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1 Introduction
Optical beams with zero central intensity, which are called
dark-hollow beams (DHBs), have recently attracted a lot
of attention both experimentally and theoretically, due to
their unique properties and useful applications in atomic
optics, optical communication, optical trapping, and other
fields.1–4 Meanwhile, a rich variety of methods have been
used to generate various DHBs, such as the transverse mode
selection method,5 the geometrical optical method,6 optical
holographic method,7 the computer-generated hologram
method,8 and the hollow optical fibers method.9 In theory,
several models have been proposed to describe DHBs, such
as the best-known TEM�

01 beam (also known as a dough-
nut beam), high-order Bessel beams, hollow Gaussian
beams,10–12 etc. In 2012, Sun et al. introduced a new math-
ematical model called hollow sinh-Gaussian (HsG) beams
to depict DHBs.13 Their propagation characteristics in free
space were also studied.

On the other hand, fractional Fourier transform (FrFT) as
the generalization of a conventional Fourier transform, was
first proposed as a new mathematical tool for solving physics
problems byNamias in 1980.14 Its subsequent potential appli-
cations in optics were first explored in 1993 by Mendlovic,
Ozaktas, and Lohmann.15–17 Since then FrFT has become
an active research subject in optics and has found wide appli-
cation in signal processing, optical image encryption, beam
shaping, and beam analysis.18–23 Recently, much work has
been done concerning their FrFT for various types of beams
that frequently used in modern optics.24–34 However, to the
best of our knowledge, no results have been reported until

now about the propagation properties of the newly proposed
HsG beams in the FrFT optical system.

In this work, we derived the analytical expression for HsG
beams propagating through a paraxial ABCD optical system
and used it to investigate its propagation properties in the
FrFT optical system. The paper is structured as follows,
In Sec. 2, a propagation analytical expression for HsG
beams through a paraxial optical ABCD system is derived.
In Sec. 3, evolution of HsG beams’ intensity distributions in
the FrFT system and their dependent influences on several
parameters are discussed in detail and numerically illustrated
by using the derived equations. Finally, the mail results
obtained are summarized in Sec. 4.

2 Fractional Fourier Transform of Hollow
Sinh-Gaussian Beams

From an optical point of view, three kinds of optical systems
for performing FrFT are proposed15–17 and are shown in
Fig. 1, which are the Lohmann I system, the Lohmann II
system, and the quadratic graded index (GRIN) medium sys-
tem, respectively. Here, fs is the standard focal length, Φ ¼
pπ∕2 with p being the fractional order, and z is the axial
distance between the input and output planes along the opti-
cal axis in the GRIN medium. According to matrix optics,
the transfer matrix for Lohmann I optical system can be
expressed as

R1 ¼
�
A B
C D

�

¼
�
1 fs tanðΦ∕2Þ
0 1

��
1 0

−sin Φ∕fs 1

��
1 fs tanðΦ∕2Þ
0 1

�

¼
�
cos Φ fs sin Φ
− sin Φ

fs
cos Φ

�
: ð1Þ*Address all correspondence to: Zhirong Liu, E-mail: liuzhirong_2003@126
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For a Lohmann II optical system, the corresponding trans-
fer matrix can be described by

R2¼
�
A B
C D

�

¼
�

1 0

− tanðΦ∕2Þ∕fs 1

��
1 fs sinΦ
0 1

��
1 0

− tanðΦ∕2Þ∕fs 1

�

¼
�
cosΦ fs sinΦ
− sinΦ

fs
cosΦ

�
: ð2Þ

For the GRIN medium system, the transfer matrix with
quadratic index variation nðrÞ ¼ n0½1 − r2∕ð2a2Þ�, can be
written as35

R3 ¼
�
A B
C D

�
¼

�
cosðz∕aÞ a sinðz∕aÞ

− 1
a sinðz∕aÞ cosðz∕aÞ

�
: (3)

In Eq. (3), a denotes the radius of the GRIN medium.
Obviously, Eqs. (1), (2), and (3) have the same form when
fs ¼ a and Φ ¼ z∕a. Hence, the above-mentioned three
optical systems have the same transfer matrix and they are
equivalent for performing FrFT.

In a cylindrical coordinate system, the electric field of the
HsG beams in the original plane (z ¼ 0) is defined by13

Enðr; 0Þ ¼ G0 sinh
n

�
r
w0

�
exp

�
−
r2

w2
0

�
: (4)

In Eq. (4), n (n ¼ 0; 1; 2; · · · ) denotes the order of the
HsG beams and G0 is a constant related to the beam
power. Obviously, for n ¼ 0, the beam governed by Eq. (4)
is the conventional fundamental Gaussian beam with a beam

waist of w0. However, for n ≥ 1, a new kind of HsG beam is
obtained.

As defined by Eq. (4), the amplitude of the HsG beam is
determined by the beam’s order n and waist size w0. In order
to visualize the shape of HsG beams, a preliminary demon-
stration is shown in Fig. 2 for HsG beams with different
orders n [Fig. 2(a)] and with different waist sizes w0

[Fig. 2(b)], respectively. All curves in Fig. 2 have been nor-
malized to their peak intensity value. It is apparent from
Fig. 2 that the irradiance profile of the HsG beam presents
a single bright ring, and the central dark size increases as
n and w0 increase. Therefore, one can control the intensity
distribution of HsG beams by choosing n and w0.

On the other hand, Eq. (4) can be rewritten in the form

Enðr; 0Þ ¼ G0

Xn
m¼0

ambm exp

�
−ðrþ cmÞ2

w2
0

�
; (5)

with the coefficients given by

am ¼ ð−1Þm2−n
�

n

m

�
;

bm ¼ exp

��
m −

n
2

�
2
�
;

cm ¼ w0

�
m −

n
2

�
; (6)

where
�n
m

�
is a binomial coefficient. Equation (5) indicates

that the n’th order HsG beam can be generated in a labora-
tory by the superposition of several decentered Gaussian
beams with the same waist width w0, whose centers are
located at positions ð−cm; 0Þ, respectively.

Fig. 1 Three kinds of optical systems for performing fractional Fourier transform (FrFT): (a) the Lohmann
I system, (b) the Lohmann II system, and (c) the quadratic graded index (GRIN) system.

Fig. 2 Normalized intensity distribution of hollow sinh-Gaussian (HsG) beams as a function of r , (a) for
different orders n and (b) for different waist sizes w0.
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Within the framework of the paraxial approximation, the
propagation of any laser beam through an ABCD optical sys-
tem can be described by the generalized Huygens-Fresnel
diffraction integral, known as Collins integral formula,
which takes the following form in a cylindrical coordinate
system:36,37

Enðr;zÞ¼
i
λB

expð−ikzÞ×
Z

2π

0

Z
∞

0

Enðr0;0Þ

×exp
�
−
ik
2B

½Ar02−2rr0 cosðθ−θ 0ÞþDr2�
�
r0dr 0dθ 0: ð7Þ

In Eq. (7), Enðr 0; 0Þ and Enðr; zÞ are the electric fields
in the input and output planes, respectively. r 0, θ 0 and r, θ
are the radial and azimuthal angle coordinates in the input
and output planes, respectively. z is the axial distance
between the input and output planes along the optical
axis. k is the wave number related to the wavelength λ by
k ¼ 2π∕λ. A, B, C, and D are the transfer matrix elements
of the optical system between the input and output planes,
respectively.

Substituting Eqs. (5) and (6) into Eq. (7), and recalling
the following integral equation:

J0ðtÞ ¼
1

2π

Z
2π

0

expðit cos φÞdφ; (8)

we can transform Eq. (7) as

Enðr;zÞ¼
iG0k
B

expð−ikzÞexp
�
−
ik
2B

·Dr2
�Xn

m¼0

ambm

×
Z

∞

0

exp

�
−
ikA
2B

r02
�
·exp

�
−ðr0þcmÞ2

w2
0

�
·J0

�
kr
B
r0
�
·r0dr0:

(9)

Expand the exponential part into a Taylor series and
use the integral equation of the hypergeometric Kummer
function to evaluate the beams. When Reðμþ vÞ > 0 and
Reða2Þ > 0, the integral equation will take the following
form:38

Z
∞

0

tμ expð−a2t2ÞJvðptÞdt

¼ Γ
�
μþ vþ 1

2

�
pv

2vþ1aμþvþ1Γðvþ 1Þ

× 1F1

�
μþ vþ 1

2
; vþ 1;−

p2

4a2

�
: ð10Þ

In Eq. (10), JvðxÞ stands for the v-order Bessel function of
the first kind, ΓðxÞ denotes the gamma function, and

1F1ða; b; xÞ is the confluent hypergeometric function,
respectively. After tedious but straightforward integration,
we obtain a result as follows:

Enðr; zÞ ¼
iG0k
2B

expð−ikzÞ exp
�
−
ikDr2

2B

�

×
Xn
m¼0

X∞
s¼0

ð−1Þm2−n
�

n
m

� ðn − 2 mÞs
ws
0 ⋅ s!

× Γ
�
1þ s

2

�

·

�
1

w2
0

þ ikA
2B

�
−1−s∕2

⋅ 1F1

2
641þ s

2
; 1;−

�
kr
2B

�
2

�
1
w2
0

þ ikA
2B

�
3
75:

(11)

Equation (11) is the general propagation and transforma-
tion for HsG beams through a paraxial ABCD optical
system, which provides a convenient and powerful tool for

Fig. 3 Normalized intensity distribution of HsG beams in the FrFT planes with different fractional orders p
for Lohmann I and Lohmann II optical systems.
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treating the propagation and transformation of HsG beams.
Substituting Eq. (1) or (3) into Eq. (11), one obtains the ana-
lytical expression for the hollow HsG beams propagating
through the FrFT optical system. Then the corresponding
intensity distribution reads as

Inðr; zÞ ¼ Enðr; zÞE�
nðr; zÞ: (12)

In the following, we investigate the HsG beam’s intensity
distribution evolution in the FrFT system.

3 Numerical Simulations and Analysis
According to the analytical expressions obtained in Sec. 2, in
the following, we numerically investigate the properties of
HsG beams propagating through the FrFT system. In the
following discussion, influence factors of HsG beam order n
and the fractional transform order p on the evolution of
the beam’s intensity distribution in the FrFT optical system
are considered. Without loss of generality, we choose the
calculation parameters of HsG beams as λ ¼ 0.632 μm,
w0 ¼ 1 mm, and n ¼ 1, 3, 5, 9.

Figure 3 depicts the normalized intensity distribution of
HsG beams in several FrFT planes. For convenience of com-
parison, we choose the HsG beams of three different orders
(i.e., n ¼ 1, 3, 5, 9). It can be seen from Figs. 3(a) and 3(b)
that HsG beams maintain their dark-centered distribution
when the fractional order p is low, and low-ordered HsG
beams lose their original dark-centered distribution more
quickly than high-ordered ones when the value of p increases
[see Fig. 3(c)]. Eventually all beams evolve into a peak-cen-
tered distribution with some side lobes located sideways [see
Fig. 3(e)]. Furthermore, higher-ordered HsG beams have
sharper center-peaked distributions. This indicates that in
order to reshape the HsG beams, one can choose reasonable

optical parameters for HsG beams in the optical FrFT
system.

Figure 4 shows the normalized intensity distribution of
HsG beams in different planes in the GRIN medium. In
Fig. 4, we choose a ¼ fs ¼ 1 m; hence, the GRIN medium
is equivalent with the Lohmann I and Lohmann II optical
systems for performing FrFT. Obviously, in our case, the
planes z ¼ 0.079, 1.38, 1.57, 1.76, and 3.06 m in the GRIN
medium are, respectively, equivalent to p ¼ 0.05, 0.88, 1.0,
1.12, and 1.95 in the FrFT optical system. Furthermore,
one can find from Fig. 4 that the intensity distribution is
symmetrical about z ¼ 1.57 m (i.e., p ¼ 1).

Figure 5 shows the evolution of the normalized on-axis
intensity distribution of HsG beams of several orders n in
the FrFT planes versus the fractional order p. It is obvious
from Fig. 5 that the dependence of the normalized on-axis
intensity on the fractional order p is periodic, and the period
is 2. The on-axis intensity has a maximum value when p ¼
2nþ 1 and a minimum value when p ¼ 2n.

Fig. 4 Normalized intensity distribution of HsG beams in different planes in the GRIN medium.

Fig. 5 Evolution of the on-axis intensity of HsG beams of several
orders n in the FrFT planes versus the fractional order p.
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4 Conclusions
In this work, we have derived the analytical expression for
HsG beams propagating through a paraxial ABCD optical
system and used it to investigate its propagation properties
in the FrFToptical system. Several influencing parameters of
both the HsG beams and the FrFT optical system are dis-
cussed in detail. Results show that the FrFT optical system
provides a convenient way for modulating HsG beams: HsG
beams maintain their dark-centered distribution when the
fractional order p is low, and low-ordered HsG beams
lose their original dark-centered distribution more quickly
than high-ordered ones when the value of p increases.
Eventually, all HsG beams’ intensities evolve into peak-
centered distributions with some side lobes located sideways.
Furthermore, our results also show that HsG beam intensity
distribution versus the fractional order is periodical and the
period is 2. The results obtained in this work are valuable for
the HsG beam shaping.
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