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1 Introduction
Visual tracking is an important topic in the computer vision
community and has been intensively investigated during the
recent decades. It lays the foundation for high-level visual
problems such as motion analysis and behavior understand-
ing. Generally speaking, visual tracking is applied in the
tasks of motion-based recognition, automated surveillance,
human–computer interaction (HCI), vehicle navigation, video
indexing, etc.1

Historically, visual trackers proposed in early years
always kept the target appearance model fixed throughout
the whole image sequence.2–4 Recently, methods proposed
to track targets while evolving the appearance model in
an online manner, called online visual tracking, have been
popular.5 An online visual tracking method typically follows
the Bayesian inference framework6 and mainly consists of
three components: an appearance representation scheme, a
dynamical model (or state transition model), and an obser-
vation model. In these components, the first one considers
the formulation uniqueness of target appearance, the second
one aims to describe the target states and their interframe
relationship, and the third one evaluates the likelihood of
an observed image patch belonging to the object class.
Obviously, appearance model variation introduces several
challenges. For example, the evolution incurs the risk of
including wrong measurements and thus causes the tracking
window to drift from the target. Moreover, the tracker must
be able to online evaluate the quality of estimated results in
the last frame, so that it could adjust its contributions to
model update in the current frame. Although visual tracking
has been intensively investigated, there are still many chal-
lenges such as partial occlusion, appearance variation, scale

change, significant motion, cluttered background, etc. These
challenges make the establishment of efficient online visual
tracking a difficult task.

In this paper, an online visual tracking algorithm is pro-
posed based on selective sparse appearance model and
spatiotemporal analysis. Compared with other online
tracking methods, main contributions of this work are con-
cluded as follows: (1) For the representation aspect, a
selective sparse appearance model is novelly proposed
based on key patch selection, which establishes a balance
between flexibility and uniqueness in target representation.
(2) Temporally, an adaptive dynamical model is newly
introduced based on target state analysis and joint-
Gaussian propagation. The sampling covariance matrix
is timely updated in view of the previous tracking results,
which is different from the parameter-fixed proposals in
other tracking algorithms. (3) Spatially, a geometric infer-
ence method is proposed to measure the appearance
similarity for observation modeling. Different from the
maximum-a-posterior (MAP) estimation in other genera-
tive works, target location estimation in this paper is con-
ducted based on confidence inference using a portion of
most similar candidates. Evaluations on numerous image
sequences have been conducted, and the results demon-
strate a more satisfactory performance compared with
state-of-the-art online algorithms.

The remainder of this paper is organized as follows.
Related works are presented in Sec. 2. In Sec. 3, general
description of the proposed algorithm is introduced.
Accordingly, details on target representation scheme are
described in Sec. 4, whereas the tracking framework based
on Bayesian inference is proposed in Sec. 5. Experimental
results and discussions are given in Sec. 6. In Sec. 7, con-
cluding remarks and possible directions for future research
are provided.*Address all correspondence to: Ming Xue, E-mail: silas_xue@sjtu.edu.cn
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2 Related Works and Context
Visual tracking has been studied for several decades. In this
section, studies related to our work are summarized. A
thorough survey can be found in the related references.1,7

2.1 Appearance Representation in Visual Tracking

Representation of the target is basic but important to appear-
ance-based visual tracking. Discrimination capability, com-
putational efficiency, and occlusion resistance are generally
considered as three main aspects for evaluation. Old tracking
works construct the scheme in the form of feature point,8

contour,2 or silhouette.3 For online visual tracking, the
schemes are classified into patch-based schemes (e.g., holis-
tic gray-level image vector9,10 and fragments11–13), feature-
based schemes,14–17 statistics-based schemes18–21 and their
combinations. In patch-based schemes, Yang et al.12 propose
an attentional visual tracking algorithm by early extracting
a pool of attentional regions that have good localization
properties. Zhou et al.13 explore the informative fragments
based on human detectors to compose the reference model
during the tracking process.

In target representation, taking the whole target region
could be a good choice, since it collects all the visual infor-
mation from the target and can be directly implemented with-
out additional processing. However, such scheme could be
blunt and lack flexibility, especially when the target appear-
ance sharply varies, or when occlusion or abrupt motion
occurs. Moreover, since the target is labeled using rectangles,
the region inside the labeling rectangle but outside the target
area could negatively affect the tracking performance.
Practically, all visual data of the target is needed to be further
processed, which results in heavy computation. Discovering
the features or regions with little variance in scale, rotation,
and translation is important in visual tracking.8 Feature
points take advantages in their uniqueness and flexibility
on appearance representation. However, numbers of previous
works merely transform visual information into data statis-
tics, which lacks generalization capability. It also prevents
further processing directly from the visual aspect. More-
over, intrinsic visual characteristics, such as continuity and
sparsity, cannot be further exploited. Though targets could
be jointly represented based on features and holistic regions,
complicated calculations might cause slow processing
speed.

2.2 Particle Filtering for Online Visual Tracking

Particle filtering is a Bayesian sequential importance sam-
pling technique for the posterior distribution estimation of
state variables characterizing a dynamical system. For visual
tracking, various improved works have been proposed since
the condensation algorithm.2 In online visual tracking cur-
rently, it is regarded as a dynamical modeling method.
Ross et al.9 propose a variant of the condensation algorithm
called affine warping. They model the target state Xt by
a Gaussian distribution around the previous state Xt−1,
pðXtjXt−1Þ ¼ N ðXt;Xt−1;ΨÞ, where Ψ is an affine covari-
ance vector. Kwon et al.22 propose a geometric method,
where the two-dimensional (2-D) affine motion of a given
target is estimated by means of coordinate-invariant particle
filtering on the 2-D affine lie group Aff(2). Mei and Ling19

treat the local target motion as a constant velocity model and

add the latest horizontal and vertical velocities to the trans-
lation parameters.

However, these works only consider the target state in the
latest frame, which could be regarded as an one-dimensional
(1-D) Markovian chain. They fail to make use of more pre-
vious tracking results. Moreover, they predefine the covari-
ance matrix manually corresponding to different image
sequences and keep it fixed in the whole tracking process.
Therefore, they separate covariance and tracking result
from each other and could prevent sampling from searching
better candidates so that the tracking performance might be
negatively affected.

2.3 Online Generative Visual Tracking with Sparse
Representation

Observation modeling refers to a similarity evaluation proc-
ess between the sampling candidates and the target and could
be classified into three categories:7 generative methods, dis-
criminative methods, and hybrid methods. Generative meth-
ods focus on the exploration of a target observation with
minimal predefined error based on specific evaluation crite-
ria, whereas discriminative ones make attempts to maximize
the margin between the target and nontarget regions using
classification techniques. Hybrid trackers often integrate
the two methods above into a combination framework.
Specifically, generative visual trackers could be summarized
including mixture models,23,24 integral histogram,11 subspace
learning,9,10 sparse representation,19–21,25–27 visual tracking
decomposition,28 covariance tracking,29 etc. They often drive
the localization procedure by a maximum-likelihood or
a MAP formulation relying on the target appearance model.
Jepson et al.23 design an elaborate mixture model with an
online expectation-maximization algorithm to explicitly
model the appearance changes during tracking. Adam et al.11

decompose the template into fragments and vote on the pos-
sible positions and scales of the target by comparing their
histograms with the corresponding candidate counterparts.
Ross et al.9 propose a generalized tracking framework based
on the incremental principal component analysis subspace
learning method with a sample mean update. Li et al.29

explore the log-Euclidean Riemannian metric for statistics
based on the covariance matrices of target features. Kwon
and Lee28 decompose the target observation model into multi-
ple basic object models and then a compound tracking scheme
is established by information integration and exchange via
interactive Markov chain Monte Carlo (IMCMC). Cruz-
Mota et al.10 introduce spatial and temporal weights to the
algorithm proposed by Ross et al.9 and establish an incre-
mental temporally weighted visual tracking algorithm with
spatial penalty (ITWVTSP) for visual tracking.

Sparse representation follows the native linear combina-
tion characteristics and could capture the region similarity
in a more efficient way.30,31 It is first introduced to visual
tracking by Mei and Ling.19 They propose a l1 minimization
tracking algorithm, where the target is approximately
spanned by target templates and trivial templates. The can-
didate with the smallest projection error is considered as
the estimated tracking result. Liu et al.20 model the target
appearance based on a static sparse dictionary and a
dynamically updated basis distribution, which is learned
by K-selection and sparse-constraint-regularized mean-
shift. Bao et al.32 apply the accelerated proximal gradient
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(APG) optimization approach to realize the real-time
tracking performance. Bai and Li26 construct the target
appearance using a sparse linear combination of structured
subspace unions, which consists of a learned eigen template
set and a partitioned occlusion template set. Jia et al.27 pro-
pose a structural local sparse appearance model to represent
the target and introduce an alignment pooling method for
location estimation.

3 General Description of Proposed Online Visual
Tracking Algorithm

In this paper, we continue to explore the partial selection rou-
tines in appearance representation inspired by Yang et al.12

and Zhou et al.,13 and a generative online visual tracking
algorithm is proposed based on selective sparse appearance
model and spatiotemporal analysis. The workflow diagram is
shown in Fig. 1. Once the target region is divided into over-
lapped patches, key patches would be selected as the repre-
sentation of the target based on key point proportion ranking
(KPPR). Accordingly, masked sparse representation is intro-
duced to compute the patch coefficients based on elastic net
regularization. In dynamical modeling, candidates are sampled
based on affine temporal affine warping propagation. State
analysis is conducted based on the joint Gaussian assumption
and tracking information in the previous frames, and a param-
eter update scheme is introduced to adjust the dynamical
model. Then, in observation modeling, the masked sparse
representation is conducted to obtain the coefficients of the
candidates, and their p-norms of kernel-weighted traces are
established as the confidence scores for ranking. Most similar
candidates obtained would be further used to estimate the
target location based on Gaussian approximation. As time
evolves, both selection pattern and template are periodically
updated to adapt the target’s appearance.

The proposed formulation has the following advantages.
First, the proposed target representation scheme takes advan-
tages of not only feature points in uniqueness and flexibility

but also holistic region in comprehensiveness and efficiency.
Second, the proposed affine propagation method temporally
flexiblizes the covariance matrix of the distribution and pro-
vides more opportunities in searching better candidates.
Third, the proposed process solves the linear approximation
based on a masked and weighted convex optimization with
elastic net regularizer, and thus manual setting of l1 norm
constraints is not necessary. The proposed p-norm of
kernel-weighted trace function can capture the overall infini-
tesimal change in volume of the sparse coding output.
Fourth, the proposed inference scheme has little negative in-
fluence in tracking accuracy but shows its spatial robustness
against various visual challenges, especially cluttered back-
ground and severe occlusion.

4 Target Representation Based on Selective
Sparse Appearance Model

In this section, we propose a selective sparse appearance
model for target representation. Definition of a key patch
and the KPPR algorithm is introduced and then the corre-
sponding sparse representation scheme based on selected
patches is presented.

4.1 KPPR for Patch Selection

We define a KEY patch for better selection of the target
patches as follows:

Definition 1 In an image Y, a region P is defined as a
KEY patch when and only when the following conditions
are satisfied:

1. At least the location and size of P have been defined
inside Y;

2. At least there is one key point pKEY in P: pKEY ∈ P.

Thus, suppose L key feature points pKEYi ; i ¼ 1; 2; : : : ; L
have been detected in the target region, and K patches

Fig. 1 Workflow of proposed algorithm. The proposed selective sparse appearance model based on
KPPR in yellow shading is detailed in Sec. 4, whereas the proposed affine warping propagation, con-
fidence calculation, geometric inference, and update process colored in green shading are described
from Sec. 5.1 to 5.4.

Optical Engineering 013103-3 January 2014 • Vol. 53(1)

Xue et al.: Online visual tracking based on selective sparse appearance model. . .



Pj; j ¼ 1; 2; : : : ; K; K ≤ N have been defined, the KEY
patch PKEY

j is generated as follows:

PKEY
j ¼fPj;pKEYi jpKEYi ∈ Pj; i¼ 1;2; : : : ;L;j¼ 1;2; : : : ;Kg:

(1)

In the rest of this paper, we would use Pj to represent a
KEY patch PKEY

j for simplification if there is no additional
comment. Obviously, if there are key feature points for each
patch, all the patches are regarded as key patches. Moreover,
the number of key feature points in each patch can be differ-
ent, and it could be assumed that the importance of a patch is
positively proportional to the number of feature points that it
contains. This assumption naturally follows the characteris-
tics of features and could also be considered reasonable from
a context perspective. Heuristically, if a key point is found,
its local neighborhood could be also regarded as an impor-
tant and representative region. Therefore, more feature points
in a fix-size region infer that the neighborhoods connect with
each other and compose a larger important region. In the
extreme case, each pixel in the patch is decided as a feature
point, and thus the whole region uniquely represents itself.
For feature point extraction in this paper, the Shi-Tomasi
corner detector method is chosen.8 It finds points with large
response function

Res ¼ minðρ1; ρ2Þ; (2)

where ρ1; ρ2 are eigenvalues of a structured tensor A ¼
½ x y �

h gx gxy
gxy gy

ih x
y

i
:gx; gy and gxy are the horizontal, ver-

tical, and diagonal image gradients convolved with a circu-
larly weighted window function. Other well-known feature
point extraction methods might also be available. To select
the most important patches, a key point proportion (KPP) is
defined as follows.

Definition 2 For a KEY patch Pj; j ¼ 1; 2; : : : ; K with L
key feature points, its KPP is L, KPPj ≜ L, when and only
when Eq. (1) is satisfied. Feature points are important in
invariance capture for visual tracking, and it could be con-
cluded that the more feature points a region contains, the
more important it is. Thus, KPP is applied to evaluate the
importance of a patch, and a KPPR is further presented to
select the most important KEY patches, which is illustrated
in Fig. 2 and summarized in Algorithm 1, namely, patches
with the most key feature points are chosen. Once the KEY
patches are decided, the selection pattern would be fixed in
the next few frames before update.

4.2 Target Sparse Representation Based on
Selected Overlapped Patches

The global appearance of an object under different illumina-
tion and viewpoint conditions is known to lie approximately
in a low-dimensional subspace.19 In this work, it is assumed
that good target could be sparsely represented with a projec-
ting residual by its selected overlapped patches in the target
template subspace.

Suppose at time t, the target regionYt with size sx; sy, s ¼
sx × sy is sampled into N overlapped patches Yt ¼
½P1

t ;P2
t ; : : : ;PN

t �, whose size is d ¼ dx × dy; dx ≤ sx;
dy ≤ sy, and K patches are selected based on KPPR
described above. Moreover, there exist a set of templates
Tt ¼ ½t1t ; t2t ; : : : ; tMt � ∈ Rðdx×dy×KÞ×M , where M refers to the
number of the templates. The corresponding patches,
tjt ¼ ½b1j ; b2j ; : : : ; bKj � ∈ Rd×K; j ¼ 1; 2; : : : ;M, have been
stacked, normalized, and vectorized. They share the same
patch sampling and selection scheme with that of the
target candidates. Then, any patch of a target candidate
Pi
t ∈ Rd; i ¼ 1; 2; : : : ; K in current frame will approximately

lie in the linear span of the corresponding template patches
in the past M frames

Pi
t ¼ b1t βi1 þ b2t βi2þ · · · þbM×K

t βiM×K (3)

for some scalars, βik ∈ RK ,i¼ 1;2; : : : ;N;k¼ 1;2; : : : ;M×K.

Tracking frame

Target

Key feature 
points map 
in template 

Key point
proportion ranking

Selected K 
KEY patches

Fig. 2 Key point proportion ranking (KPPR). Key point features are firstly extracted and then the point
proportions for each patch are calculated and ranked to boost the selected K KEY patches.

Algorithm 1 Key point proportion ranking (KPPR) for KEY patch
selection.

Input:

Target region Yt , required KEY patch number K .

Predefined overlapped patches number N,patch size dx; dy , overlap
rate Ro.

Output:

Selected KEY patch PKEY
j ; j ¼ 1;2; : : : ; K .

1: Sample region Yt into N patches P ¼ fP1;P2; : : : ;PNg, with dx; dy
and Ro.

2: Compute the key feature points p for Yt .

3: Obtain KPPj for each patch Pj ; j ¼ 1;2; : : : ;N by Eq. 1.

4: Rank KPP ¼ fKPP1;KPP2; : : : ;KPPNg in descending order.

5: Obtain patch indexes corresponding to the first K KPP values.
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Thus, a target patch Pi
t; i ¼ 1; 2; : : : ; K is represented

based on the dictionary composed of the corresponding tem-
plates by solving mask convex optimization problem based
on elastic net regularization:33,34

min
βj∈RðM×KÞ

1

2
kdiagðσjÞðYt−DβjÞk22þλ1

kγk0
ðd×KÞkβjk1þ

λ2
2
kβjk22;

s:t:βj≥0;j¼1;2;:::;K; (4)

where diagðσjÞ refers to the diagonal matrix supported by
σj, and ϕj belongs to a block circulant mask matrixP ¼ ½σ1; σ2; : : : ; σN � ∈ Rd×N . Each column of

P
corre-

sponds to a vector compose of d successive “1” elements
and s − d “0” elements. λ1 and λ2 are regularization con-
stants. Therefore, only K columns would be selected, and
D ¼ ½t1t ; t1t ; : : : ; tKt � ¼ ½b11;b21; : : : ;bK1 ;b12;b22; : : : ;bK2 ; : : : ;b1M;
b2M; : : : ;b

K
M� ∈ Rd×ðM×KÞ refers to the dictionary, whose col-

umns are composed of the template patches according to the
KPPR selection scheme described above.

5 Generative Visual Tracking Process Based
on Spatiotemporal Analysis

An online visual tracking process could be interpreted as
a Bayesian recursive and sequential inference task in a
Markov model with hidden state variables. It could be fur-
ther divided into cascaded estimation of dynamical model
and observation model.9 Suppose a set of target images
Yt ¼ fy1; y2; : : : ; ytg have been provided up to time t,
the hidden state variable of the target Xt could be estimated
as follows:

pðXtjYtÞ ∝ pðytjXtÞ
Z

pðXtjXt−1ÞpðXt−1jYt−1ÞdXt−1;

(5)

where pðXtjXt−1Þ refers to the dynamical model between
two consecutive states and pðytjXtÞ denotes the observation
model related to the likelihood estimation of yt based on the
stateXt. The target state in this paper is approximately para-
meterized using a six-tuple set introduced by Ross et al.,9

Xt ¼ fxt; yt; θt; st; αt;ϕtg. The elements, respectively,
denote horizontal and vertical translation, rotation angle,
scale, aspect ratio, and skew direction.

5.1 Dynamical Modeling: Temporal Propagation
Based on Affine State Analysis

In this paper, we analyze the current target state based on
previous ones with a joint Gaussian assumption proposed
below. The comparison of original and proposed affine warp-
ing is shown in Fig. 3. Correspondingly, a theorem is
described as follows with informal proof afterwards.

Theorem Suppose Xt ¼ fxt; yt; θt; st; αt;ϕtg; t ≥ 0,
where each element is time-varying random variable, Xt
is joint Gaussian.

Proof Since the joint distribution of single gaussian
variables is still Gaussian,35 based on Gaussian assumption
proposed by Ross et al.9 and the target state definition,
the theorem holds. ▯

Thus, the dynamical model could be updated based on
the analysis of previous target states in a joint Gaussian way,
the new model is presented as

pðXtjXt−1Þ ¼ N ðXt; X̃t−1 þ ð1 − αÞμ̃; ð1 − αÞΨ0 þ αΨ̃Þ;
(6)

where α is an update rate parameter, and Ψ0 contains the
initial affine variances of six elements. To tackle unex-
pected motion variation, the target states in previous R
frames are approximately considered as the input for Ψ̃
calculation in this paper. Correspondingly, suppose XR ¼
½X1;X2; : : : ;XR�T , μ̃ and Ψ̃ up to time t could be computed
following Gaussian kernel estimation by

μ̃ ≈ μ̃R ¼ 1

R

XR
i¼1

Ψ̃R; Ψ̃ ≈ Ψ̃R ¼ varðXRÞ; (7)

where varðXRÞ refers to the variance of XR. X̃t−1 is com-
puted detailed in Sec. 5.3.

The proposed dynamical model could also be viewed as
a weighted multidimensional Markovian chain form for
affine warping, which transforms the 1-D Markovian
chain to a weighted R-D form. Moreover, it is also a sam-
ple-biased estimation. Though the general dynamical
assumption between two target states in the indefinite
time process follows a Gaussian distribution without
bias, the states of a specific target are predictable given
motion continuity assumption, and thus the estimation
could be biased associated with previous target states
given fixed time interval.

tX

tx tty t t
1tX

1tx 1ty 1t1ts 1t 1t

2tX

2tx 2ty 2ts 2t 2t 2t

t RX

t Rx t Rt Rt Rs t Rt Ry

ts

tx

tX

tx tty t t

1tX

1tx 1ty 1t1ts 1t 1t ts

00,

,
R R

,
R R

0, (1 )
R R

Fig. 3 Affine warping comparison. The original affine warping intro-
duced by Ross et al.9 in (a) only considers the target state in the latest
frame, and the proposed one in (b) consider more previous target
state with a nonfixed covariance update.
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5.2 Observation Modeling: Confidence Calculation
Based on Weighted Sparse Representation

Based on the selective sparse appearance model described
above, we introduce a patch-view form of Eq. (4) as

min
βj∈RðM×KÞ

1

2
kPj

t − Dβjk22 þ λ1kβjk1 þ
λ2
2
kβjk22:

s:t:βj ≥ 0; j ¼ 1; 2; : : : ; K:

(8)

Equation (8) can be solved by the least angle regression
(LARS) algorithm to compute the coefficients βj ¼
½βj1; βj2; : : : ; βjM×K�. The details of the LARS algorithm
could be referred to Ref. 36.

Earlier templates could be more similar with the initial
appearance of the target, but it might influence the target
appearance approximation in abrupt variation. Thus, a tem-
poral weight W is introduced as

W ¼ ½w;w; : : : ;w� ∈ RM×K; (9)

w¼
�

e−η0P
K−1
j¼0 e

−ðη0−ηjÞ ;
e−ðη0−ηÞP

K−1
j¼0 e

−ðη0−ηjÞ ; : : : ;
e−ðη0−ðK−1ÞηÞP
K−1
j¼0 e

−ðη0−ηjÞ

�T
;

(10)

where η0 and η are constants to control the weights. Thus,
Eq. (8) changes to

min
βj∈Rd

1

2
kPj

t − hD;Wiβjk22 þ λ1kβjk1 þ
λ2
2
kβjk22;

s:t:βj ≥ 0; j ¼ 1; 2; : : : ; K;

(11)

where h·; ·i refers to the inner product. Equation (11) could
also be solved by LARS.36 The difference is that each col-
umn is premultiplied with a weight w. It should be noted that
though the template-based sparse representation has recently
been discussed,19–21,26,27 all of them fail to consider the issue
of template importance from a temporal perspective.

The fragmented tracking algorithm11 applies the kernel-
weighted scheme, which assigns low weights to the pixels
far from the target’s center. These pixels are more likely
to contain background information or occluding objects,
and thus their contributions to location estimation should
be diminished. In this paper, we apply this conception to

coefficient-based confidence modeling. Suppose β ¼
fβ1; β2; : : : ; βMg ∈ RðM×KÞ×M have been obtained and the
corresponding trace is

e ¼ trace

�XM
j¼1

βj

�
; (12)

a p-norm of kernel-weighted trace for β is presented for con-
fidence calculation, and the confidence score Lv for a certain
target candidate is defined as

Lv ≜ kkieikp ¼
�XK

i¼1

ðκeÞp
�1

p

; (13)

where ei refers to the i’th element. k is defined as
k ¼ fκigKi¼1, where κi refers to the i’th value of a vectorized
Gaussian kernel function κ. It follows the same selection pat-
tern with that of the patch described in Sec. 4.

5.3 Observation Modeling: Geometric Inference
of Candidate Confidence

Compared with the maximal scheme in previous works, we
construct the observation estimation based on the spatial dis-
tribution of top candidates in the confidence ranking results.
To begin with, a 3-D confidence-coordinate space (CCS) is
introduced as follows.

Definition 3 Given a set of target candidates ðxkt ; ykt Þ;
k ∈ Zþ, and the corresponding normalized confidence
scores are Lk, the CCS is defined as

CCS ¼ fOkjOk ¼ ðxkt ; ykt ; LkÞ; k ∈ Zþg: (14)

If we illustrate the distribution of top candidate confi-
dence scores in a local area around the true target location
shown in Fig. 4, it could be found that without noise intro-
duced, the more candidates we obtain, the more Gaussian the
confidence distribution would be. This could be proved by
classical center limit theorem, and each candidate is regarded
as a sample of confidence. Suppose there is only one point
with the maximal confidence corresponding to the target in
the current frame, and each candidate is sampled following a
Gaussian distribution around the target, the confidence
would gradually drop as it moves away from the extreme
point. Based on these conceptions, we assume that the

Fig. 4 Confidence scores distribution in a local area and inference result by Gaussian approximation.
Without noise introduced, the more candidates we obtain, the more Gaussian the distribution of the
confidence would be.
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confidence values follow a Gaussian distribution in CCS of a
local limited region.

Then, a geometric inference method is presented to
estimate the target location. Suppose Q points with highest
confidence scores are known, the observation in this paper
approximates a 2-D Gaussian function in CCS to find the
peak. Furthermore, the observation estimation for a certain
target candidate is proportional to the geometric confidence
inference output defined as

pðytjXtÞ ∝ IðL;XtÞ; (15)

where, Ið·Þ refers to the inference result. It should be noted
that Q should not be large, since noises could be introduced,
and therefore the assumption above might not be met. In this
paper, only the minimum of Q is predefined, and the sample
number finally used is subject to increase. The geometric
inference process is summarized in Algorithm 2. Each
time, Q points in CCS are obtained, a Gaussian fit is con-
ducted. The inference results would be checked and used
to compose the target state in current frame, otherwise infer-
ence would be applied for another maximalM − 1 times with
Q update per time. Eventually, if there is no suitable result,
the target state used for sampling would be updated with
a predicted bias vector Δ computed by constant velocity
approximation.

5.4 Template and Selection Pattern Update

Long-time fixed templates might negatively affect the
tracking performance in dynamic scenes, and an update is
essential. In this paper, we propose to periodically replace
one of the templates set tit; i ¼ 1; 2; : : : ;M by sparse repre-
sentation. A template t̃ could be obtained by sparsely repre-
senting the estimated target vector Ỹt using a linear
combination of eigen-basis vectors based on elastic net.
The equation is

min
c∈Rs

1

2
kðCt −HcÞk22 þ λ1kck1 þ

λ2
2
kck22; (16)

where H ¼ ½UI�; c ¼ ½qe�. U is the matrix composed of
eigen-basis vectors computed following the method by
Ross et al.,9 q refers to the coefficients of eigen-basis vectors,
and e represents trivial noises. A similar process also appears
in Ref. 27. Comparatively, we do not apply the l1 constraint
but the elastic net one. This process could also be viewed as
template denoising with underlying formulation t ¼ Uqþ e,
so that reconstruction errors in Eqs. (4) and (8) due to appear-
ance variation can be effectively reduced. If deformation
occurs, the selected patch would regularly change to adapt
the appearance variation. Since the target is labeled in rec-
tangles, some areas that do not belong to the target might
be within the rectangles. However, it would not affect the
final tracking performance because these areas are limited.
The overlapped patches within the target region cover the
major areas and would eliminate the noise. The template
update strategy is summarized in Algorithm 3.

In this paper, it is assumed that the first M templates of
the target are known, which can be generated by manual
labeling or other trackers. In the mean time, the KPPR algo-
rithm would be reapplied on the tracking result to re-select
the KEY patches.

5.5 Summary of Algorithm

The proposed algorithm is integrated in Algorithm 4.
Qualitatively, in Algorithm 4, sparse coding in confidence

score calculation and template update are the most time-

Algorithm 2 Spatial confidence inference based on 2-D Gaussian
approximation in CCS.

Input:

Q points Ok ¼ ðxkt ; yk
t ; LkÞ; k ¼ 1;2; : : : ;Q, where Q ≪ V , maximal

iteration number M, initial covariance vector Ψ0, fitting tolerance Tol.

Output:

Target state Xt , state for sampling X̃t .

1: Initialize C̃ ¼ fx̃; ỹg by x̃ ¼ þ inf; ỹ ¼ þ inf; Fc ¼ 0.

2: Compute the average value C̄ ¼ fx̄; ȳg of Q points as
x̄ ¼ 1

Q

PQ
k¼1

xk; ȳ ¼ 1
Q

PQ
k¼1

yk .

3: Obtain the centralized Q values as
x̄k ¼ xk − x̄; x̄k ¼ yk − ȳ ; k ¼ 1;2; : : : ;Q.

4: While kcx − x̄k22 > Ψ2
x or kcy − ȳk22 > Ψ2

y do

5: Obtain cx or cy by Gaussian fit of Q points with Tol using Least
Square Fit.

6: if cx or cy is null then

7: Update the inference flag vector F←½F;1�.

8: Update the inference flag counter Fc←Fc þ 1.

9: Update Q←Q þ 1.

10: else

11: Update the inference flag vector F←½F;0�.

12: Obtain the inference result
h xt
y t

i
¼ C̃þ C̄.

13: Break

14: end if

15: if Fc ¼ M then

16: Obtain Xt through the candidate with maximal confidence
in Eq. 13.

17: Obtain a predicted bias vector
Δ ¼ ½1M

PM−1
i¼0 ðxt−i − xt−i−1Þ; 1M

PM−1
i¼0 ðyt−i − yt−i−1Þ;0;0;0;0�.

18: Update the state for sampling
X̃t←Xt þ ðPM0

i¼0 Ft−iÞΔ;M0 ¼ bminðΨx
2 ; Ψy

2 Þc.

19: Break.

20: else

21: Update the state for sampling X̃t←Xt .

22: end if

23: end while

24: Obtain θt ; st ; αt ;ϕt through the candidate with maximal confidence
in Eq. 13.

25: Obtain the estimated target state Xt ¼ fxt ; y t ; θt ; st ; αt ;ϕtg.
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consuming part, and the proposed spatial confidence infer-
ence process ranks second. The dynamical modeling and
patch selection part take the least running time. To speed
up processing, we apply a C implementation of elastic net
regulation proposed by Mairal et al.34 Moreover, we define
an inference flag counter Fc in the proposed confidence
inference algorithm. It controls the maximal iteration number
so that the algorithm would not take infinite time to search
for an inference result. Further quantitative analysis is
described in the next section.

6 Experiment and Discussion
In this section, we present experiments on test image sequen-
ces to demonstrate the efficiency and effectiveness of the
proposed algorithm. Both qualitative and quantitative evalu-
ations are presented as follows, and additionally, separate
evaluations and analysis on the number of patch selection,
the confidence inference algorithm and the computation
complexity are also conducted.

6.1 Experiment Setup

The proposed algorithm is implemented in MATLAB and C/
C++, which runs at 1.0 to 1.6 fps on a 2.5-GHz machine with
2 GB RAM. For parameter configuration, the target region is
normalized to 32 × 32 pixels, dx ¼ dy ¼ 32; d ¼ 1024, and
the patch size is set to 16 × 16 pixels, sx ¼ sy ¼ 16; s ¼ 256,
while the overlapped percentage of neighbored patch is 0.5.
Thus, totally nine overlapped patches are sampled, N ¼ 9.
Six hundred particles are used for dynamical modeling,
V ¼ 600. Target states of the latest eight frames are used
for propagation, R ¼ 8, and the update rate parameter is
set to 0.1, α ¼ 0.1. M ¼ 10, where the target at the first
frame is manually labeled and the other M − 1 frames are
labeled based on the tracking results by a KD-tree forest
visual tracker.37 The regularization constants λ1 and λ2 are
set to be 0.01, and Q ¼ 5 for the initial number of particle
inference. The inference tolerance is set to be 0.1, Tol ¼ 0.1.
Both the template and KEY patch selection pattern are set
to be updated for every five frames, Uf ¼ 5. The weight
parameters in Eq. (10) are η0 ¼ 1; η ¼ 0.1. In all the experi-
ments of this paper except Sec. 6.4, six patches are selected,
K ¼ 6.

It should be noted that the settings on V,M,Uf, λ1, and λ2
above are based on the setup of classical online visual
tracking algorithms so as for better performance compari-
son.9,10,16,17,19,38 The overlapped percentage of neighbored
patch is related to the appearance variation of the target
region. Since low percentage number would lead to lower
efficiency, and the benchmark video is of various kinds,
an unbiased number 0.5 is set. Q is set considering the
least numbers for Gaussian fitting. Other parameters includ-
ing R, α, η0, η, and Tol are established after times of experi-
ments with reference to the balance between accuracy and
efficiency. Increasing them would lead to lower accuracy,
while high R and α would cause the sampling location
drift away, resulting in unfavorable adaption for fast motion
and occlusion handling.

For tracking performance evaluation, 14 image sequen-
ces, totally more than 6,000 frames, are used in the experi-
ments, where the target locations through all the frames are
already manually labeled as ground truth. Comparatively, the
proposed tracker is evaluated against eight state-of-the-
art algorithms based on the source codes provided by the
authors, including Frag,11 IVT,9 VTD,28 L1T,19 MIL,16

TLD,17 ITWVTSP,10 and PLS.38 These image sequences

Algorithm 3 Template update based on elastic net regulation.

Input:

Estimated target vector Ỹt , eigen-basis vectors U, template set
Tt ¼ ftgit ; i ¼ 1;2; : : : ;M and regularization parameter λ1; λ2.

Output:

New template set Tt .

1: Solve Eq. 16 to obtain q.

2: Generate a random integral number i ∈ ½2;M� to index the template
to be replaced.

3: Replace the template tit with t̃ ¼ Uq.

4: Normalize the template set Tt .

Algorithm 4 Proposed online visual tracking algorithm.

Input:

Image sequence with T frames, initial target state X0, particle numbers
V , inference point number Q, template and selection update frequency
Uf , template weight W, fitting tolerance Tol, template number M,
overlapped percentage, state number for analysis R, update rate α,
constant λ1, λ2, dx , dy , sx , sy , η0, η.

Output:

Current target state Xt , template set Tt .

1: (Initialization) Track the target in the first M frames to obtain the state
X1∶M and template set T1∶M.

2: (Patch Selection) Obtain the K KEY patches based on KPPR by
Algorithm 1.

3: for t ¼ Mþ 1 → T do

4: (Dynamical Modeling)Obtain V target candidates fỹtgvk¼1
based on

affine warping propagation by Eq. 6 and Eq. 7.

5: (Observation Modeling) Obtain fβkgVk¼1
based on sparse coding by

Eq. 11.

6: (Observation Modeling) Obtain fLkvgVk¼1
based on confidence score

by Eq. 12 and 13.

7: (Observation Modeling) Conduct geometric inference to obtain Xt
and X̃t based on fxk; yk; Lkv ; gQk¼1

, Q < V in CCS by Algorithm 2. The
maximal iteration number is set M.

8: ift∕Uf ¼ 0 then

9: (Template Update) Obtain new template set Tt by Algorithm 3.

10: (Selection Pattern Update) Update the K KEY patches based on
KPPR by Algorithm 1.

11: end if

12: end for
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described above are also separatively obtained from their
web sites. Their parameter settings are shown in Table 1.
Since implicit stochasticity exists in all of the algorithms,
each quantitative score below is averagely computed con-
sidering the results of five independent runs of the corre-
sponding algorithm. Live video demos and more results can
be obtained from the authors.

6.2 Qualitative Evaluation

Qualitative analysis and discussions are provided as follows
in common use of tracking human bodies, vehicles, and
human and animal faces. The visual challenges include
heavy occlusion, illumination change, scale change, fast
motion, cluttered background, pose variation, motion blur,
and low contrast.

6.2.1 Human bodies

Tracking human bodies is widely used in motion-based rec-
ognition and automated surveillance. The sequences used
for evaluation include Caviar 1, Caviar 2, and Singer.

It is shown in Fig. 5 that IVT,9 ITWVTSP,10 MIL,16 L1T,19

and PLS38 do not perform well in Caviar 1. They fail to dis-
cover the target when it is occluded by a similar object (e.g.,
#0133 and #0192). Only the proposed tracker, VTD,28

Frag,11 and TLD17 handle the heavy occlusion successfully.
However, VTD28 and Frag11 cannot smoothly adapt the scale
changes of the person (e.g., #0133 and #0367). In Caviar 2,
almost all the trackers evaluated except PLS38 and MIL16 can
follow the target. However, many of them including IVT,9

VTD,28 ITWVTSP,10 and TLD17 cannot adapt the scale as
the human moves near to the camera (e.g., #0220 and
#0455). By contrast, our algorithm performs well in terms
of position estimation and scale adaptation.

In Singer shown in Fig. 5(c), only the results of partial
trackers (e.g., proposed and VTD)28 are satisfactory, while
the others cannot adjust the scale [e.g., Frag,11 L1T,19 and
MIL16] or accurately locate the target [e.g., TLD17 at
#098, #0116 and #0226, IVT9 at #0126]. Both drastic
scale and location deviation occur when lighting condition
changes. Especially, PLS38 cannot capture the scale variation
of the target through all the frames of Singer. The
ITWVTSP10 algorithm performs much better than the IVT
algorithm9 in this video. Comparatively, the proposed algo-
rithms can locate the target more accurately and robustly
against illumination variation.

6.2.2 Human and animal faces

Face detection and tracking are very important in HCI and
animal monitoring application. In the experiments, five
videos are used including David Indoor, Occlusion 1,
Occlusion 2, Girl, and Deer.

Figure 6 shows that in Occlusion 1, all the evaluation
algorithms can follow the target approximately correctly,
yet some trackers drift from the face when occlusion occurs
[e.g., MIL16 at #0300, #0565, and #0833, ITWVTSP10 at
#0565 and #0833, IVT,9 L1T,19 Frg,11 TLD,17 and VTD28

at #0565]. In Occlusion 2, the differences are more obvious.
It can be found that L1T19 drifts more from the target com-
pared with other algorithms [e.g., MIL16 at #0576, and
#0713], and IVT9 and TLD17 cannot adapt the appearance
during occlusion and head rotation (e.g., #0713). Though
the VTD28 and ITWVTSP10 could locate the face center
more accurately, they could not cover the occluded area due
to pose variation (e.g., #0713). PLS38 cannot continuously
follow the target, while MIL16 and Frag11 estimate the target
less accurately than the proposed algorithm.

In Girl, it is found in Fig. 7 that only the proposed algo-
rithm, Frag,11 TLD,17 and VTD28 can consistently follow the
face, while the proposed method can estimate the location
more accurately (e.g., at #0310 and #0345). The other track-
ers gradually drift from the target to the surroundings.
In David Indoor, some algorithms [e.g., Frag11 and PLS38]
drift away from the target during the tracking process,
while some algorithms cannot adapt the scale when out-of-
plane rotation occurs [e.g., MIL16 and L1T19 at #0175 and
#0389, VTD28 and ITWVTSP10 at #00389]. In Deer, the suc-
cessful trackers only include the proposed algorithms,
VTD28 and PLS,38 while the others fail to capture the head
of deer when it jumps up and down repeatedly. Comprehen-
sively and qualitatively speaking, the proposed algorithms
perform the best.

6.2.3 Vehicles

In vehicle navigation, especially self-driving technology,
the basic role is to steadily track the rear of vehicles against
different kinds of weather conditions and road environments.
The sequences used for evaluation include Car 4 and Car 11,
which are separately recorded in the day and at night. It is
shown in Fig. 8 that Frag11 and MIL16 do not perform well in
the first two sequences. When the car goes into or out of
the shadows, there is a drastic lighting change, which causes
the estimated locations by VTD28 and L1T19 to drift (e.g., at
#0312 and #0429). The ITWVTSP10 tracker can locate the
target center accurately but fails to adapt the scale change.

Table 1 Main parameter settings for eight state-of-the-art algorithms.

Method Main parameter settings

Frag 16 bins in the histograms, 36 horizontal and vertical
patches, 25% of patches for vote map combination

IVT Patch size 32 × 32, forgetting term 0.95, a maximum
of 16 eigenvectors, a block update of 5 frames, 600
particles

VTD 4 types of features, 5 patches, 8 basic trackers

L1T Template size 16 × 16, similarity function threshold
0.5, 8 target templates, 600 particles

MIL 45 positive image patches, 65 negative image patches,
learning rate 0.85, 50 out of 250 weak classifiers are
chosen

TLD Patch size 15 × 15, threshold for NN classifier 0.6,
classification margin threshold 0.1, scale step 1.2,
bounding box size 20 pixels, Gaussian kernel, 100
positive patches

ITWVTSP Error threshold 0.07, spatial weight 2.0 for “spec”;
others are the same as IVT

PLS Patch size 32 × 32, 1 positive sample, 30 negative
samples, 10 weight vectors, a maximum of 5
appearance models, forgetting factor 0.8, 600 particles
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In Car 11, only IVT,9 ITWVTSP,10 PLS,38 and the proposed
algorithm successfully track the target in the whole sequence.
The remaining trackers drift away or take the surroundings as
the target [e.g., MIL16 at #0182 and #0269 and VTD28 and
L1T19 at #0269 and #0336].

6.3 Quantitative Evaluation

Besides qualitative evaluation, quantitative evaluation of the
tracking results is also an important issue which typically
computes the difference between the predicted and the

manually labeled ground truth information. Similar with
other classical works, two performance criteria are applied
to compare the proposed tracker with other reference track-
ers. The first one refers to center error (CE) evaluation, which
is the CE based on Euclidean distance from the tracking
location to the ground truth center at each frame. The second
one refers to the overlap ratio evaluation, which is also used
in object detection39 and defined as the share area proportion
of the box obtained by tracker and the one by ground truth
at each frame.

Fig. 5 Qualitative evaluation of (a) Caviar 1, (b) Caviar 2, and (c) Singer, where object appearances
change drastically due to heavy occlusion, scale change, and light variation. Similar objects also appear
in the scenes. Six patches are selected for the proposed algorithm.

Fig. 6 Qualitative evaluation of (a) Occlusion 1 and (b) Occlusion 2, where object appearances change
drastically due to heavy occlusion and pose variation. Six patches are selected for the proposed
algorithm.
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Furthermore, in this paper, the average CE (ACE) and
average overlap rate (AOR) are introduced, which are
defined as

ACE ¼ 1

T

XT
i¼1

kcieval − cigtk22; (17)

AOR ¼ 1

T

XT
i¼1

Ai
eval ∩ Ai

gt

Ai
eval ∪ Ai

gt
; (18)

where cieval; c
i
gt ∈ R2×1 refer to the horizontal and vertical

center coordinates of the evaluation and ground-truth label-
ing results at the i’th frame, respectively, andAi

eval;A
i
gt ∈ Rþ

are corresponding areas of the target in one test sequence.
The results of ACE and AOR for 10 sequences above are

summarized in Table 2. For each sequence, the first line
refers to ACE, whereas the second refers to AOR. It can
be concluded that the proposed tracking method runs the
best or the second-best performance on ACE and AOR in
all the tested trackers. Though some CE values are higher,
the gaps are limited, and all the AORs of proposed tracker

Fig. 7 Qualitative evaluation of (a) Girl, (b) David Indoor, and (c) Deer, where object appearances
change drastically due to fast motion, pose variation, light variation, scale change, cluttered background
and motion blur. Six patches are selected for the proposed algorithm.

Fig. 8 Qualitative evaluation of (a) Car 4 and (b) Car 11, where object appearance changes drastically
due to scale change, abrupt illumination variation, cluttered background, and low contrast. Six patches
are selected for the proposed algorithm.
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except Car 4 are better than those of the others. Moreover,
based on the ACE and AOR performance averages across all
the experimental sequences, it can be concluded that the pro-
posed performs comprehensively more favorably than the
other methods. The details of the “center error” and “overlap
rate” plot can be obtained from the authors.

Table 2 ACE (pixels) and average OR of tracking methods. The best two results are in bold and italics.

Frag IVT VTD L1T TLD MIL ITWVTSP PLS Proposed

Caviar 1 5.699 45.245 3.909 119.932 5.593 48.499 42.342 47.393 1.197

0.682 0.277 0.834 0.278 0.704 0.255 0.287 0.268 0.860

Caviar 2 5.569 8.641 4.724 3.243 8.514 70.269 4.569 32.431 1.784

0.557 0.452 0.671 0.811 0.658 0.255 0.673 0.365 0.813

Singer 22.034 8.483 4.057 4.571 32.690 15.171 5.129 14.199 4.008

0.341 0.662 0.790 0.703 0.413 0.337 0.779 0.212 0.798

Occlusion 1 5.621 9.175 11.135 6.500 17.648 32.260 18.855 4.596 5.590

0.899 0.845 0.775 0.876 0.649 0.594 0.713 0.904 0.907

Occlusion 2 15.491 10.212 10.408 11.119 18.588 14.058 9.982 46.186 6.631

0.604 0.588 0.592 0.672 0.493 0.612 0.588 0.471 0.750

David Indoor 76.691 3.589 13.552 7.630 9.671 16.146 14.118 64.335 4.800

0.195 0.712 0.525 0.625 0.602 0.448 0.446 0.278 0.761

Deer 92.089 127.467 11.920 171.468 25.652 66.457 176.825 20.198 6.116

0.076 0.217 0.577 0.039 0.412 0.213 0.024 0.510 0.624

Girl 18.046 48.474 21.442 62.435 23.158 32.209 125.698 53.368 11.756

0.689 0.426 0.512 0.326 0.577 0.520 0.052 0.451 0.735

Car 4 179.775 2.866 12.290 4.081 18.797 60.104 7.831 10.163 3.991

0.223 0.922 0.734 0.843 0.637 0.344 0.720 0.780 0.884

Car 11 63.922 2.106 27.055 33.252 25.113 43.465 2.066 1.691 2.048

0.086 0.808 0.432 0.435 0.376 0.175 0.753 0.769 0.812

ACE average 51.877 35.656 14.372 46.776 18.542 39.864 40.450 29.456 4.795

AOR average 0.435 0.591 0.644 0.561 0.552 0.375 0.504 0.501 0.794

Table 3 Computation complexity and processing time (seconds) of
tracking methods.

Algorithm
Computational
Complexity Time (16 × 16) Time (32 × 32)

IVT OðdMÞ 0.019 s 0.074 s

ITWVTSP OðdMÞ 0.021 s 0.076 s

LIT Oðd2 þ dMÞ 0.320 s 0.842 s

Proposed OðKsMþ 9QMÞ 0.247 s 0.535 s

(a)

(b)

Fig. 9 Patch selection results with different P values, which vary from
0.2 to 0.9. (a) PETS2001, (b) Woman.
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6.4 Robustness on Patch Selection

The number of selected patches is one of the key issues
related to tracking performance in the proposed algorithm.
An experiment is conducted to evaluate its robustness. A
number selection rate P is introduced to fluctuate the

selection number K, K ¼ roundðK0 × PÞ, where K0 refers
to the patch number without selection, and roundð·Þ is the
approximation function. The rate P varies from 0.2 to 0.9,
while the other parameters are the same with the settings
above. Two challenging sequences PETS200125 and
Woman11 are used.

Results of patch selection are shown in Fig. 9.
Correspondingly, the CE and OR values are shown in
Fig. 10. It is shown that the proposed tracker can generally
follow the target with different selection rates rather than
totally lose it. As P decreases, the performance does not
deteriorate much. It is obvious that too limited information
of the target could prevent the tracker from uniquely and suc-
cessfully modeling the target’s appearance, and thus the
tracker fails to estimate the location with high accuracy.
However, our proposed tracker could still find the likely
location. Suppose a target is regarded as being successfully
tracked when the OR is >0.5, a threshold line is added to the
figure. Similar criterion is also applied in PASCAL VOC.39

It is found in Fig. 10 that the proposed method is able to
successfully track the target with limited selected patches,
where P is not <0.4 empirically.

6.5 Comparison between Maximal and Proposed
Inference Scheme

In Sec. 5.3, a geometric inference method is proposed to
locate the target. Since the final target location would not
be decided by the candidate with highest confidence score
but with the inference output of highest candidates in CCS,
it might affect the tracking accuracy. However, we argue that
the influence is quite limited, and more favorable perfor-
mance compared with other works has been obtained as
described above. More importantly, the proposed scheme
is quite useful in cluttered background and complete
occlusion environment when it is integrated with covariance
variation in dynamic modeling. Heuristically, it could be
viewed as a soft and local abnormality detection scheme.
In cluttered background, the tracker is subject to the target’s
outside distraction. Under the motion continuity assumption,
the proposed scheme obtains spatial cues from the most con-
fident candidates to stabilize and centralize the location.
In the complete occlusion situation, the scheme provides

Fig. 10 Center error (CE) and overlap rate (OR) with different P val-
ues, which vary from 0.2 to 0.9. (a) PETS2001, (b) Woman.

Fig. 11 Geometric inference comparison between maximal and proposed scheme. (a) Football,
(b) PETS2009.
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extra opportunities to detect the target in a wider area. To
demonstrate such characteristics and advantages over the
maximal scheme, two challenging sequences Football28 and
Pets200940 are used.

The selected qualitative results are shown in Fig. 11.
In Fig. 11(a) on sequence Football, it is found that without
geometric inference, the tracker gradually drifts to the sur-
rounding areas of the player’s head due to the neighborhood
similarity (e.g., #0289 and #336), while more stable perfor-
mance is obtained with the proposed geometric inference
scheme. The sequence Pets2009 is quite challenging;
because when the target is heavily occluded, another pedes-
trian is passing by him. The tracker with the maximal scheme
eventually follows a wrong object. In the proposed method,
although the tracker mistakes the wrong pedestrian for
the target in the first several frames, sparse coefficients of
the false target would scatter the points distribution in the
CCS, violate the inference condition, and cause the sampling
state X̃t to be much biased. Based on these unacceptable
inference results, the searching range is extended according
to Algorithm 2. When the true target appears again without
much appearance variation, the tracker re-detects it and
continues with correct location estimation in the following
sequences.

6.6 Computational Complexity Analysis

In Sec. 5, it could be found that sparse coding and the pro-
posed spatial confidence inference algorithm are most time
consuming. Thus, we also compare the computation com-
plexity and processing time with three representative track-
ers including IVT,9 ITWVTSP,10 and L1T which is show in
Table 3.19 Suppose d refers to the dimension of a vectorized
image, and M is the number of eigen vectors or templates,
d ≫ M, the computational complexity of IVT9 and
ITWVTSP10 is OðdMÞ, for they mainly involve matrix–
vector multiplication. The computational load of L1T19

is Oðd2 þ dMÞ, while the load of the proposed algorithm
is OðKsM þ 9QMÞ. The first part is related to sparse cod-
ing, where K refers to the number of selected patches, and
s is the patch size, d2 ≫ Ks > d. The second part is related
to geometric inference, Q is inference point number,
M < 9QM ≪ d. Moreover, processing times of different
normalized image sizes (16 × 16 and 32 × 32) for solving
one image are also presented. It can be found that enlarging
the normalized size of the target region increases the
computation time. Both the L1T19 algorithm and the pro-
posed one apply sparse representation and yet the proposed
tracker is much faster than the L1T19 tracker. Although the
proposed algorithm is slower than the IVT9 and
ITWVTSP10 algorithm, it achieves a better performance
in accuracy evaluation.

7 Conclusion
This paper presents a generative tracking algorithm based on
sparse representation of selected overlapped patches via
KPPR and spatiotemporal geometric inference of candidate
confidences sampled by propagated affine motion modeling.
Not only qualitative and quantitative evaluations but also the
analysis on selected patch number and geometric inference
process are conducted. The experiments demonstrate that
on challenging image sequences, our proposed tracking
algorithm comprehensively performs more favorably against

state-of-the-art online tracking algorithms. The future work
might include exploring more efficient l1 minimization
algorithms (e.g., APG)32 for real-time application and
extending this algorithm to multiple-object tracking given
certain application environments. Currently, the temporal
weight matrix in Eq. (10) is fixed during the tracking proc-
ess. More information could be introduced for its adaption
to the latest tracking conditions.
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