Optical Engineering

OpticalEngineering.SPIEDigitalLibrary.org

Errata: Lattice location of Hf and its interaction with other impurities in LiNbO₃: a review

José G. Marques Katharina Lorenz

Errata: Lattice location of Hf and its interaction with other impurities in LiNbO₃: a review

José G. Marques^a and Katharina Lorenz^b

^aUniversidade de Lisboa, C2TN, Instituto Superior Técnico, Estrada Nacional 10, km 139.7, 2695-066 Bobadela LRS, Portugal ^bUniversidade de Lisboa, IPFN, Instituto Superior Técnico, Estrada Nacional 10, km 139.7, 2695-066 Bobadela LRS, Portugal

[DOI: 10.1117/1.OE.53.6.069803]

This article [*Opt. Eng.* **53**(6), 060901 (2014)] was originally published on 12 June 2014 with two typesetting errors, described below.

In the first line of the second column of p. 4, a multiplication sign was erroneously inserted. The correct line should read: "...of the $\gamma - \gamma$ cascade from the decay of ¹¹¹In ($T_{1/2} = 80$ ns)..." In row 3 of Table 1, the variable η , representing asymmetry parameters, was mistakenly typeset as H. The corrected table appears below.

The paper was corrected online on 13 June 2014. It appears correctly in print.

Table 1 Quadrupole interaction frequencies (ν_Q), asymmetry parameters (η), quadrupole moments (Q), and derived absolute values of the principal component of the electric field gradients (EFG), V_{zz} , for perturbed angular correlation, Mössbauer effect, and nuclear quadrupole resonance probes replacing Li and Nb sites in LiNbO₃. The Sternheimer antishielding factor $(1 - \gamma_{\infty})$ was used to take into account the influence of the electron shells of the probes and to calculate the lattice EFG, V_{zz} (latt). The principal component of the EFG was oriented along the $\langle 0001 \rangle$ axis in all cases. The numbers in parentheses indicate the associated uncertainties.

Probe	⁴⁴ Ti/Sc	⁵⁷ Fe	¹¹¹ In/Cd	¹⁸¹ Hf/Ta	⁹³ Nb	¹⁸¹ Hf/Ta
Lattice site	Li	Li	Li	Li	Nb	Nb
ν_Q (MHz)	15.4(2) ⁴⁹	11.6(1.2) ⁵²	192(2) ⁵⁴	1154(12) ⁴⁷	22.0(1) ⁵⁰	327(4) ⁴⁷
η	0.19 ⁴⁹	<0.15 ⁵²	0.16(2) ⁵⁴	0.21(1) ⁴⁷	~0 ⁵⁰	0.15(1) ⁴⁷
<i>Q</i> [b] ⁷²	0.21(2)	0.16(1)	0.83(13)	2.36(5)	0.37(2)	2.36(5)
$ V_{zz} (10^{17} \text{ V/cm}^2)$	3.0(3)	3.0(4)	9.6(1.5)	20.2(5)	2.49(1)	6.2(1)
1-γ _∞	11.4	8.97	30.3	61.9	24	61.9
V _{zz} (latt) 10 ¹⁷ V/cm ²	0.27(3)	0.33(4)	0.32(5)	0.32(1)	0.104(5)	0.093(2)