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Abstract. We investigate the generation of a chirped pulse in a single-mode, ring-cavity, erbium-doped fiber
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1 Introduction
Single-wall carbon nanotubes (SWCNTs) have attracted
much attention in the field of optical communications in
recent years because of their ultrafast nonlinear optical prop-
erties in the near-infrared region arising from the saturation
of excitonic transitions,1–4 their interesting electronic and
optical properties, and several applications in photonics,
which include nanometer-scale devices for light generation,
photodetection, photovoltaic applications, and application as
saturable absorbers (SAs).5,6 Recent developments in fiber
lasers have led to a renewed interest in SAs. CNTs have
emerged as a promising technology for the fabrication of
SAs.7 Graphene8–10and nanoscale graphite11,12 materials based
on CNTs have attracted much attention because of their high
optical nonlinearity and fast recovery time when used as an
SA in a mode-locked erbium-doped fiber laser (EDFL) for
femtosecond/picosecond pulse generation.13–18

Because SWCNTs possess subpicosecond recovery times
and broad absorption spectra, active fibers doped with Yb:
KLuW operating at a wavelength of 1000 nm,19 a praseo-
dymium-doped fiber operating at 1300 nm,20 a ytterbium-
doped fiber operating at 1064 nm,21 and active fibers
doped with Erþ3 operating at 1500 nm have been mode-
locked with SWCNT SAs.22

Most recent studies on fiber lasers have focused only on the
use of CNTs with erbium (Er) fiber lasers for generating short
optical pulses at a 22 MHz repetition rate with a 50 kW peak
power and a 1.1 ps pulse width23,24 or a 39MHz repetition rate
with a 3.4 mW peak power and a 115 fs pulse width.25

In addition, new SA materials, such as TI∶Bi2Se3 and
TI∶Bi2Te3, have attracted much attention for mode locking

of an Er-doped fiber laser and have yielded stable soliton
pulses of 1.57 ps at 1564.6 nm and 1.21 ps at 1558 nm,
respectively.26,27 In 2014, Zhang developed an MoS2-
based optical fiber SA device with an operation wavelength
suitable for an ytterbium-doped fiber laser and experimen-
tally generated nanosecond dissipative soliton pulses at
1054 nm.28

Most previous studies have been experimental, and few
theoretical analyses in this field have been presented.
Analytical methods may be useful for enabling the study
of a wide range of SA parameters. An analytical study
involves performing a spatial analysis to obtain new informa-
tion; a spatial analysis would be difficult to perform exper-
imentally. The theoretical description of pulse shaping and
propagation in a fiber ring-cavity laser is based on the gen-
eralized nonlinear Schrodinger (NLS) equation. The
Schrodinger equation can be solved either analytically or
numerically. Analytical methods are more rigorous and pro-
vide exact solutions, but they are difficult to use for complex
problems. Many articles have been published on the exact
solutions to nonlinear wave equations. These include studies
of the Backlund transform,29 the hyperbolic tangent expan-
sion method,30 the trial function method,31 the nonlinear
transform method,32 transformed rational function method,33

and exact 1-soliton solution of the complex modified
Korteweg–de Vries equation method.34

Numerical methods, such as the split-step Fourier
method, have become popular with the development of com-
puting capabilities, although they only give approximate sol-
utions of the NLS equation. 35 Previous studies of the exact
solutions to nonlinear wave equations have not dealt with a
range of SA parameters for CNTs.

In this paper, we describe and analyze a method for solv-
ing the NLS equation that involves the nonlinear effects of
CNTs as an SA. The gain in the NLS equation is described
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by the saturation power of the gain medium, an average
small-signal gain, and an average power over the cavity
length. The rest of this paper is organized as follows. In
Sec. 2, we derive the equations for representing the solitary
wave. In Sec. 3.1, we discuss three cases for the chirp param-
eter and its effect on the generation of a soliton, and we
investigate the effect of the SA parameter on the laser
power, pulse phase, and pulse width. In Sec. 3.2, we
focus on the chaotic behavior of the laser pulse. Section 3.3
considers the stability of the laser pulse; we focus on the
phase of the pulse associated with the introduced transforma-
tions and present stationary solutions. In Sec. 3.4, we
describe the effect of the SA parameter on the dynamic
behavior of the chirped pulse.

2 Model Algebraic Equations
In this section, we describe the optical pulse propagation in a
fiber laser using the NLS equation for the pulse envelope
ψðz; TÞ in the presence of mode locking with the use of an
SA, including the gain dispersion, losses for the cavity and
fiber, gain, group-velocity dispersion (GVD), self-phase
modulation (SPM), and two-photon absorption (TPA). This
equation can be written as5

∂ψ
∂z

þ i
2
ðigT2

2þ β2Þ
∂2ψ
∂T2

¼
�
iγþ 1

2

�
δSA
pCNT
sat

−
g
pEr
sat

−α2

��
jψ j2ψ

þ 1

2
ðg−α− δSAÞψ ; (1)

where ψðz; TÞ is the amplitude of the optical pulse, T is the
time, z is the propagation distance, α is a coefficient that
takes into account material losses in the cavity, δSA is the
SA parameter, α2 is the TPA parameter, γ is the SPM param-
eter, β2 is the second-order dispersion coefficient, pEr

sat is the
saturation power of the gain medium (Erþ3), pCNT

sat is the sat-
uration power of SA (CNTs), and gT2

2 is a frequency-
dependent gain dispersion factor. We assume a chirped
pulse given by

ψðz; TÞ ¼ χðz; TÞ þ iμðz; TÞ; (2)

where

χðz; TÞ ¼ ξ sechðσTÞ cosfkz − c log½coshðσTÞ�g; (3)

μðz; TÞ ¼ ξ sechðσTÞ sinfkz − c log½coshðσTÞ�g; (4)

where ξ, σ, k, and c are four arbitrary parameters represent-
ing the amplitude, width, wave number, and chirp of the
pulse, respectively.

When ∂ψ∕∂z is calculated using Eq. (2), it is found to
satisfy

∂ψðz; TÞ
∂z

¼ ∂χðz; TÞ
∂z

þ i
∂μðz; TÞ

∂z
: (5)

The first part of Eq. (5) is given by

∂χðz; TÞ
∂z

¼ −kξ sechðσTÞ sinfkz − c log½coshðσTÞ�g: (6)

The second part of Eq. (5) is given by

∂μðz; TÞ
∂z

¼ kξ sechðσTÞ cosfkz − c log½coshðσTÞ�g: (7)

We can write an equation for the second derivative of
Eq. (2) with respect to T after some algebra, as follows:

∂χðz; TÞ
∂T

¼ −½χðz; TÞcþ μðz; TÞ�σ tanhðσTÞ: (8)

Let us assume the new parameters as

Ω ¼ χðz; TÞcσ tanhðσTÞ; Γ ¼ μðz; TÞσ tanhðσTÞ; (9)

∂2χðz; TÞ
∂T2

¼ −
�
∂Ω
∂T

þ ∂Γ
∂T

�
: (10)

By calculating ∂Γ∕∂T and ∂Ω∕∂T, the result is given by

∂Γ
∂T

¼ −σ2cμ tanh2ðσTÞ − σ2χðz; TÞsech2ðσTÞ
þ σ2χðz; TÞtanh2ðσTÞ; (11)

∂Ω
∂T

¼ −σ2cμðz; TÞsech2ðσTÞ þ σ2c2χðz; TÞtanh2ðσTÞ
þ σ2cμðz; TÞtanh2ðσTÞ:

(12)

Substituting Eqs. (11) and (12) into Eq. (10), we obtain

∂2χðz; TÞ
∂T2

¼ ½3cσ2μðz; TÞsech2ðσTÞ þ σ2ð1 − c2Þχðz; TÞ
− 2cσ2μðz; TÞ þ c2σ2χðz; TÞsech2ðσTÞ
− 2σ2χðz; TÞsech2ðσTÞ: ð13Þ

We follow a similar procedure for finding the second
derivative of Eq. (13):

∂2μðz; TÞ
∂T2

¼ ½−3cσ2χðz; TÞsech2ðσTÞ þ σ2ð1 − c2Þμðz; TÞ
þ 2cσ2χðz; TÞ þ c2σ2μðz; TÞsech2ðσTÞ
− 2σ2μðz; TÞsech2ðσTÞ: (14)

Substituting Eqs. (2), (3), (4), (5), (6), (7), (13), and (14)
into Eq. (1), after some algebra, we obtain the following
equation:

ikþ 1

2
ðiβ2 − gT2

2Þ½σ2 − σ2c2 þ c2σ2sech2ðσTÞ
− 2σ2sech2ðσTÞ − 3icσ2sech2ðσTÞ þ 2icσ2�

¼ i

�
γ þ i

α2
2

�
jξj2sech2ðσTÞ þ 1

2
ðg − α − δSAÞ

þ 1

2

�
δSA
pCNT
sat

−
g
pEr
sat

�
jξj2sech2ðσTÞ: (15)

Separating the real and imaginary parts of Eq. (15), we
obtain the following two equations:
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kþ β2
2
½σ2 − σ2c2 þ c2σ2 sech2ðσTÞ − 2σ2 sech2ðσTÞ�

þ 3

2
gT2

2cσ
2sech2ðσTÞ − gT2

2cσ
2 ¼ γjξj2 sech2ðσTÞ; ð16Þ

gT2
2½σ2 − σ2c2 þ c2σ2 sech2 − 2σ2 sech2ðσTÞ�
− 3β2cσ2 sech2ðσTÞ þ 2β2cσ2 ¼ α2jξj2 sech2ðσTÞ

− ðg − α − δSAÞ þ
�

δSA
pCNT
sat

−
g
pEr
sat

�
jξj2 sech2ðσTÞ:

(17)

Equating the coefficient of sech2ðσTÞ and other parame-
ters in Eq. (16), we obtain the following equations:

kþ 1

2
β2ðσ2 − σ2c2Þ − gT2

2cσ
2 ¼ 0; (18)

1

2
β2ðσ2c2 − 2σ2Þ þ 3

2
gT2

2cσ
2 ¼ γjξj2: (19)

Equation (17) can be separated into two equations in the
form

gT2
2ðσ2 − σ2c2Þ þ 2β2cσ2 þ ðg − α − δSAÞ ¼ 0; (20)

gT2
2ðσ2c2 − 2σ2Þ − 3β2cσ2 ¼

�
α2 þ

δSA
pCNT
sat

−
g
pEr
sat

�
jξj2:

(21)

3 Results and Discussion
The laser configuration consists of a ring cavity. Two types
of fibers are used in the cavity: a 6-m piece of Er-doped fiber
(EDF) and a standard single-mode fiber (SMF28) with a total
net anomalous GVD β2 of −0.012 ps2∕m.

The gain in our fiber laser comes from the EDF, which,
when pumped with 980-nm light, exhibits spontaneous emis-
sion at 1550 nm. Continuously pumping the gain fiber results

in the formation of an initial pulse by amplified spontaneous
emission, and the pulse makes several passes through the res-
onant cavity.36 It is important to fix the total length of the
gain fiber so that the round trip time for a pulse through
the resonant cavity basically equals the storage time of
the gain fiber and the pulse will return on each successive
pass to the gain fiber as the gain fiber has been pumped
back up from a depleted state caused by the prior pass. A
polarization-independent isolator was spliced into the cavity
to force unidirectional operation of the ring. A CNT mode
locker was placed between the EDF and the 10% fiber cou-
pler, as shown in Fig. 1.

3.1 Chirp Dynamics

To understand the dynamic behavior of the chirp, Eqs. (19)
and (21) can be used to find an equation for the chirp.�
2γgT2

2 −
�
α2 þ

δSA
pCNT
sat

−
g
pEr
sat

�
β2

�
c2

− 3

�
2γβ2 þ

1

2
gT2

2

�
α2 þ

δSA
pCNT
sat

−
g
pEr
sat

��
c

− 2

�
2γgT2

2 −
�
α2 þ

δSA
pCNT
sat

−
g
pEr
sat

�
β2

�
¼ 0: (22)

After some algebra, we obtain the following equation:

c2 − 3

�
2γβ2 þ 1

2
gT2

2

�
α2 þ δSA

pCNT
sat

− g
pEr
sat

��
�
2γgT2

2 −
�
α2 þ δSA

pCNT
sat

− g
pEr
sat

�
β2

� c − 2 ¼ 0: (23)

We can rewrite the above equation as

c2 −mc − n ¼ 0; (24)

where the parameters m and n are given by

m ¼ −3

2
642γβ2 þ 1

2
gT2

2

�
α2 þ δSA

pCNT
sat

− g
pEr
sat

�
2γgT2

2 −
�
α2 þ δSA

pCNT
sat

− g
pEr
sat

�
β2

3
75; n ¼ −2:

(25)

It is easy to show that the chirp parameter is

c ¼ m
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 4n

4

r
; (26)

c ¼ 3

2

h
2γβ2 þ 1

2
gT2

2

�
α2 þ δSA

pCNT
sat

− g
pEr
sat

�i
h
2γgT2

2 −
�
α2 þ δSA

pCNT
sat

− g
pEr
sat

�
β2
i

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4

2
642γβ2 þ 1

2
gT2

2

�
α2 þ δSA

pCNT
sat

− g
pEr
sat

�
2γgT2

2 −
�
α2 þ δSA

pCNT
sat

− g
pEr
sat

�
β2

3
75
2

þ 2:

vuuuut (27)

We can use Eq. (27) to investigate the chirp parameter; we
discuss the three cases separately.

Fig. 1 Schematic of fiber laser components: Er-doped fiber (EDF),
single-mode fiber, wavelength-division multiplexer, polarization con-
troller, coupler, and optical isolator.

Optical Engineering 011005-3 January 2015 • Vol. 54(1)

Al-zahy: Soliton building from spontaneous emission by ring-cavity fiber laser. . .



Case 1: The solution of Eq. (27) is called the symmetric
state and exists only for m2 − 4n > 0. The chirp
parameter is real and indicates that the pulse-
formed soliton will propagate without changes in
its shape; the pulse is stable.

Case 2: When m2 − 4n ¼ 0, the chirp is given by c ¼ m∕2,
indicating that the frequency is always shifted
(chirping always occurs) unless the pulse forms a
soliton.

Case 3: The solution of Eq. (27) represents an antisymmet-
ric state and exists for all m2 − 4n < 0. In this case,
the chirp parameter is purely imaginary, and it is
impossible to obtain the soliton from a pulse
because the antisymmetric states are unstable.

From the condition that the chirp parameter is real, we
obtain

9

4

2
642γβ2 þ 1

2
gT2

2

�
α2 þ δSA

pCNT
sat

− g
pEr
sat

�
2γgT2

2 −
�
α2 þ δSA

pCNT
sat

− g
pEr
sat

�
β2

3
75
2

þ 2 ≥ 0: (28)

For a fiber laser employing CNTs, gT2
2, β2, α2, g∕pEr

sat, and
γ play important roles in the evolution of passive mode-
locked pulses and should be included.

According to Eq. (28), we obtain

δSA ≥
2ðβ2 þ i 4

3

ffiffiffi
2

p
gT2

2Þ�
1
2
gT2

2 þ i 2
3

ffiffiffi
2

p
β2
� γpCNT

sat −
�
α2 −

g
pEr
sat

�
pCNT
sat :

(29)

When a complex number (β2 þ ið4∕3Þ ffiffiffi
2

p
gT2

2) is multi-
plied by its conjugate, the result is

δSA ≥
41
9
gT2

2β2�
1
4
g2T4

2 þ 8
9
β22

� γpCNT
sat − i

4
3

ffiffiffi
2

p ðβ22 − g2T4
2Þ�

1
4
g2T4

2 þ 8
9
β22

� γpCNT
sat

−
�
α2 −

g
pEr
sat

�
pCNT
sat : (30)

The SA parameter δSA must be real; therefore,
4∕3

ffiffiffi
2

p ðβ22 − g2T4
2Þ ¼ 0, and

δSA ≥
�
4γ þ g

pEr
sat

− α2

�
pCNT
sat : (31)

This equation shows that the condition that the saturable
absorption parameter δSA must yield a real chirp parameter c
can be related to the stable soliton.

According to Eq. (21) and the condition jξj2 ≥ 0, we
obtain

α2 þ
δSA
pCNT
sat

−
g
pEr
sat

≤
1

T2
FWHM

ðgT2
2c

2 − 3β2c − 2Þ: (32)

This clearly illustrates that the nonlinear behavior is
altered from saturable absorption to TPA as the intensity
of the optical pulse increases. The transformation from satu-
rable absorption to TPA suggests that another nonlinear proc-
ess occurs and becomes dominant. This interesting effect can

be used for optical pulse compression; the above behavior of
the optical pulse depends on the values of the parameters
gT2

2, β2, α2, δSA∕pCNT
sat , g∕pEr

sat, and γ.
We can use Eq. (27) to calculate the pulse chirp for δSA

values between 0.1 and 0.4. Figure 2 shows the changes in
the chirp as a function of δSA; the chirp increases linearly
with δSA.

3.2 Unstable Laser Pulse

Analytical simulations of pulses that grow through a 5-m
fiber ring without a saturable absorption mode locker
show that each input pulse develops an internal substructure
consisting of many subpulses with widths on the order of
femtoseconds. Figure 3 shows the evolution toward a para-
bolic shape when a “sech” pulse is amplified over the 5-m
length of the fiber laser; the position and width of the sub-
pulses change continuously in an apparently random manner.
Changing the anomalous GVD values by varying the length
of the SMF, therefore, will cause the total cavity dispersion to
vary as well.37 Figure 3 shows that each pulse still develops
an internal substructure that depends on the frequencies of
the photon laser through the ring resonator, and the pulse
power also varies from pulse to pulse and exhibits chaotic
behavior as the phase is varied in the cavity resonance.

3.3 Stable Pulse (Soliton)

The solution of Eq. (2) provides a shortcut to understanding
the behavior of pulse laser propagation through an Erþ3 ring
cavity 6 m in length with a saturable absorption mode locker.
In this section, we concentrate on the effects of the absorp-
tion parameter on the characteristics of the laser pulse; the
absorption parameter is tuned in a wide range from 0.1 to
0.4 (Ref. 38) by varying the thickness of the CNTs. First,
by joining Eqs. (20) and (27), we find the soliton width
σ. Second, from Eq. (18), we obtain the wave number of
the soliton, k. Third, from Eq. (21), we can obtain the soliton
power. Fourth, we substitute the soliton width, soliton power,
and wave number into Eqs. (3) and (4) and algebraically
combine the resulting equations with Eq. (2) to obtain a soli-
tary wave equation describing the dynamics and propagation
of optical pulses in a 6-m-long EDFL.

Figure 4 shows the three-dimensional soliton pulse propa-
gation in an EDFL, and Fig. 5 shows the sech pulse pro-
file when the system parameters are γ ¼ 0.012 ðWmÞ−1,
β2 ¼ −0.012 ps2∕m, α2 ¼ 0.3, T2 ¼ 0.047 ps, δSA ¼ 0:1,

Fig. 2 Chirp versus saturable absorption parameter δSA.
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α ¼ 0.178 m−1, psat ¼ 210 W, and g ¼ 0.782 m−1.38 The
power of the soliton grows exponentially once the power
of the pulse exceeds a threshold value, where, at
z ¼ 10 cm, the power of the soliton is 0.007 W, and a pico-
second optical pulse is amplified in the EDFL until the gain
saturates at z ¼ 4 m with a power of 1.2 W.

Figures 6(a) and 6(b) show the variation in the soliton
phase with time and with the length of the fiber laser, respec-
tively, according to the phase equation φ ¼ kz−
c log½coshðσTÞ�, for a fixed length of z ¼ 4 m. The phase
changes with time as a cosine wave with a range of 1 to
−1, as shown in Fig. 6(a). The wave number k; in the
phase equation depends on β2, gT2

2, c, and TFWHM, as
shown in the following equation:

k ¼ 1

2T2
FWHM

ðβ2c2 þ 2 gT2
2c − β2Þ; (33)

where

TFWHM ¼ 1.76

σ
: (34)

Let us consider the case in which the soliton phase varies
linearly along the fiber length, as shown in Fig. 6(b). At
z ¼ 0 m, the soliton phase is φ ¼ −0.7, and the phase
reaches a maximum value of φ ¼ −0.57 when z ¼ 6 m.
Clearly, the values of the phase play an important role in
building the soliton from spontaneous emission of the
Erþ3 fiber laser.

3.4 Effect of SA on Soliton Behavior

First, we explain the control of the pulse width in a mode-
locked fiber laser in which CNTs act as an SA by adjusting
the laser’s intracavity SA parameter. Equation (35) shows
that the SA parameter can vary with TFWHM.

δSA ¼ 1

T2
FWHM

ð2β2cþ gT2
2 − gT2

2c
2Þ þ ðg − αÞ: (35)

Figure 7(a) shows the soliton width (FWHM) as a func-
tion of δSA. The soliton width increases with δSA.

Fig. 4 Soliton growth from spontaneous emission with erbium-doped fiber laser parameters of
γ ¼ 0.012 ðWmÞ−1, β2 ¼ −0.012 ps2∕m, α2 ¼ 0.3, T 2 ¼ 0.047 ps, α ¼ 0.17823 m−1, g ¼ 0.78275 m−1,
δSA ¼ 0.1 and psat ¼ 210 W.

Fig. 3 Evolution of substructure in a 5 m ring resonator when pulses
grow from spontaneous emission with group-velocity dispersion:
(a) β2 ¼ −0.014 ps2∕m, (b) β2 ¼ −0.012 ps2∕m. Other parameters
are γ ¼ 0.012 ðWmÞ−1, α2 ¼ 0.3, T 2 ¼ 0.047 ps, α ¼ 0.17823 m−1,
and g ¼ 0.78275 m−1.
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Second, we focus on the soliton power and SA parameter.
Increasing δSA reduces the soliton power, as can be inferred
from Eq. (36). Furthermore, it is easy to show that δSA
depends on psat and p and refers to the evolution of the build-
ing pulse toward a soliton as its width decreases and peak
power increases, as shown in Fig. 7(b).

δSA ¼ pCNT
sat

p
T2
2

T2
FWHM

gðc2 − 2Þ − 3
pCNT
sat

p
β2

T2
FWHM

c

þ ðg − α2pCNT
sat Þ: (36)

Figures 8(a) and 8(b) show the effect of changing the δSA
on the shape of the soliton; the soliton is repeatedly

Fig. 5 Profiles of parabolic pulse at (a) z ¼ 0.1 m and (b) z ¼ 6 m.

Fig. 6 Soliton phase plotted as a function of (a) time and (b) fiber length.

Fig. 7 (a) width of soliton and (b) output power versus δSA.
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propagated around the laser cavity until a steady state is
reached. The soliton power grows exponentially along
the fiber length. SAs can also be used to filter sidebands
associated with solitons because sidebands can be selec-
tively transferred to the lossy core because of their low
power level.

The soliton power in the fiber resonators is evident from
Eq. (37). Note that the power depends on the GVD β2, gain
dispersion gT2

2, chirp c, SPM parameter γ, and soliton width
TFWHM.

jξj2 ¼ 1

2γT2
FWHM

ð−β2c2 þ 3 gT2
2cþ β2Þ; (37)

Fig. 8 Soliton growth from spontaneous emission: (a) δSA ¼ 0.2, (b) δSA ¼ 0.3.

Fig. 9 Profile of optical pulse that forms a soliton for (a) δSA ¼ 0.2 and (b) δSA ¼ 0.3.
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TFWHM ¼ 1.76

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gT2

2ð1 − c2Þ − 2β2c
ðg − α − δSAÞ

s
: (38)

It is evident from Eqs. (37) and (38) that the parameters
ξ and TFWHM can have real, positive values or imaginary
values, depending on the value under the radical of
Eq. (38). ξ and TFWHM play an important role in stable opti-
cal pulses; if ξ and TFWHM are real, the optical pulse forms a
soliton. Figures 9(a) and 9(b) show that the output pulse
forms a soliton and becomes broader with increasing δSA
and decreasing power.

4 Conclusions
We highlighted four important properties: the power, width,
chirp, and phase of the pulse laser on the basis of a math-
ematical model for fiber lasers with ring cavities and CNTs
as an SA mode locker. For values of γ ¼ 0.012 ðWmÞ−1,
β2¼−0.012ps2∕m, α2¼0.3, T2¼0.047ps, α¼0.17823m−1,
g ¼ 0.78275 m−1, and psat ¼ 210 W, ξ and TFWHM must be
positive and real to guarantee stable pulse propagation (a sol-
iton). In this paper, we argued that δSA ¼ 0.1 is the best value
for generating solitons at a power of ∼1.2 W and width of
∼0.5 ps. The second major finding was that the soliton
power decreases as the SA parameter δSA increases, but
that the soliton width increases with increasing δSA.
Furthermore, different δSA values yield different soliton char-
acteristics; this provides a convenient method for tuning the
properties of the generated soliton in ring-cavity fiber lasers,
where the properties of the SA parameter depend on the size
of the CNTs; therefore, the TPA from a thinner diameter of
the CNTs could destroy the stability of mode-locked pulse
formation. Consequently, a thicker diameter of the CNTs
with less nonlinearity was identified as the mode locker to
reduce the TPA, where both gain dispersion and two-photon
absorption provide such a loss mechanism, and hence, the
TPA plays an important role in establishing the soliton. These
observations are in agreement with numerical simulations.38

Moreover, our results for the parabolic shape of the pulse
and the behavior of the laser pulse propagation through the
fiber laser exhibit good agreement with previous studies.39–43
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