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1 Introduction
Orientation analysis of complex patterns is usually done by
applying the fast Fourier transform (FFT)1 or gradient-based
methods like the structure tensors (ST).2–5 Relative strengths
of different orientations are measured, e.g., by investigating
the magnitudes of Fourier-transform coefficients usually in
polar coordinates. However, during the last two decades,
more sophisticated transforms, especially the wavelet trans-
form,6 have become popular in many fields, where Fourier
transforms have traditionally been applied. Moreover, during
the last decade, transforms like the curvelet, contourlet, and
shearlet transforms have been developed and have proven to
be well suited for various applications.7–10 The basis func-
tions of these new transforms are tightly localized in the
both space and frequency domains and have in addition a
direction angle, i.e., an orientation parameter that makes
them promising tools for orientation analysis.

We use in this work the orientation of fibers in paper as
the basic application and framework. This choice was made
because data to be analyzed in this application are common
and challenging. Therefore, if the methods developed work
well in this case they will probably work in many other
(similar) applications such as, e.g., determination of the ori-
entation of fibers or nanofibrils in reinforced composites.5,11

Furthermore, in paper-making industry it would be advanta-
geous to have a good orientation analysis method for on-line
measurements during the manufacturing process (paper
webs move up to 2000 m∕min).

This article is organized as follows. In Sec. 2, we discuss
data typically related to the present application. In Sec. 3, the
curvelet transform together with a few relevant theorems are
first introduced and then the curvelet method for orientation
distribution is described in Sec. 4. In Sec. 5, we apply this
method to a numerically generated network of fibers with a
known orientation distribution and to a newsprint and organic-
fiber sample, and compare our results with those achieved by
other, previously used methods for orientation analysis.

2 Optical Imaging of Fibers
In the paper-making process wood fibers, mineral fillers, and
other additives together form the basic structure of paper.
The properties of paper depend essentially on how fibers
are distributed. For example, the so-called streakiness in
its fiber orientation causes gloss variation in the high-quality
printing papers.12,13 Furthermore, different (average) orienta-
tions in different layers of paper affect its bending properties,
and different orientations at its top and bottom surface make
it curved.14 Even if the orientation would be similar, two
sidedness in the anisotropy (the maximum to minimum
ratio of the distribution) of the orientation may result into
curliness of the paper sheet.15,16 For these reasons, it would
be important in the paper-making process to be able to mea-
sure, and to thereby facilitate at least the control of fiber ori-
entation at the surface of the paper web.

Fibers in paper form a more or less random network with
predominantly planar orientation of fibers. As an off-line
measurement, it is possible to study also the three-dimen-
sional fiber structure of paper with tomographic imaging,17

but this is slow and the sample needs to be very small. With
CCD cameras large areas of paper (also the paper web in a
running paper machine) can be imaged fast, but these images
mostly reveal the planar orientation of fibers only. Fortu-
nately, this planar information is often enough in practice
and in an optimal case, determination of the planar fiber ori-
entation would enable on-line adjustment of the paper-mak-
ing process. As the camera technology keeps on developing
rapidly, orientation analysis of the whole paper web is
expected to become feasible fairly soon, i.e., prices of suit-
able cameras will be at an acceptable level for the fairly large
numbers of cameras needed for an accurate enough imaging.

To make fibers more clearly visible in paper, bright-field
images are preferred over reflection images. In Fig. 1, we
show a bright-field image of paper, from which the orienta-
tion distribution should be determined. Notice that here
fibers are clearly visible.

The light passing through paper is, however, strongly
scattered by the abundant fiber–air interfaces (wet paper is*Address all correspondence to: Jouni Sampo, E-mail: sampo@lut.fi
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more transparent due to a better match of the dielectric prop-
erties of water and fibers) and therefore in practice only the
fibers that are close to the surface on the camera side (basi-
cally a couple layers of fibers) appear in the image (beyond
that light rays “lose their memory”). We can demonstrate the
“diffusive” passage of light across paper by partly eclipsing
the light source with a metal tape. In an optical bright-field
image of the paper, the edge of the tape appears much more
blurred than in its similar image taken by x-rays (see Fig. 2).
It is evident that from bright-field images only the (near-)
surface orientation of fibers can be determined, which
must be taken into account in practical applications. For
example, orientation of fibers at and near the surface does
not alone explain the strength of the paper, but is important,
e.g., for its printing properties.

3 Mathematical Methods

3.1 Curvelet Transform

There exist different constructions of a continuous curvelet
transform (CCT). We review here the one presented by

Candès and Donoho,18,19 since it displays most clearly the
essential properties of this transform.

The CCT is defined in polar coordinates ðr;ωÞ of the fre-
quency domain. Let W be a non-negative, infinitely smooth
real-valued function supported inside the interval (1∕2, 2),
called the “radial window.” Furthermore, let V be a non-neg-
ative, infinitely smooth real-valued function supported in the
interval ½−1; 1� called the “angular window.” We assume the
following admissibility conditions:

Z
∞

0

WðrÞ2 dr
r
¼ 1 and

Z
1

−1
VðωÞ2dω ¼ 1: (1)

We use in the following a positive parameter, a, called the
“scale.” At each scale 0 < a < a0, the so-called “mother cur-
velet,” γa00 is defined in the frequency domain by

γ̂a00½r cosðωÞ; r sinðωÞ� ¼ a
3
4WðarÞV�ω∕ ffiffiffi

a
p �

; (2)

where r ≥ 0 and ω ∈ ½0; 2πÞ. Now, γ̂a00 is supported in the
frequency domain as illustrated in Fig. 3. The spatial-domain
mother curvelet, γa00 is determined from Eq. (2) by an
inverse Fourier transform.

Now, a rotation parameter, θ ∈ ½0; 2πÞ, and a translation
parameter, b ∈ R2, are included so as to end up with a def-
inition for the whole “curvelet,” γabθ:

γabθðxÞ ¼ γa00½R−θðx − bÞ�; for x ∈ R2; (3)

where Rθ is the matrix of a planar counter-clockwise rotation
by angle θ. The curvelet transform, Γfða; b; θÞ of f, is then
defined by

Γfða; b; θÞ :¼ hγabθ; fi ¼
Z
R2

fðxÞγabθðxÞdx (4)

for all 0 < a < a0, b ∈ R2, and θ ∈ ½0; 2πÞ.

Fig. 1 A bright-field image of a paper sample. Sample size was about
3.4 × 2.4 mm2.

Fig. 2 Blurring of a sharp edge in the transmission of visible light (a) and x-rays (b) through paper.
Normalized intensity of the transmission intensity of visible light (c) and x-rays (d).
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Notice that the curvelet transform has also an inverse
transform, although we do not need it in our application.

Because of the compact support of γ̂abθ, the support of
γabθ cannot be compact. However, γ0bθðxÞ and its derivatives
decay rapidly when x moves away from b,20 i.e., γabθ is well
localized around b. Therefore, one would then expect that it
would adapt well to short and thin objects like fibers.

As illustrated in Fig. 3 that rotation parameter θ is the
angle between the x2 axis and the major axis (orientation)
of γabθ. The “parabolic scaling law” of the aspect ratio of
the area is also suitable for our purposes. If we take a
piece of a smooth curve with a length of about a, then
the whole piece will fit into a rectangle with side lengths
a and a1∕2. In our application, such a piece of curve corre-
sponds to an edge of a fiber and therefore parabolic scaling
gives, in some sense, the optimal size for the localizing win-
dow in every scale.

We can think of γabθ as a sensor that tries to detect a fiber
with orientation angle θ in the neighborhood of b. If f
denotes now a two-dimensional (2-D) image (e.g., paper) by
a CCD camera, then the inner product, hf; γabθi, gives the
response of sensor γabθ to that image. A small value of
parameter a means that we “zoom” into a part of a fiber,
while its bigger values can embed the whole fiber. If there
is no fiber with orientation angle θ located at point b the
value of jhf; γabθij would be very small.

Let us point out that the parabolic scaling law is the main
difference between the curvelets and wave packets (or the
Fourier–Bros–Iagolnitze transform). The latter have an iso-
tropic type of scaling for their essential localization and
therefore, in the present application, the transform could
depend on more than one fiber, which eventually could
make its interpretation more difficult. However, a wave-
packet transform can sometimes solve problems for which
also curvelets apply,18,21 so the possibility is not excluded
that it would work here also. In a wider sense, curvelets
are sometimes even classified as wave packets.

3.2 Decay of the Transform

Let us define images of paper as real-valued functions,
fðx1; x2Þ, of two variables, which are piecewise smooth
with smooth areas separated by smooth curves. Functions
f or their derivatives may have jump discontinuities along
those curves.

The curvelet transform (and its variants) can approximate
these images with very few coefficients.8–10 To explain this in
more detail, let us denote by S the part of a curve that

separates domains of smoothness of f. The above approxi-
mation capability stems from the fact that jhf; γabθij decays
very fast when either the essential support of γabθ does not
intersect S or orientation angle θ differs from the tangent
direction of S near point b.

We can use the above decay property as a tool in the ori-
entation analysis of fibers. In this section, we will present
two theorems related to the decay rate of the curvelet trans-
form, as a justification that this transform is a good candidate
for analyzing fiber orientation. The theorems are not
expressed in their most general forms, since we focus
here on a particular application.

Theorem 3.1. Assume that b ∈ S. If curve S is C2-
smooth with a bounded second derivative inside Bðb; rÞ
for some r > 0 and if f is C2½Bðb; rÞ \ S� smooth with
bounded second-order derivatives, then there exists a con-
stant C < ∞ such that, for all a, b, and θ,����
Z
R2

fðxÞγabθðxÞdx
���� ≤

�
Ca3∕4; θ̂ < Ca1∕2

C a9∕4

θ̂3
; θ̂ ≥ Ca1∕2

(5)

holds. Here, θ̂ is the angle between the tangent of S at b and
the major orientation axis of γabθ. Theorem 3.1 states that
jhf; γabθij decays fast, when the orientation of γabθðxÞ
departs from that of S. This decay estimate is well known
(presented in Do and Vetterli9 for contourlets). For curvelets
a proof can be found in Sampo,22 where the more general
Theorem 14 includes this case. However, Theorem 3.1 is
only concerned with discontinuities of f on S. Because of the
blurring effect explained in Sec. 2, it might be interesting
also to know what happens to the transform if f is a bit
smoother on S. (Another practical example is an x-ray
image of a solid ball; it is continuous but not continuously
differentiable.) Some results for this problem has been
reported in Sampo and Sumetkijakan.20

Theorem 3.2. Let us assume that b ∈ S, α > 0, and
β > 0. If for some r > 0 inside the ball Bðb; rÞ, curve S
is linear, f is uniformly Cα½Bðb; rÞ� smooth and uniformly
Cβ½Bðb; rÞ� smooth in the direction of S, then there exists
a C < ∞ such that, for all a, b, and θ,

����
Z
R2

fðxÞγabθðxÞdx
���� ≤

(
Ca3∕4þα; θ̂ < Ca1∕2

Ca3∕4
�
a
θ̂

�
β
; θ̂ ≥ Ca1∕2

(6)

holds. Here, θ̂ is the angle between the tangent of S at b and
the major axis of γabθ.

Proof of Theorem 3.2 In what follows a generic constant
C is used, i.e., it can every time be chosen independently of
the set of parameters a, b, θ, θ̂. We also recall that γ and its
derivatives are rapidly decaying and C∞ smooth. Let us first
concentrate on angles θ̂ ≥ Ca1∕2. If P is a polynomial func-
tion in the direction of S, then vanishing moments of γ imply
that����
Z
R2

fðxÞγabθðxÞdx
���� ¼

����
Z
R2

½fðxÞ − PðxÞ�γabθðxÞdx
����:

Moreover, because the rapid decay of γ for all N > 0, there
exists a constant CN such that

Fig. 3 Support of γ̂abθ in the frequency domain (a), and the area that
contains most of the “energy” of γabθ (b).
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����
Z
R2\Bðb;r∕2Þ

½fðxÞ − PðxÞ�γabθðxÞdx
���� ≤ CNaN:

Therefore, we have to find a bound only for the integral����
Z
Bðb;r∕2Þ

½fðxÞ − PðxÞ�γabθðxÞdx
����

i.e., from now on we assume that x ∈ Bðb; r∕2Þ. Let Ly be a
line that is aligned with S, and let y be the intersection point
of Ly and the major axis of γabθ. It is then possible to define a
PðxÞ so that a slice of P along Ly is always polynomial and
there exists a constant C such that

jfðxÞ − PðxÞj ≤ Cjx − yjβ

for all x ∈ Ly ∩ Bðb; r∕2Þ. In particular, constant C is inde-
pendent of y. This is a direct consequence of the definition of
Hölder regularity and the assumption that, in the direction of
S, function f is Cβ½Bðb; r∕2Þ� smooth. For simplicity, we
first consider the integral over a small rectangle, R [instead
of Bðb; r∕2Þ], centered in b, oriented like γabθ and having
side lengths of a and a1∕2. First, we notice that if x ∈
Ly ∩ R, then

jx − yj ≤ a∕ sin θ̂ ≤ Ca∕θ̂:

Therefore, there exists a C < ∞ such that����
Z
R
½fðxÞ − PðxÞ�γabθðxÞdx

����
≤
Z
R
jfðxÞ − PðxÞjjγabθðxÞjdx

≤ Ca3∕2ða∕θ̂Þβa−3∕4 ¼ Ca3∕4ða∕θ̂Þβ:

Take now a minimal collection of rectangles Ri, with a sim-
ilar size and orientation as R, but differently centered, such
that Ri ∩ Rj ¼ ∅ for i ≠ j and Bðb; r∕2Þ ⊂∪i Ri ⊂ Bðb; rÞ.
Furthermore,����
Z
Ri

½fðxÞ − PðxÞ�γabθðxÞdx
����

≤ Ca3∕2ða∕θ̂Þβ a−3∕4

1þ jD1∕aR−θðci − bÞj2N ;

where ci ∈ R2 is the center of Ri. Using this result, we
finally find that����
Z
Bðb;r∕2Þ

½fðxÞ − PðxÞ�γabθðxÞdx
����

≤ C
X
i

a3∕2ða∕θ̂Þβ a−3∕4

1þ jD1∕aR−θðci − bÞj2N

≤ Ca3∕4ða∕θ̂Þβ:

Now, we can investigate what happens for angles θ̂ ≤
Ca1∕2. Instead of considering slices in the direction of S,
we consider slices in the direction perpendicular to the
major orientation axis of γabθ, i.e., in the direction of vector

Rθð1; 0Þ⊤. In this direction (like in any other direction) f is
always Cα and if x ∈ Ly ∩ R then jx − yj ≤ a. The rest of the
solution is exactly the same as in the case θ̂ ≥ Ca1∕2. ▯

It is evident that if β > 2α the estimate for small angles is
always bigger than that for large angles.

The above theorems were only concerned with the case
b ∈ S. They would be quite similar for b close to S. When
the distance between b and S increases, jΓfða; b; θÞj decays
rapidly (Theorem 15 in Sampo22).

In this article, we consider only the curvelet transform,
although the contourlet or shearlet transforms would prob-
ably work as well since they share most of the properties
of the curvelet transform.

3.3 Estimate for the Distribution of Particle
Orientations

The theorems in the previous section already indicated that
jΓfða; b; θÞj has a large value if γabθ is oriented parallel to a
fiber and is in the same location.

The fact that a proper sampling of parameters a, b, and θ
leads to a tight frame for L2ðR2Þ suggests that the values
jhf; γabθij could be used as a measure for orientation
strength. The tight-frame property means that, with a proper
discretization of a, b, and θ,

kfk22 ¼
X
b

jhf;ϕbij2 þ
X
a;b;θ

jhf; γabθij2 (7)

for some functions ϕb. These functions are restricted to low
frequencies and are therefore not interesting to us in the
present application. Details of ϕb and discretizations of a,
b, and θ can be found by Candès and Donoho.8 Moreover,

f ¼
X
b

hf;ϕbiϕb þ
X
a;b;θ

hf; γabθiγabθ: (8)

The definition of γabθ in Candès and Donoho8 is a bit
more complicated than the one introduced above, but all
the essential properties of γabθ are the same.

The idea of the orientation-strength estimator is the fol-
lowing. Equations (7) and (8) imply that jhf; γabθij2 mea-
sures how important the features related to a given value
of parameter θ are in f. Theorem 3.2 relates these features
to edges that are oriented similarly to those of γabθ.

Discretization of θ limits the accuracy by which the ori-
entation of fibers can be measured. However, in an orienta-
tion analysis, we do not have to restrict ourselves to any
discretization of θ, but we can argue instead as follows: We
can compare the importance of orientation at θ ¼ 0 with
those for different rotated versions of fðxÞ. Nothing limits
the number of rotations we can use. We note that this
kind of approach can be used in principle, in practice we
still rotate γ instead of f, since that rotation has to be
done only once but f will change in each analysis.

If the size of the particles is known, it is natural to con-
sider only some fixed scales. Especially, if there exist some
features in bigger or smaller scales than the particle size,
whose orientation distribution we are interested in the use of
too big or too small scales a in the final estimator may give
rise to artifacts in the results, i.e., orientations of these non-
interesting features are included in the distribution. This may
happen for example if there are objects with similar sawlike
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edges in the image: If you zoom too much, you only see the
tooths of an edge, but the orientation of the whole object may
not be the same as the orientations of the edge tooths.

In the translation parameter b, there is no need for restric-
tions. Finally, our estimate for the orientation distribution is
then given by

SðθÞ :¼
P

a∈I
P

b∈Ja jhf; γabθij2R
π
0

P
a∈I

P
b∈Ja

jhf; γabθij2dθ
; (9)

where the index set for scales, I, depends on the resolution
and size of the particles in the image, and index set Ja
depends on the implementation. We would also like to
remark that a similar formalism would apply in the frame-
work of continuous curvelets.19 This “semi-discrete”
approach was chosen here, because it is the one we used in
tests made with the help of the CurveLab Toolbox23 that
implements a discrete curvelet transform. In our tests, we
always used two-subsequent scales, i.e., I ¼ fC;C ffiffiffi

2
p g with

constant C that depends on the resolution. For each
scale CurveLab uses the points of a regular rectangular
grid as the translation-index set Ja, i.e., Ja ¼ fRθðC1la;
C2ka1∕2Þ⊤∶ðl; kÞ ∈ Z2g with C1 and C2 constant.

4 Comparison with Other Methods

4.1 Test Images

We applied the curvelet-based method and two traditional
methods (described in Sec 4.2) to four different images.
These images were chosen so that they were not very sharp
and were complex enough so as to distinguish the capability
of the methods to determine the orientation distribution.

So, as to compare effectively the different orientation-
analysis methods, an image of a fiber network with a
known orientation distribution of fibers was generated com-
putationally. This network was generated using a deposition
model in which fibers, sampled from specific length, diam-
eter, and orientation distributions, were let to fall toward a
flat substrate until collision with solid objects (already
deposited fibers and/or the subsrate) caused their movement
to cease.24 In order to create a curved fiber, a random, straight
baseline was first selected. The orientation of the baseline
was drawn from a von Mises distribution with μ ¼
−ðπ∕6Þ and κ ¼ 1∕ðπ∕4Þ2, and the length from a Weibull
distribution with λ ¼ 50 and k ¼ 5. A fixed number of
bends, nb, were generated in the baseline by transforming
it into a Catmull–Rom spline with nb þ 2 control points.
The control points were positioned uniformly in the baseline
and they were displaced then in the transverse direction
by distances drawn randomly from a normal distribution.
In order to ensure that the average directions of the fibers
were unaffected, the first and the last control points in
each fiber were not displaced. The bent fiber was then
drawn into the image and the process was repeated 20,000
times so as to generate enough of fibers. An image of the
network is shown in Fig. 4. The size of the image was
1024 × 1024 pixels. This type of fiber network could re-
present either the structure of a relatively thin paper or
that of a couple of fiber layers near the surface of a thicker
paper (of a diameter of c. 1 cm). The fibers of this generated

network are hollow cylinders so as to represent better the real
wood fibers with a lumen.

The second image was taken from a newsprint sample. In
a printed newsprint, the text lines are known, a priori, to be
in the cross direction, i.e., transverse to the direction of the
main fiber orientation. The newsprint sample was rotated by
30 deg so that, in the image, the direction of main fiber ori-
entation was at about 30 deg. No other prior knowledge
about the orientation distribution was available. The news-
print image, taken through an optical microscope with a
CCD camera, is shown in Fig. 5.

The third image is that of organic nanofibrils taken with
an atomic force microscope (AFM) (see Fig. 6). The size of
the original square image was 512 × 512 pixels, i.e., its
diameter is 512 pixels (2 μm). Finally, the bright-field image
of a paper sample shown in Fig. 1 was also analyzed.

In order to test the performance of the above methods as a
function of resolution, we also created two “corrupted” ver-
sions from the images described above. First, we down-
sampled the original image so as to have one fourth of the
linear scale of the original image, i.e., from an image of
1024 × 1024 (512 × 512 for the nanofibrils case) pixels
we created an image of 256 × 256 pixels. Then, we rescaled
it back to 1024 × 1024 pixels without any interpolation and
with a bilinear interpolation. This gave us two additional
images, one where each pixel of the image was composed
of 4 × 4 original pixels (without interpolation) and one
where the new pixels were smoothed (with interpolation).
The image without interpolation could be considered as one
composed of rectangles: Its long edges were not straight
but were composed of small vertical and horizontal pieces.
On the other hand, the image with interpolation had
smoothed edges.

Fig. 4 (a) An image of a numerically generated (by deposition) net-
work of fibers. (b) A coarse-grained version of this image with smooth-
ening. (c) A coarse-grained version of this image without
smoothening.
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4.2 Reference Methods

As the first traditional method, we used a direct Fourier-analy-
sis (FFT)-basedmethod.1 In this method, one simply computes
the average of absolute values of the 2-D Fourier-transform
coefficients of f along radial lines. Similarly to our curve-
let-based method, low frequencies are neglected in the analy-
sis. We implemented this traditional method with small
modifications: Instead of averages of absolute values, we used
averages of their squares and instead of truncating off the two
lowest frequencies we considered it more reasonable (based on
simulations) to truncate off the 100 lowest frequencies.

The second traditional method was the so-called ST
method,2–5,25 i.e., one of the gradient methods developed
recently. The ST tries to find a direction, θm, in which the
L2 norm of the directional derivative is maximized. This
method has three essential parameters: the size of the moving
window that restricts the region considered at the time, the
method used for a numerical estimation of gradients, and the
thresholding value that removes the regions of weak orien-
tation from the analysis. In our analysis, we used the ImageJ
blug-in called OrientationJ.25 In this application, the size of
the moving window was set to minimum, the method used a
for numerical estimation of gradients was the Gaussian-gra-
dient method and no thresholds were used.

For both methods, the choice of the parameters was made
so that estimation of the original simulated image looked as
good as possible. Values of these parameters did not affect
radically the duration of the analysis. The ST method is such
that it gives an unlimited resolution for the angle parameter.
For the FFT and curvelet methods, increasing of the angle
resolution increases the duration of analysis, in principle lin-
early. However, in practice when the angle resolution was
comparable to the image resolution, i.e., if about N different
angles were used for an image of N × N pixels, then the both
curvelet and FFT-based methods were possible to implement

with an about N2 logðNÞ scaling of efficiency. This was the
amount of operations that the FFT took. Moreover, the
implementation of a moving window in the ST method is
often most efficient using the FFT, i.e., durations of analysis
of these three methods were similar if their algorithms were
optimized. In this work, the angle resolution was chosen to
be one degree in all the methods. Also, a lower resolution
would have given almost similar results: For the FFT and
curvelet methods the results with a lower angular resolution
would have been the same as for the corresponding subsam-
ples of the results with a higher angular resolution. Of
course, a reasonable lower limit for the resolution is difficult
to know before any analysis, i.e., a resolution that is about
the same as that of the image would be advisable if no prior
knowledge about the problem is available.

The actual runtimes were measured with MATLAB®

R2010b using a few years old 64-bit computer with a
3.16-GHz Intel Core(TM)2 Duo processor and 4.00 GB of
RAM memory. The actual runtimes (no algorithm was opti-
mized) of the three codes (curvelet, FFT, and ST) for three
different discretizations of Fig. 4 are shown in milliseconds
in Table 1. It should be noted that using C or a more
machine-related language and optimizing the codes for the
real application, these runtimes could be reduced quite
much, but they give anyway an idea of the relative perfor-
mances of these methods. We know for sure that the algo-
rithm based on the curvelet method at least could be made
faster by one or two orders of magnitude, but such an opti-
mization was beyond the scope of the present article, and
was left for a future publication.

4.3 Results and Discussion

Let us first compare the performance of the three methods in
the orientation analysis of Fig. 1. In Fig. 7, we show the

Fig. 5 (a) An optical-transmission (bright-field) image of a sample of
newsprint. (b) A coarse-grained version of this image with smoothen-
ing. (c) A coarse-grained version of this image without smoothening.

Fig. 6 An atomic force microscope image of a thin film made of
organic nanofibrils. (b) A coarse-grained version of this image with
smoothening. (c) A coarse-grained version of this image without
smoothening.
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results of this analysis by the FFT (a), ST (b), and curvelet
methods (c). Notice that the FFT distribution describes an
orientation with multiple peaks, while the ST distribution
has only one clear maximum. The curvelet distribution is in
a sense an interpolation of the two. It is binomial with a
global maximum at the same angle (a bit over 30 deg) as
the ST distribution, and a side maximum at about −60 deg.
The anisotropies of these distributions are very small, how-
ever, so that this paper sample is almost isotropic.

Comparison of the three estimates for the distribution of
fiber orientation in the generated network of Fig. 4(a) against
the known distribution makes it evident that the curvelet-
based method gives somewhat better results than the other
two methods (see Fig. 8). The curvelet method seems to esti-
mate the overall distribution quite well and to locate the
maximum very accurately. Notice that the ST method clearly
overestimates the orientation strength. Use of other param-
eters in the ST method could result in a considerably worse
distribution. The distribution of the FFT method is close to
that of the curvelet-based method, however, it underestimates
a little the known distribution.

In Figs. 9 to 11, we test the robustness of the three meth-
ods by applying them to the coarse-grained versions of
the original image of the computer-generated network. It

is evident from Fig. 9 that the curvelet-based method is
very robust against coarse graining. As could be expected,
Fig. 10 provides evidence for a failure of the FFT method to
deal with the nonsmoothed coarse-grained image (no inter-
polation). Also, the orientation estimate for the smoothed
coarse-grained image (with interpolation) is quite poor.
Figure 11 demonstrates that also the ST method gives a poor
result for the nonsmoothed coarse-grained image. However,
quite unexpectedly, for the smoothed coarse-grained image,
the result of the ST method is better than for the origi-
nal image.

Similar comparisons are made in Figs. 12 to 14 for the
newsprint sample of Fig. 5(a), and for two coarse-grained
versions (as above) of it.

It is evident from these figures that only the curvelet
method has the maximum in the orientation distribution at
the correct position independent of coarse graining of the
image. In fact, this method seems to produce very similar
distributions in all three cases, see Fig. 12, while the FFT

Table 1 Actual runtimes in milliseconds of the curvelet, fast Fourier
transform (FFT), and structure tensor (ST) algorithm for three different
discretizations (256 × 256, 512 × 512, and 1024 × 1024 pixels) of
Fig. 4.

Method

Resolution

256 × 256 512 × 512 1024 × 1024

Curvelet 6.84 23.2 159

FFT 16.9 36.9 121

ST 207 809 3203

Fig. 7 Estimations for distribution of fiber orientation of the paper
sample of Fig. 1. Orientation distribution determined by the fast
Fourier transform (FFT) method (a), the one determined by the struc-
ture tensor (ST) method (b), and the one determined by the curvelet
method (c).

Fig. 8 Estimations for distribution of fiber orientation in the image of a
numerically generated network of fibers shown in Fig. 4(a).
Orientation distribution as determined by the FFT method (upper
left panel), the one determined by the ST method (upper right
panel), and the one determined by the curvelet method (lowest
panel). Each panel includes also the known orientation distribution
(the dashed lines) for comparison.

Fig. 9 Curvelet-based estimates for the distribution of fiber orientation
as determined from the original generated network of Fig. 4(a) and its
two coarse-grained versions (as explained in the text).
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method seems to fail in all these cases, also for the original
image (Fig. 13). The ST method works quite well for the
original newsprint sample (see Fig. 14). It fails to give a rea-
sonable estimate for the nonsmoothed coarse-grained image,
however.

Comparison of the orientation-distribution estimates for
the nanofibrer image (Fig. 9) is more difficult since there
is no prior knowledge of the actual distribution.

It is evident from Fig. 15 that the curvelet method is not so
robust as before (fiber networks) for this type of image: the
main peak and side peak seem to change their roles in the
analysis of the original and coarse-graind images, respec-
tively. The reason for this may be the bundles of nanofibers
(e.g., in the upper part of the image) that begin to dominate
the coarse-grained images. Also, nanofibers are not so

Fig. 10 FFT-based estimates for the distribution of fiber orientation as
determined from the original generated network of Fig. 4(a) and its two
coarse-grained versions (as explained in the text).

Fig. 11 ST-based estimates for the distribution of fiber orientation as
determined from the original generated network of Fig. 4(a) and its two
coarse-grained versions (as explained in the text).

Fig. 12 Curvelet-based estimates for the distribution of fiber orienta-
tion of the original newsprint sample [Fig. 5(a)] and its two coarse-
grained versions.

Fig. 13 FFT-based estimates for the distribution of fiber orientation of
the original newsprint sample [Fig. 5(a)] and its two coarse-grained
versions.

Fig. 14 ST-based estimates for the distribution of fiber orientation of
the original newsprint sample [Fig. 5(a)] and its two coarse-grained
versions.

Fig. 15 Curvelet-based estimates for the distribution of fiber orienta-
tion of the original nanofiber image [Fig. 6(a)] and its two coarse-
grained versions.
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elongated than the fibers in the two previous applications
(see Figs. 4 and 5), and parameters of the curvelet method
may need to be tuned differently for this particular case.

Figure 16 indicates that the FFT method does not produce
very much of a clear structure for the original nanofiber
image apart from the main orientation direction at about
0 deg. For the coarse-grained versions of the image, it
gives an additional peak at about 90 deg, which obviously
follows from coarse graining only and is thus an artifact.
This method does not seem to tolerate coarse graining with-
out smoothening. The ST method seems to find for the origi-
nal image a very broad and flat peak in the range of angles,
where the curvelet method finds two-local maxima. For the
image coarse-grained with smoothening (see Fig. 17), it seems
to find the same side peak as the curvelet method, however. In
this case, the ST method seems to work for the smoothed
coarse-grained image better than for the original image. For
the nonsmoothed coarse-grained image the ST method clearly
fails. Overall, the orientation distribution of the nanofibrer
image seems to be difficult to estimate, and it also demon-
strates that a method optimized for one type of image does not
necessarily work as well for another type of image.

5 Conclusions
A new method based on the curvelet transform was intro-
duced for estimating the distribution of orientation in images

of elongated features (particles). The mathematical justifica-
tion of the suitability of the method for this kind of applica-
tion was briefly demonstrated.

The known distribution of orientation in the computer-
generated network of fibers was accurately produced by
this method. Furthermore, this method was applied to two
optical images of fibrous samples (paper), an AFM image
of a membrane of nanofibers, and two of their (differently)
coarse-grained versions, with good results even though the
AFM image was quite challenging. The performance of this
method was also compared with those of two traditionally
used methods of orientation analysis, i.e., the FFT- and ST-
based methods. The curvelet method was demonstrated to be
more accurate and stable than these other two methods, and it
was shown in particular to be more robust against coarse
graining of the image. This means that the curvelet method
gives more reliable results when the resolution of the image
is low.
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