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Abstract. An iterative algorithm has been successfully used to process data from the three-flat test. On the basis
of the iterative algorithm proposed by Vannoni, which is much faster and more effective than the Zernike poly-
nomial fitting method, an improved algorithm is presented. By optimizing the iterative steps and removing
the scaling factors, the surface shape can be easily computed in a few iterations. The validity of the method is
proved by computer simulation, and the interpolation error and principle error are analyzed.© TheAuthors. Published by
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1 Introduction
The three-flat test method is generally adopted to measure
absolute flatness. Schulz and Schwider proposed and devel-
oped the earliest three-flat test method, which required three
flats to be compared in pairs.1,2 Three measurements could
determine only the profile of one diameter. To reconstruct the
three-dimensional surface data, many methods have been
introduced in which additional measurements are added,
e.g., one of the three plates is rotated at least once. Among
these methods, the Zernike polynomial fitting method pro-
posed by Fritz is one of the most remarkable.3–8 To cover
more frequencies of the reconstructed surface, more polyno-
mials must be fitted, so the computation is much more inten-
sive. To solve this problem, in recent years Vannoni and
Molesini proposed an iterative algorithm9–16 to reconstruct
the surface shape numerically. The principle of this method
is to reconstruct three virtual flats by comparing combina-
tions of their real measurements. Fitting is replaced by rota-
tion or flipping operations, which can be easily and quickly
performed.

Vannoni’s paper proved the validity of the iterative algo-
rithm. To achieve convergence toward the minimum, thou-
sands of iterations are required. By optimizing the
iterative steps and removing scaling factors, the iterative
approach we present requires fewer iterations and is less
time consuming than Vannoni’s method. In this paper, the
principle of the new iterative algorithm is introduced, and
the validity and advantages of the method are demonstrated
by computer simulation. Finally, the interpolation error and
principle error are analyzed.

2 Principle
First, an additional rotational measurement is introduced in
addition to the traditional three measurements. The Cartesian
coordinates and test sequence of the four measurements are
shown in Fig. 1.

The four measurements can be expressed as

W1 ¼ K þ L; W2 ¼ K þ LR;

W3 ¼ LF þM; W4 ¼ K þM: (1)

In Eq. (1), K, L, and M denote the surfaces of the three flats
to be measured. LR denotes the surface data of L after rota-
tion by an angle about the optical axis and LF represents
the flipped data of L about the y-axis. Naturally, the flat
after two flips is equal to the unflipped pattern. Further,
the flat after rotation back by the same angle is equal to
the unrotated pattern.

We denote rotating back by the subscript “−R.”
Therefore, if W2 is rotated back and W3 is flipped about
the y-axis, we can express them as

ðW2Þ−R ¼ K−R þ L; ðW3ÞF ¼ LþMF: (2)

Thus, according to Eqs. (1) and (2), K, L, and M can be
expressed as

K ¼ W1 þW2 þW4

3
−
M þ LR þ L

3
;

L ¼ W1 þ ðW2Þ−R þ ðW3ÞF
3

−
K þ K−R þMF

3
;

M ¼ W3 þW4

2
−
K þ LF

2
: (3)

Then, the iterative algorithm is as follows:

1. Initialize the surface data for the three flats (K, L, and
M) at zero, which corresponds to starting with the
absolute plane.

2. Correct the surface data. The new surface data, Knew,
Lnew, and Mnew, can be calculated as

Knew ¼ W1 þW2 þW4

3
−
M þ LR þ L

3
;

Lnew ¼ W1 þ ðW2Þ−R þ ðW3ÞF
3

−
Knew þ ðKnewÞ−R þMF

3
;

Mnew ¼ W3 þW4

2
−
Knew þ ðLnewÞF

2
: (4)

Equation (4) can be written as*Address all correspondence to: Liqun Chai, E-mail: chailiqun@163.com
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Knew ¼ X −
M þ LR þ L

3
;

Lnew ¼ Y −
Knew þ ðKnewÞ−R þMF

3
;

Mnew ¼ Z −
Knew þ ðLnewÞF

2
; (5)

where X, Y, and Z are defined as

X ¼ W1 þW2 þW4

3
;

Y ¼ W1 þ ðW2Þ−R þ ðW3ÞF
3

;

Z ¼ W3 þW4

2
; (6)

respectively. Because W1, W2, W3, and W4 do not
vary, Eq. (6) can be calculated before the iterative
process.

3. Establish the iterative estimation rule. The difference
between the reconstructed data and the real measure-
ment data is calculated as follows:

E1 ¼ W1 − Knew − Lnew;

E2 ¼ W2 − Knew − ðLnewÞR;
E3 ¼ W3 − ðLnewÞF −Mnew;

E4 ¼ W4 − Knew −Mnew: (7)

From Eq. (7), we can obtain

EF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 þ E2

2 þ E2
3 þ E2

4

q
; (8)

where EF denotes the reconstruction error. The root-
mean-square (rms) value of the EF is calculated and
compared with a prespecified threshold. The algorithm
should return to step 2 if the threshold is exceeded, and
finish otherwise. Figure 2 shows a flow chart of the
algorithm.

3 Experiment
To verify the accuracy of the method and compare it with
Vannoni’s method, three flats were measured, and the
data were processed using the proposed iterative algorithm.

In Fig. 3,K, L, andM are the three measured surfaces, which
are all circular pupils 920 pixels in diameter.

W1, W2, W3, and W4 are the four wavefronts processed
according to Eq. (1), as shown in Fig. 4. In our case, L is
rotated by 54 deg, and L is flipped about the y-axis.

The two methods were tested using the same personal
computer with a 3.0 GHz CPU and 2 GB of memory. As
Fig. 5 shows the EF of our iterative algorithm approaches the
minimum after 10 iterations, whereas Vannoni’s approaches
the minimum after more than 100 iterations. Apparently
our iterative algorithm converges more quickly than that of
Vannoni.

In addition, a residual error in L is generated after 128
iterations through subtraction of the actual surface shown
in Fig. 5. The rms of the residual error generated by our
method is 0.28 nm, whereas that of Vannoni’s method is
0.36 nm. Moreover, Vannoni’s method leaves many low
frequencies, as shown in Fig. 6(a).

4 Error Analysis
The main error sources in this method are the interpolation
error and principle error.

4.1 Interpolation Error

The flaw in our method is that the residual error between the
reconstructed surface and the measured surface will not
decrease after 100 iteration steps, as confirmed by the com-
puter simulation. The main reason is that the error caused by
the rotation matrix will accumulate with every iterative loop.
In Eq. (2), we assumed that

L ¼ ðLRÞ−R: (9)

Actually, the surface data are discrete, so there is an inter-
polation error due to the rotation operation, which will
accumulate.

To eliminate this error, we introduce the term L − ðLRÞ−R
into Eq. (2). Consequently, Eq. (5) in step 2 becomes

Fig. 1 Four configurations and corresponding measurements.

Fig. 2 Schematic flow chart of the iterative algorithm.
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Fig. 3 Surface maps of (a) K , (b) L, and (c) M .

Fig. 4 Wavefronts of (a) W 1, (b) W 2, (c) W 3, and (d) W 4.
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Knew ¼ X −
M þ LR þ L

3
;

Lnew ¼ Y −
Knew þ ðKnewÞ−R þMF

3
þ Lnew

3
−
½ðLnewÞR�−R

3
;

Mnew ¼ Z −
Knew þ ðLnewÞF

2
: (10)

Figure 7 shows the residual map between the recon-
structed surface L and the measured one after 128 iterations.
Figures 7(a) and 7(b) are the results of subtraction computed
using Eqs. (5) and (10), respectively. The rms of the error
shown in Fig. 7(b) is only one-half of that shown in
Fig. 7(a). From the image, we can see that the interpolation
error is almost eliminated.

4.2 Principle Error

The arbitrary surface can be fitted by a Zernike polynomial.
Thus, the surface L is given by

Lðr; θÞ ¼
X
m;n

Um
n ðrÞ½Lm

n cosðmθÞ þ L−m
n sinðmθÞ� (11)

and the surface LF is given by

LFðr;θÞ ¼
X
m;n

Um
n ðrÞ½Lm

n cos mðπ− θÞþL−m
n sin mðπ− θÞ�:

(12)

Equation (12) can be expressed as

LFðr; θÞ ¼
X
m;n

Um
n ðrÞ½L−m

n sinðmθÞ − Lm
n cosðmθÞ� (13)

Fig. 5 Error function versus number of iteration cycles.

Fig. 6 Residual maps of L after 128 iterations: (a) Vannoni’s method and (b) our method.

Fig. 7 Residual maps of L after 128 iterations: our method (a) before modification and (b) after
modification.
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and the surface LR is

LRðr; θÞ ¼ Lðr; θ − φÞ
¼

X
m;n

Um
n ðrÞ½Lm

n cosðmθÞ þ L−m
n sinðmθÞ�; (14)

where

Lm
n ¼ Lm

n cosðmϕÞ − L−m
n sinðmϕÞ;

L−m
n ¼ L−m

n cosðmϕÞ þ Lm
n sinðmϕÞ; (15)

and φ is the rotation angle. When mφ is a multiple of
360 deg, Eq. (15) becomes

Lm
n ¼ Lm

n ; L−m
n ¼ L−m

n : (16)

Therefore, Eq. (14) is the same as Eq. (11). Further,W1 is
equal to W2 in Eq. (1). Here, we assume that

Lðr; αÞ ¼ Leven þ Lodd: (17)

Thus,

LFðr; αÞ ¼ Leven − Lodd; (18)

where α is a multiple of 360 deg and φ.
Equation (1) becomes

w1 ¼ K þ Leven þ Lodd;

w2 ¼ w1;

w3 ¼ Leven − Lodd þM;

w4 ¼ K þM; (19)

where w1, w2, w3, and w4 include only the part that is a multi-
ple of 360 deg and φ.

According to Eq. (19), Leven is

Leven ¼
w1 þ w3 − w4

2
: (20)

According to Eqs. (19) and (20), we can obtain

K þ Lodd ¼
w1 − w3 þ w4

2
;

M − Lodd ¼
w3 − w1 þ w4

2
;

K þM ¼ w4: (21)

Obviously we cannot obtain the exact value of Lodd from
Eq. (21). Thus, the part that is a multiple of 360 deg and φ in
K, L, and M cannot be reconstructed by our iterative
algorithm.

5 Comparison of the Two Algorithms
Our approach is generally faster than that of Vannoni. The
main reason is that the iterative algorithm computes the
updated surfaces directly from the measurements, without
a real “adjustment” of a previous surface profile. Every

computation directly influences the next one, so this algo-
rithm is in principle faster than the earlier one. The adjust-
ment factor used in the original algorithm is critical if we
want to optimize the algorithm for maximum speed, and
the number of iterations will decrease when the adjustment
factor is larger. However, the new algorithm (including the
rotation adjustment) is still faster, but we can see that the
difference between it and Vannoni’s algorithm is reduced.

Note that the improved algorithm is more accurate than
the original one only if we stop both of them after 100 iter-
ations. If we allow them to run until the end, they produce
identical results.

6 Conclusion
We present an improved iterative algorithm for the three-flat
test based on Vannoni’s method. A numerical simulation
showed that the process we designed is faster than that of
Vannoni. Our method can be applied for absolute flatness
measurement, especially when the number of pixels of the
interferometer CCD is increased by thousand folds.

References

1. G. Schulz and J. Schwider, “Precise measurement of planeness,” Appl.
Opt. 6(6), 1077–1084 (1967).

2. G. Schulz and J. Schwider, “Establishing an optical flatness,” Appl.
Opt. 10(4), 929–934 (1971).

3. B. S. Fritz, “Absolute calibration of an optical flat,” Opt. Eng. 23(4),
379–383 (1984).

4. J. Grzanna and G. Schulz, “Absolute testing of flatness standards at
square-grid points,” Opt. Commun. 77(2), 107–112 (1990).

5. G. Schulz and J. Grzanna, “Absolute flatness testing by the rotation
method with optimal measuring error compensation,” Appl. Opt.
31(19), 3767–3780 (1992).

6. G. Schulz, “Absolute flatness testing by an extended rotation method
using two angles of rotation,” Appl. Opt. 32(7), 1055–1059 (1993).

7. V. Greco et al., “Absolute measurement of planarity with Fritz’s
method: uncertainty evaluation,” Appl. Opt. 38(10), 2018–2027
(1999).

8. C. Xu, L. Chen, and J. Yin, “Method for absolute flatness measurement
of optical surfaces,” Appl. Opt. 48(13), 2536–2540 (2009).

9. M. Vannoni and G. Molesini, “Iterative algorithm for three flat test,”
Opt. Express 15(11), 6809–6816 (2007).

10. F. Morin and S. Bouillet, “Absolute interferometric measurement of
flatness: application of different methods to test a 600 mm diameter
reference flat,” Proc. SPIE 6616, 66164G (2007).

11. M. Vannoni and G. Molesini, “Absolute planarity with three flat
test: an iterative approach with Zernike polynomials,” Opt. Express
16(1), 340–354 (2008).

12. M. Vannoni and G. Molesini, “Three-flat test with plates in horizontal
posture,” Appl. Opt. 47(12), 2133–2145 (2008).

13. C. Morin and S. Bouillet, “Absolute calibration of three reference
flats based on an iterative algorithm: study and implementation,”
Proc. SPIE 8169, 816915 (2011).

14. M. Vannoni and G. Molesini, “Absolute planarity test with multiple
measurements and iterative data reduction algorithm,” presented at
SPIE-Optifab, Rochester, Poster TD06–62 (May 11–14 2009).

15. M. Vannoni, A. Sordini, and G. Molesini, “Calibration of absolute
planarity flats: generalized iterative approach,” Opt. Eng. 51(8),
081510 (2012).

16. M. Vannoni, “Absolute flatness measurement using oblique incidence
setup and an iterative algorithm: a demonstration on synthetic data,”
Opt. Express 22(3), 3538–3546 (2014).

Bo Gao is an assistant professor at the Fine Optical Engineering
Research Center. He received his BS and MS degrees in optical
engineering from Nanjing University of Science and Technology in
2006 and 2008, respectively. His research focuses on optical manu-
facturing and testing.

Biographies of the other authors are not available.

Optical Engineering 092004-5 September 2014 • Vol. 53(9)

Gao et al.: Improved iterative algorithm for the three-flat test

http://dx.doi.org/10.1364/AO.6.001077
http://dx.doi.org/10.1364/AO.6.001077
http://dx.doi.org/10.1364/AO.10.000929
http://dx.doi.org/10.1364/AO.10.000929
http://dx.doi.org/10.1117/12.7973304
http://dx.doi.org/10.1016/0030-4018(90)90417-R
http://dx.doi.org/10.1364/AO.31.003767
http://dx.doi.org/10.1364/AO.32.001055
http://dx.doi.org/10.1364/AO.38.002018
http://dx.doi.org/10.1364/AO.48.002536
http://dx.doi.org/10.1364/OE.15.006809
http://dx.doi.org/10.1117/12.725974
http://dx.doi.org/10.1364/OE.16.000340
http://dx.doi.org/10.1364/AO.47.002133
http://dx.doi.org/10.1117/12.896784
http://dx.doi.org/10.1117/1.OE.51.8.081510
http://dx.doi.org/10.1364/OE.22.003538

