regressors.
It is unclear if this is also true for the OLS method or the use of SSs in prefiltering steps, as the
effect of data quality was not examined for these alternative methods.

Finally, we found that additional low-pass filtering could be used in conjunction with the SS
regression methods to slightly improve the AUC of the ROC models for AR-IRLS regression.
However, we found that high-pass filtering should be avoided. Since the autoregressive part of
the AR-IRLS method already corrects for serial correlations in the data, a low level of high-pass
filtering had no effect and was redundant from the effects of the AR model. However, when more
aggressive high-pass filtering was used where the stop band began to cut into the response of
interest, this filtering produced worse results than the AR-IRLS method alone. Thus using the
AR-IRLS method, SS measurements and data should be used as-is or with low-pass filtering
only applied to both the data and the regressors in the model.

5.1 Future Directions and Limitations

In this paper, we described a first-level statistical model using an ME variation of our AR-IRLS
approach. This approach did offer some improvement over the regular AR-IRLS model, but this
improvement was only slight, and we felt did not justify the additional 10-fold computation
times for the iterative model. Nonetheless, this model did show the best control of type-I errors
in the most difficult case of evoked responses that were time-locked to the BH events. The time-
locked BH dataset (strongly coupled physiology and task) still poses significant challenges to
fNIRS. The AR-IRLS and ME AR-IRLS had the best control of type-I errors in this case, but the
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FPRs were still higher than expected (10% to 15% at p < 0.05). In comparison, the FPR was
70% at p < 0.05 for OLS regression even using SS data as regressors. In some ways, this is in
inherent problem of the statistical test being performed, which is testing the null hypothesis that
the signal during task period is not different from zero. In this sense, the change in the signal due
to evoked physiology (BH) during the task period is a valid rejection of this hypothesis and thus,
is not a “false” positive for the test actually being performed. The statistics gave the right answer;
we just asked the wrong question. Thus, as future work, we need to examine more specific ways
to frame this hypothesis in a way that predicates the changes as originating in the brain. Still with
the time-locked BH simulations as perhaps the worst-case scenario, the improvement of the FPR
from 70% at p < 0.05 with OLS and SS regressors to 10% with the ME AR-IRLS SS model
described in this work is a step in the right direction.

This study is not without limitations. One limitation is the use of BH and RS data for back-
ground noise. These are the two extremes, but in reality, most studies are probably somewhere in
between in terms of levels of physiological noise. In addition, the data we used had very little
motion related artifacts, which could pose additional problems for the analysis. In the previous
work, the development of the AR-IRLS as a robust* statistical estimator was shown to work well
for statistical outliers due to motion artifacts; however, we do not know the effect of having
motion-artifacts and outliers in the SS regressor terms. (* Robust in this context refers to the
statistical definition of methods to reduce the influence of outliers.) A possible extension to this
approach to deal with motion artifacts in both the data of interest and SS regressors could use the
robust bivariate regression methods such as those that we have previously detailed in the context
of robust correlation estimation methods for fNIRS.49 This, however, would need to be explored
in the future work.

Finally, a limitation of this work is that all of the ROC analysis shown in this work is based
on numeric simulations using experimental baseline/physiological noise but added synthetic
activation “truth.” Further future work exploring these models in experimental data is still
needed.
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