Optical Engineering

Errata: Lattice location of $\mathbf{H f}$ and its interaction with other impurities in LiNbO_{3} : a review

José G. Marques
Katharina Lorenz

Errata: Lattice location of Hf and its interaction with other impurities in LiNbO_{3} : a review

José G. Marques ${ }^{\text {a }}$ and Katharina Lorenz ${ }^{\text {b }}$
${ }^{\text {a }}$ Universidade de Lisboa, C2TN, Instituto Superior Técnico, Estrada Nacional 10, km 139.7, 2695-066 Bobadela LRS, Portugal
${ }^{\text {b }}$ Universidade de Lisboa, IPFN, Instituto Superior Técnico, Estrada Nacional 10, km 139.7, 2695-066 Bobadela LRS, Portugal

[DOI: 10.1117/1.OE.53.6.069803]

This article [Opt. Eng. 53(6), 060901 (2014)] was originally published on 12 June 2014 with two typesetting errors, described below.

In the first line of the second column of p. 4, a multiplication sign was erroneously inserted. The correct line should read: "... of the $\gamma-\gamma$ cascade from the decay of ${ }^{111}$ In ($T_{1 / 2}=80 \mathrm{~ns}$)...'

In row 3 of Table 1 , the variable η, representing asymmetry parameters, was mistakenly typeset as H. The corrected table appears below.

The paper was corrected online on 13 June 2014. It appears correctly in print.

Table 1 Quadrupole interaction frequencies $\left(\nu_{Q}\right)$, asymmetry parameters (η), quadrupole moments (Q), and derived absolute values of the principal component of the electric field gradients (EFG), $V_{z z}$, for perturbed angular correlation, Mössbauer effect, and nuclear quadrupole resonance probes replacing Li and Nb sites in LiNbO_{3}. The Sternheimer antishielding factor $\left(1-\gamma_{\infty}\right)$ was used to take into account the influence of the electron shells of the probes and to calculate the lattice EFG, $V_{z z}$ (latt). The principal component of the EFG was oriented along the $\langle 0001\rangle$ axis in all cases. The numbers in parentheses indicate the associated uncertainties.

Probe	${ }^{44} \mathrm{Ti} / \mathrm{Sc}$	${ }^{57} \mathrm{Fe}$	${ }^{111} \mathrm{In} / \mathrm{Cd}$	${ }^{181} \mathrm{Hf} / \mathrm{Ta}$	${ }^{93} \mathrm{Nb}$	${ }^{181} \mathrm{Hf} / \mathrm{Ta}$
Lattice site	Li	Li	Li	Li	Nb	Nb
$\nu_{Q}(\mathrm{MHz})$	$15.4(2)^{49}$	$11.6(1.2)^{52}$	$192(2)^{54}$	$1154(12)^{47}$	$22.0(1)^{50}$	$327(4)^{47}$
η	0.19^{49}	$<0.15^{52}$	$0.16(2)^{54}$	$0.21(1)^{47}$	$\sim 0^{50}$	$0.15(1)^{47}$
$\|Q\|[\mathrm{b}]^{72}$	$0.21(2)$	$0.16(1)$	$0.83(13)$	$2.36(5)$	$0.37(2)$	$2.36(5)$
$\left\|V_{z z}\right\|\left(10^{17} \mathrm{~V} / \mathrm{cm}^{2}\right)$	$3.0(3)$	$3.0(4)$	$9.6(1.5)$	$20.2(5)$	$2.49(1)$	$6.2(1)$
$1-\gamma_{\infty}$	11.4	8.97	30.3	61.9	24	61.9
$\mid V_{z z}($ latt $) \mid 10^{17} \mathrm{~V} / \mathrm{cm}^{2}$	$0.27(3)$	$0.33(4)$	$0.32(5)$	$0.32(1)$	$0.104(5)$	$0.093(2)$

