
Efficient deinterlacing method using
simple edge slope tracing

Sajid Khan
Dongho Lee



Efficient deinterlacing method using simple
edge slope tracing

Sajid Khan and Dongho Lee*
Hanyang University ERICA Campus, Department of Electronics and Communication Engineering, 1271 Sa-3-dong, Ansan 426-791,
Republic of Korea

Abstract. This paper presents a low-complexity interpolation method that minimizes image quality losses at
edges, which are easily perceivable by the human eye. Deinterlacing, which converts an interlaced video
into a progressive video, is a problem in image interpolation that doubles the number of vertical lines.
Applying averaging, or any linear algorithm, achieves time-efficient deinterlacing but produces artifacts.
However, applying other complex methods tends to reduce unwanted artifacts but at the cost of high compu-
tation time. The proposed deinterlacing scheme is based on an algorithm called “edge slope tracing” which
simply predicts the slope on the basis of information on adjacent slopes. Predicted slopes are used to perform
deinterlacing in slope-based line averaging. The simulation results show that this scheme provides better results
and reduces complexity compared to conventional state-of-the-art algorithms. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.OE.54.10.103108]

Keywords: deinterlacing; upscaling; edge; slope tracing; progressive scanning.

Paper 150752 received Jun. 3, 2015; accepted for publication Sep. 25, 2015; published online Oct. 20, 2015.

1 Introduction
In digital image processing, interpolation is used to produce
a higher resolution image from a low-resolution image.
Image interpolation is applied in many areas in the field of
image processing, computer vision, and video format
conversion for digital systems. Televisions and monitors are
now more flexible at displaying different video formats than
they were in the past. This interpolation has become a pri-
mary technique to support these digital displays.

The human eye is very sensitive to the edges of images, in
particular. In recent years, interpolation algorithms that take
the edge’s direction and gradient into account have been pro-
posed. Although such edge-based interpolation algorithms
perform better than conventional nonadaptive methods in
the subjective perception of image quality, they have limita-
tions in retaining edge information because they cannot
accurately identify the edges of the pixels to be interpolated.

Deinterlacing, which converts interlaced video into
progressive video, is a problem for image interpolation; it
doubles the number of vertical lines.1–15 In general, TV
broadcasters choose interlaced scanning as the main standard
for video formats.16 Since it alternately scans two fields by
dividing a frame into two parts, interlacing may cause video
quality degradation such as flickering. Because many devi-
ces such as DTV, UDTV, or other monitors use progressive
scanning, the deinterlacing problem has become serious
because it converts interlaced scanned videos into progressive
scanned videos.

One representative method for deinterlacing is the edge-
based line average (ELA),3 whose simple structure improves
the edges of images. However, when incorrect directions
are identified for edges, ELA can result in video quality

degradation. To resolve this issue, several other ELA-
improved methods have been suggested. Of these, efficient
edge-based line average (EELA)4 and low-complexity
deinterlacing5 effectively increase the accuracy of edge
direction determination. In addition, fine directional deinter-
lacing8 and edge-preserving directional deinterlacing10 are
suggested to solve difficult interpolation problems in a low-
sloped edge domain involving video quality degradation.
Binary patterns,9 gradient-guided deinterlacing (GGD),12

deinterlacing with closeness and similarity14 and the moving
least-squares method (MLSM)15 have also been suggested as
methods to accurately restore various slopes. Nevertheless,
when needed for high performance, such methods have
some shortcomings in that they experience performance lim-
itations or are difficult to implement in real time due to their
high levels of complexity.

In this paper, a new intrafield deinterlacing algorithm
based on edge slope tracing (EST) is proposed. EST predicts
the slope of the current pixel on the basis of the information
obtained from the slope of the adjacent pixel. This method,
however, has some serious problems with interpolation for
deinterlacing, which diverges when it fails to trace thin lines
or edges. To solve these problems, correction techniques
consisting of two-way interpolation, thin line correction, and
window-based correction are applied. The complexity of
the proposed algorithm is closer to those of linear filters
such as ELA and is far less than those of other edge-based
methods. Simulation results show that the proposed algo-
rithm provides better results compared to other conventional
methods proposed to date.

The rest of this paper is organized as follows. Section 2
describes some of the conventional methods. Section 3
describes the proposed EST-based deinterlacing algorithm.
Section 4 describes the performance analysis. Section 5 is
the conclusion.*Address all correspondence to: Dongho Lee, E-mail: dhlee77@hanyang.ac.kr

Optical Engineering 103108-1 October 2015 • Vol. 54(10)

Optical Engineering 54(10), 103108 (October 2015)

http://dx.doi.org/10.1117/1.OE.54.10.103108
http://dx.doi.org/10.1117/1.OE.54.10.103108
http://dx.doi.org/10.1117/1.OE.54.10.103108
http://dx.doi.org/10.1117/1.OE.54.10.103108
http://dx.doi.org/10.1117/1.OE.54.10.103108
http://dx.doi.org/10.1117/1.OE.54.10.103108
mailto:dhlee77@hanyang.ac.kr
mailto:dhlee77@hanyang.ac.kr
mailto:dhlee77@hanyang.ac.kr


2 Conventional Methods
In this section, conventional deinterlacing methods are dis-
cussed. For instance, GGD12 predicts the gradients of miss-
ing pixels for interpolating unknown pixel intensity values.
The algorithm is based on minimization of the energy func-
tion using

EQ-TARGET;temp:intralink-;e001;63;683DðfpÞ ¼ ω1D1ðfpÞ þ ω2D2ðfpÞ þ ω3D3ðfpÞ; (1)

where ω1, ω2, and ω3 are the weights assigned to each term.
D1ðfpÞ and D2ðfpÞ are calculated using a summation of
gradients and the intensities of known neighboring pixels,
whereas D3ðfpÞ is based on the absolute sum of the upper
and lower horizontal distances from an interpolating pixel
that defines all possible edge orientations. Since DðfpÞ is
based on various combinations of all neighboring pixels,
it increases the complexity of the algorithm.

Low-complexity interpolation method (LCIM)5 is a sim-
ple low-complexity algorithm that interpolates a missing
pixel along one of the four directions (horizontal, vertical,
first diagonal, and second diagonal) on the basis of minimum
absolute differences. Since LCIM covers only four slopes, it
fails to recover gentle-slope edges, which results in small
slope variation.

MLSM15 is based on a coefficient calculation using
matrix multiplication operations as follows:

EQ-TARGET;temp:intralink-;e002;63;462f̂ðx0; y0Þ ¼ a�00 þ
a�01
λ2

þ a�10
λ2

þ a�11
λ4

; (2)

where coefficient matrix a can be calculated by matrix multi-
plication involving the known intensities of neighboring pix-
els. MLSM uses predetermined matrix multiplication for all
unknown pixels that results in a reduction of complexity to a

great extent, but does not provide good performance due to
its limitation.

3 Proposed Method
The proposed algorithm is based on a simple efficient tech-
nique, EST, which predicts the present slope change using
previous slope information. The slope value obtained by EST
is used for slope-based interpolation. To remove unwanted
artifacts, correction techniques consisting of two-way inter-
polation and window-based correction are applied. EST and
slope-based interpolation are explained in detail followed by
a detailed description of the complete proposed algorithm.

3.1 Edge Slope Tracing

The existing edge-based interpolation methods are either
highly complex or suffer from problems with gently sloped
edges. To resolve the issue with interpolating along gentle
slopes using averaging techniques, a large mask is needed
to detect the slope and to interpolate with the help of the
detected slope. Such types of techniques may result in
heavy calculations, consuming a large amount of execution
time due to the many correlation calculations. This kind of
technique may produce an erroneous edge selection if the
mask is not large enough. In this paper, a very low-complex-
ity algorithm is used for slope calculation by predicting
the current slope on the basis of the slope information of
the previous pixel.

Most of the edges experience a gradual change in the
slope domain; in other words, new slopes are created by
slightly changing the previous slope. EST searches slopes in
the edge domain using the slope information of adjacent pix-
els; this results in the efficient calculation of the edge slope
with greatly reduced complexity. Using EST, there is no need
to calculate correlations or to use a large mask since the

Fig. 1 Flow chart of the edge slope tracing (EST) process.

Optical Engineering 103108-2 October 2015 • Vol. 54(10)

Khan and Lee: Efficient deinterlacing method using simple edge slope tracing



method depends totally on the slope information of the adja-
cent pixel which has been recursively calculated.

The flow chart of the entire EST process is shown in
Fig. 1. Slope kcur of the current pixel is calculated on the
basis of the left, right, and middle slopes calculated using
slope kprev (the slope of the adjacent pixel). A value of
kprev ¼ 0 is used as an initial slope for every first pixel of
an image, or a new row, or after a discontinuity. For other
pixels, the middle (Smid), left (Sleft), and right (Sright) intensity
differences that are used in calculating kcur are given as
follows:

EQ-TARGET;temp:intralink-;e003;63;631

8<
:

Smid ¼ jIði − 1; jþ kprevÞ − Iðiþ 1; j − kprevÞj;
Sleft ¼ jIði − 1; jþ kprev − 1Þ − Iðiþ 1; j − kprev þ 1Þj;
Sright ¼ jIði − 1; jþ kprev þ 1Þ − Iðiþ 1; j − kprev − 1Þj:

(3)

Two examples of calculating the middle, left, and right
slopes using different kprev values are shown in Fig. 2.
For all calculations, it is assumed that the current pixel is
at image location ði; jÞ. Current slope kcur is calculated by
incrementing, decrementing, or using the same value of
previous slope kprev depending on the conditions, given as
follows:

EQ-TARGET;temp:intralink-;e004;63;481

8<
:

kcur ¼ kprev − 1; if minðSleft; Smid; SrightÞ ¼ Sleft
kcur ¼ kprev þ 1; if minðSleft; Smid; SrightÞ ¼ Sright
kcur ¼ kprev; else

: (4)

To avoid the production of unwanted artifacts in case a
wrong value exists for the reference to previous slope
kprev, a resetting criterion is used in which the value of
the reference to the previous slope is reset to zero if the con-

dition (jSði;jÞmin − Sði;j−1Þmin j > T and jkcurj > 1) is satisfied. A

large value of jSði;jÞmin − Sði;j−1Þmin j indicates that the region is
not smooth, thus the current slope cannot be predicted on
the basis of the information of the previous slope. A large
value of T may fail in an efficient reset of the reference
slope, whereas a very small value may result in a frequent

reset of the reference slope. T ¼ 10 is used on the basis
of extensive simulations.

3.2 Slope-Based Interpolation

On the basis of slope kcur calculated using EST, the pixel
intensity at location ði; jÞ can be interpolated using

EQ-TARGET;temp:intralink-;e005;326;681Iði; jÞ ¼ Iði − 1; jþ kcurÞ þ Iðiþ 1; j − kcurÞ
2

: (5)

Figure 3 shows different examples of the calculation of the
interpolated pixel at location ði; jÞ using different values of
kcur. Small gray circles show pixels that are used in slope-
based interpolation, whereas large gray circles show pixels
that are interpolated by averaging small gray pixels.

3.3 Entire Algorithm with Artifact Reduction

The flow chart of the entire proposed algorithm is shown in
Fig. 4. First of all, it detects if a pixel to be interpolated is at
a vertical or thin edge. For vertical or thin edges, line aver-
aging works well, whereas for other slopes, slope-based
interpolation works well and produces good results on the
basis of slope prediction.

The differences for deciding a vertical slope (90 deg or
�75 deg) in Fig. 5 are given as follows:

EQ-TARGET;temp:intralink-;e006;326;469d1 ¼ jIði − 1; j − 1Þ − Iðiþ 1; j − 1Þj þ jIði − 2; jÞ
− Iðiþ 1; jÞj þ jIði − 1; jþ 1Þ − Iðiþ 1; jþ 1Þj;

(6)

EQ-TARGET;temp:intralink-;e007;326;399d2 ¼ jIði − 1; j − 1Þ − Iðiþ 1; jÞj þ jIði − 1; jÞ
− Iðiþ 1; jþ 1Þj; (7)

EQ-TARGET;temp:intralink-;e008;326;343d3 ¼ jIði − 1; jÞ − Iðiþ 1; j − 1Þj þ jIði − 1; jþ 1Þ
− Iðiþ 1; jÞj: (8)

Fig. 2 Examples of slope calculation: (a), (b), and (c) are middle, left, and right slopes using a
previous slope ¼ 0. (d), (e), and (f) are middle, left, and right slopes using a previous slope ¼ 1.

Optical Engineering 103108-3 October 2015 • Vol. 54(10)

Khan and Lee: Efficient deinterlacing method using simple edge slope tracing



Line averaging is applied to the pixel at location ði; jÞ if the
condition minðd1; d2; d3Þ < Th is satisfied, using Th ¼ 20.
In other locations, where minðd1; d2; d3Þ > Th, it is consid-
ered as a nonvertical edge and slope-based interpolation is
applied.

Slope-based interpolation sometimes destroys very thin
lines or edges. If a very thin edge separates two uniform
regions with similar intensity values, few pixels from these

thin edges are subjected to distortion since there is a chance
that the difference among pixels in those two uniform
regions is smaller than that along a thin edge. In such
cases, slope-based interpolation selects pixels from those
two uniform regions. To avoid such failure, if at least two
differences among Sright, Sleft, and Smid given in Eq. (3)
appear to be smaller than the threshold, it is considered as
a thin edge and line averaging is applied. Hence, pixels at

Fig. 3 Examples of slope-based interpolation using different slopes: (a) −2, (b) −1, (c) 0, (d) 1, and (e) 2.

Fig. 4 Flow chart of the proposed interpolation method.

Optical Engineering 103108-4 October 2015 • Vol. 54(10)

Khan and Lee: Efficient deinterlacing method using simple edge slope tracing



vertical or thin edges are interpolated using line averaging.
Slope-based interpolation is applied to the remainder of the
regions.

Pixels that are not detected as vertical or thin edge pixels
are interpolated along both the left to right (forward interpo-
lation) and right to left (backward interpolation) directions to
calculate the forward and backward interpolated images, ILR

and IRL, respectively. The proposed method fails to track
the slope when edges abruptly change in direction. ILR and
IRL are required for the removal of unwanted artifacts. The

Fig. 5 Differences for determining�75 or 90 deg slope: (a) d1, (b) d2,
and (c) d3.

Fig. 6 Selected test images for evaluations.

Fig. 7 Cropped regions after deinterlacing: (a) original, (b) edge-based line average (ELA), (c) gradient-
guided deinterlacing (GGD), (d) LCIM, (e) moving least-squares method (MLSM), and (f) the proposed
method.

Optical Engineering 103108-5 October 2015 • Vol. 54(10)

Khan and Lee: Efficient deinterlacing method using simple edge slope tracing



decision to use the right to left or left to right interpolation is
based on the following differences:

EQ-TARGET;temp:intralink-;e009;63;424DLR ¼ jILR − ILAj; (9)

EQ-TARGET;temp:intralink-;e010;63;393DRL ¼ jIRL − ILAj; (10)

where ILA is the image interpolated using line averaging. On
the basis of DLR and DRL, interpolated image I is obtained
using interpolated values in ILR that correspond to small
differences in DLR compared to DRL and vice versa.

The above method results in an image that provides good
results along edges and other detailed regions; however, for
some cases, the above method results in the production of

Fig. 8 Cropped regions after deinterlacing: (a) original, (b) ELA, (c) GGD, (d) LCIM, (e) MLSM, and (f) the
proposed method.

Fig. 9 Cropped regions after deinterlacing: (a) original, (b) ELA, (c) GGD, (d) LCIM, (e) MLSM, and (f) the
proposed method.

Optical Engineering 103108-6 October 2015 • Vol. 54(10)

Khan and Lee: Efficient deinterlacing method using simple edge slope tracing



unwanted artifacts in the form of a single or pair of pixels in
some regions. For removal of such remaining artifacts, a 1 ×
3 pixel window is moved across I at every interpolated loca-
tion, ði; jÞ, and all three pixel intensities, Iði; j − 1Þ, Iði; jÞ,
and Iði; jþ 1Þ, are compared with ILAði; jÞ. To remove the
uncertainty, an intensity that is closer to ILAði; jÞ is used to
the replace the intensity value of I at location ði; jÞ to obtain
the final interpolated image.

4 Performance Evaluation
The performance of the proposed algorithm is evaluated by
applying ELA, GGD, LCIM, MLSM, and the proposed
algorithm to 14 test images which is shown in Fig. 6. We
performed both subjective and objective tests to quantita-
tively compare the quality of the images created with differ-
ent methods and the related computational costs. MATLAB
2015a was used for collecting all results, and the tic and toc

Fig. 10 Cropped regions after deinterlacing: (a) original, (b) ELA, (c) GGD, (d) LCIM, (e) MLSM, and
(f) the proposed method.

Fig. 11 Cropped regions after deinterlacing: (a) original, (b) ELA, (c) GGD, (d) LCIM, (e) MLSM, and
(f) the proposed method.

Optical Engineering 103108-7 October 2015 • Vol. 54(10)

Khan and Lee: Efficient deinterlacing method using simple edge slope tracing



functions of MATLAB were used to calculate execution
time. The optimization levels of all implemented conven-
tional methods were the same.

Figure 6 shows test images selected for evaluation since
they represent varieties of patterns. The set of images in
Fig. 6 contains grayscale images, but the proposed algorithm
can also be applied to color images by either treating each
red, green, and blue channel of an RGB image individually
or by calculating the slopes for one channel and using the
same slopes for the other two channels to reduce execution
time.

For comparison of interpolation algorithms, subjective
evaluation is very important, because the efficiency of
an interpolation algorithm can be analyzed by observing
edges and other details. Figures 7–11 show some cropped
regions of test images subjected to deinterlacing. The ELA,
LCIM, and MLSM methods failed to restore edges distorted
due to downscaling of the original images, thereby produc-
ing jagged edges. ELA and LCIM failed to restore most of
the smooth edge patterns, since they were designed to be best
for vertical and diagonal edges. However, GGD recovered
many cases of smooth edges because it used gradient predic-
tion. GGD showed a similar performance to the proposed
method, preserving edges in the presence of minor jagging
as can be seen in Figs. 7–11. The proposed algorithm effi-
ciently restores any edges, including thin lines, compared to
other algorithms. For all cases, the proposed algorithm more
efficiently restored details and edges compared to all other
algorithms.

A video sequence of a fast-moving roller coaster was also
used for performance evaluation. Figure 12(a) shows a
cropped region of an interlaced frame which includes dispar-
ities in two different fields. The ELA, GGD, LCIM, and
MLSM methods failed to restore some thin or gentle edge

patterns, while the proposed algorithm recovered many
cases of edges, but produced a few artifacts as well.

Although an interpolation algorithm can be analyzed
mainly by using subjective evaluation, the peak signal to

Fig. 12 Cropped regions after deinterlacing: (a) original interlaced frame, (b) ELA, (c) GGD, (d) LCIM,
(e) MLSM, and (f) the proposed method.

Table 1 Comparison of the PSNR (dB) for different images.

ELA GGD LCIM MLSM Proposed

Airplane 31.74 31.73 31.99 30.30 32.38

Parrot 35.92 36.42 35.63 32.50 36.95

Windows 26.14 26.32 26.60 25.95 26.84

Flower 34.37 34.68 34.15 31.55 35.04

Bench 32.50 32.51 31.39 28.45 32.37

Pelican 30.89 31.22 31.18 30.23 31.46

Clock 34.93 35.43 32.39 27.67 36.10

Butterfly 31.26 31.66 31.15 28.04 32.14

Bug 35.69 35.78 33.73 29.47 36.42

Horse toy 33.47 33.67 33.37 31.11 34.09

Sunflower 37.05 37.16 37.58 34.91 38.00

Guitar 31.90 32.40 32.31 28.94 33.63

House 30.96 31.25 31.36 29.29 31.67

Pearls 32.47 32.29 31.52 28.20 32.97

Average 32.81 33.04 32.45 29.76 33.40

Optical Engineering 103108-8 October 2015 • Vol. 54(10)

Khan and Lee: Efficient deinterlacing method using simple edge slope tracing



noise ratio (PSNR), calculated as in Eq. (11), is also used for
objective comparisons with other methods.

EQ-TARGET;temp:intralink-;e011;63;398PSNR ¼ 10 log10

�
Max2

MSE

�
; (11)

where MSE is the mean square error.
Table 1 shows the average PSNR for 14 test images when

deinterlaced using ELA, GGD, LCIM, MLSM, and the pro-
posed method. The results show that proposed method pro-
vides the highest PSNR in all cases. An image deinterlaced
using the proposed method provides a PSNR that is higher
than that of the existing methods: more than 0.6 dB higher
than ELA, more than 1 dB higher than LCIM, more than
0.4 dB higher than GGD, and more than 3.4 dB higher

than MLSM. ELA, like other simple averaging methods, pro-
vides a high PSNR even though it fails in recovering details
and edges.

Table 2 shows a comparison of the execution times for all
six algorithms applied to 14 test images. The execution time
of ELA is the best among all algorithms since it requires few
comparators and additions. ELA is almost 2 times faster
than that of the proposed algorithm. The execution time
for the proposed algorithm is almost 13 times faster than
LCIM, which is the second most time-efficient method.
GGD and MLSM are very complex compared to the pro-
posed algorithm.

Figure 13 shows performance comparisons for 60 frames
of the roller coaster video when deinterlaced using ELA,
GGD, LCIM, MLSD, and the proposed method. The results
show that the proposed method provides the highest PSNR
for all frames as shown in Fig. 13(a). For a few frames, the
PSNR of GGD is close to that of the proposed algorithm;
however, for most cases, the PSNR of proposed method is
far better than all other algorithms. Elapsed CPU time com-
parison is also shown in Fig. 13(b). The execution time of the
proposed algorithm is close to ELA, but far better than that of
the other algorithms.

The reason the proposed algorithm is so simple is because
it is based only on additions and comparisons. The proposed
method using EST requires just two lines of memory, 18
additions, no multiplications, and nine comparators.

5 Conclusion
In this paper, an efficient edge-based deinterlacing method is
proposed. A technique called EST that predicts the present
slope on the basis of the information of previous slopes is
introduced and used for deinterlacing. The proposed deinter-
lacing offers high performance at very low complexity.
Moreover, to improve the accuracy of EST-based deinterlac-
ing, a slope resetting criteria, the application of two-way
EST-based deinterlacing, and compensation for thin lines
are also applied. Simulation results showed that restorations
of edges were clearer in the proposed algorithm compared to
most state-of-the-art conventional algorithms, whereas sim-
ple deinterlacing of an image without calculation of coeffi-
cients or the need for large correlation masks, unlike other
conventional algorithms, demonstrates the superiority of the
proposed algorithm on the basis of low complexity.

Fig. 13 Comparison for a video sequence: (a) PSNR and (b) elapsed CPU time.

Table 2 Comparison of complexity by elapsed CPU time (s).

ELA GGD LCIM MLSM Proposed

Airplane 0.034 3.387 0.809 2.081 0.093

Parrot 0.025 3.378 0.812 2.051 0.046

Windows 0.026 3.347 0.814 2.055 0.084

Flower 0.025 3.352 0.813 2.066 0.062

Bench 0.016 2.234 0.545 1.365 0.041

Pelican 0.019 2.204 0.549 1.389 0.056

Clock 0.017 2.260 0.545 1.357 0.032

Butterfly 0.017 2.233 0.537 1.334 0.043

Bug 0.016 2.231 0.554 1.348 0.038

Horse toy 0.017 2.238 0.551 1.352 0.036

Sunflower 0.017 2.226 0.538 1.349 0.031

Guitar 0.016 2.258 0.542 1.354 0.038

House 0.017 2.231 0.547 1.358 0.04

Pearls 0.017 2.245 0.559 1.357 0.041

Average 0.020 2.559 0.622 1.558 0.049

Optical Engineering 103108-9 October 2015 • Vol. 54(10)

Khan and Lee: Efficient deinterlacing method using simple edge slope tracing



References

1. F. Yao and S. Li, “Overview of scan format conversion for digital
video,” in Int. Conf. Artificial Intelligence, Management Science
and Electronic Commerce, pp. 4123–4126 (2011).

2. J. F. Stromeyer and S. Klein, “Spatial frequency channels in human
vision as asymmetric (edge) mechanisms,” Vision Res. 14(12),
1409–1420 (1974).

3. T. Doyle, “Interlaced to sequential conversion for EDTVapplications,”
in 2nd Int. Workshop Signal Proc. HDTV, pp. 412–430 (1998).

4. T. Chen, H. R. Wu, and Z. H. Yu, “Efficient deinterlacing algorithm
using edge-based line average interpolation,” Opt. Eng. 39(8), 2101–
2105 (2000).

5. P. Y. Chen and Y. H. Lai, “A low-complexity interpolation method for
deinterlacing,” IEICE Trans. Inf. Syst. E90-D(2), 606–608 (2007).

6. M. K. Kim and J. C. Jeong, “An efficient deinterlacing algorithm using
the new edge-directed interpolation,” J. Korean Soc. Broadcast Eng.
12(2), 185–192 (2007).

7. S. H. Keller, F. Lauze, and M. Nielsen, “Deinterlacing using varia-
tional methods,” IEEE Trans. Image Process. 17(11), 2015–2028
(2008).

8. S. Jin, W. Kim, and J. Jeong, “Fine directional de-interlacing algorithm
using modified Sobel operation,” IEEE Trans. Consum. Electron.
54(2), 857–862 (2008).

9. D. H. Lee, “A new edge-based intra-field interpolation method for
deinterlacing using locally adaptive-thresholded binary image,” IEEE
Trans. Consum. Electron. 54(1), 110–115 (2008).

10. S. Yang, D. Kim, and J. Jeong, “Fine edge-preserving deinterlacing
algorithm for progressive display,” IEEE Trans. Consum. Electron.
55(3), 1654–1662 (2009).

11. X. Chen, G. Jeon, and J. Jeong, “Filter switching interpolation method
for deinterlacing,” Opt. Eng. 51, 107402 (2012).

12. B. Jin, J. G. Kuk, and N. I. Cho, “A gradient guided deinterlacing
algorithm,” in Int. Conf. Image Processing, pp. 853–856 (2012).

13. D. H. Lee, “A simple, high performance edge-adaptive deinterlacing
algorithm with very low complexity,” in IEEE Int. Conf. Consumer
Electronics, pp. 636–637 (2012).

14. J. Wang, G. Jeon, and J. Jeong, “Efficient adaptive deinterlacing algo-
rithm with awareness of closeness and similarity,” Opt. Eng. 51(1),
017003 (2012).

15. J. Wang, G. Jeon, and J. Jeong, “Moving least-square method for inter-
laced to progressive scanning format conversion,” IEEE Trans.
Circuits Syst. Video Technol. 23(11), 1865–1872 (2013).

16. T. Fukinuki, “Television: past, present, and future,” Proc. IEEE 86(5),
998–1004 (1998).

Sajid Khan received his BS degree in telecom engineering from
FAST University Peshawar campus in 2011. He is currently pursuing
his PhD in the Department of Electronics and Communication
Engineering at the Hanyang University ERICA Campus. His current
research interests include image interpolation, edge detection, bio-
medical image processing, and image denoising.

Dongho Lee received his MS and PhD degrees in electrical and com-
puter engineering from the University of Texas at Austin in 1988 and
1991, respectively. From June 1991 to February 1994, he worked as
a senior engineer at LG Electronics involving the development
and implementation of DTV systems. Since 1994, he has been a
professor in the Department of Electronics and Communication
Engineering at the Hanyang University ERICA campus with research
interests including digital image processing and pattern recognition.

Optical Engineering 103108-10 October 2015 • Vol. 54(10)

Khan and Lee: Efficient deinterlacing method using simple edge slope tracing

http://dx.doi.org/10.1016/0042-6989(74)90016-9
http://dx.doi.org/10.1117/1.1305262
http://dx.doi.org/10.1093/ietisy/e90-d.2.606
http://dx.doi.org/10.5909/JBE.2007.12.2.185
http://dx.doi.org/10.1109/TIP.2008.2003394
http://dx.doi.org/10.1109/TCE.2008.4560171
http://dx.doi.org/10.1109/TCE.2008.4470032
http://dx.doi.org/10.1109/TCE.2008.4470032
http://dx.doi.org/10.1109/TCE.2009.5278039
http://dx.doi.org/10.1117/1.OE.51.10.107402
http://dx.doi.org/10.1117/1.OE.51.1.017003
http://dx.doi.org/10.1109/TCSVT.2013.2248286
http://dx.doi.org/10.1109/TCSVT.2013.2248286
http://dx.doi.org/10.1109/JPROC.1998.664284

