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1 Introduction
One of the most challenging problems is detecting dim tar-
gets in complex optical images. Here, the term “dim” means
low contrast. The classic method for determining the target’s
presence is to employ a spatially matched filter (MF) on the
zero-mean image of interest and to compare positive and
negative exceedances to a threshold. As expected, the filter
is designed for a specific target profile and a statistically
known background clutter. In digital imagery, the signal-
to-noise ratio (SNR) gain from this procedure is equal to
the number of independent samples composing the profile
of the target. Unfortunately, this may not be enough gain to
trigger the detection of a target while minimizing false detec-
tions if the target is dim.

Several researchers expanded the processing degrees of
freedom from just spatial processing to spatial and temporal
processing1–3 and spatial and hyperspectral processing.4–20

The goal here is to minimize the background clutter and
maximize the detectability of any targets in the imagery.
All of these papers exploited the classical theory of additive
signal detection where the two possible hypotheses are signal
(s)-plus-noise and noise alone. Schaum and Daniel recently
complained about the continued use of the additive model in
electro-optical image analysis because of its “phenomeno-
logical inaccuracy.”18 They advocated the use of the more
appropriate replacement target model. Their proposed solu-
tion was to apply continuum fusion methodology18–20 to
multispectral imagery, and they presented a detailed paper
on its application, with examples to validate their approach
to replacement model detection analysis.18 As pointed out by
Goudail in a private communication, other researchers have
been developing techniques for the replacement target model

for some time under the topic of pattern recognition with
nonoverlapping targets and background clutter.21 The over-
arching approach taken by all of these researchers was to
make it an estimation and detection problem rather than
trying to tackle the classical approach.20

The paper investigates resolved target detection hypoth-
esis testing using highly correlated two-color imagery to
obtain large signal processing gains to reduce clutter and
extract the target’s location if it is present. It extends the
classical approach development of Stotts and Hoff21 to
dual-band target detection. This approach assumes that the
target profile is contained in a fixed number of pixels
since many applications use detection as the first step to clas-
sification and identification of the target,22–31 namely, MF
detection (leakage of background clutter into edge pixels
reduces the maximum filter gain but usually not by a large
amount because of the potentially large number of pixels a
resolved image contains1–3). The reason for only looking at
two bands is that many previous research papers have found
that “additive noise” detector performances with real data are
lower as we spread the processing gain across many bands,
which will be discussed in the next section. This also should
be true for replacement model theories. This motivated the
author to focus on the dual spectral replacement problem
where the two bands are correlated enough to reduce the
background clutter noise down to the system noise level,
hopefully leaving some residual target signatures intact
after algorithmic processing. The resulting approach pro-
vided simple expressions for the test statistic and the prob-
abilities of false alarm and detection, unlike the normal
quadratic detector that requires very complicated computa-
tion of these last two entities, even using either Monte Carlo
simulations10,31 or numerical methods.32 Finally, this approach
reconfirms that the electrical SNR is related to the Weber
contrast33 and the normalized noise variance, as shown by
Stott and Hoff.21*Address all correspondence to: Larry B. Stotts, E-mail: lbstotts@gmail.com
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2 Background and Motivation for Two-Band Only
Optical Detection Strategy

In the majority of the optical target detection strategies in
multiband imagery, the solution involves the likelihood
ratio, and the required resolved/unresolved target and noise
intensity distributions obey multivariate Gaussian probabil-
ity density functions (PDFs) of the form

EQ-TARGET;temp:intralink-;e001;63;672H0: x ∼ Nðjn;RnÞ (1)

and

EQ-TARGET;temp:intralink-;e002;63;631H1: x ∼ Nðjn;RtÞ; (2)

where j̄n and Rn and j̄t and Rt represent the mean vector and
covariance matrices for hypotheses Hk, k ¼ 0; 1, respec-
tively. Depending on the problem addressed, j̄n and j̄t can
contain more than the background and target means, respec-
tively, and their covariance matrices Rn and Rt can have
correlated and uncorrelated data. At a minimum, we know
that both distributions will contain some sort of system
noise that depends on the optical sensor design.

In the general case where Rn ≠ Rt, the likelihood ratio is
given by

EQ-TARGET;temp:intralink-;e003;63;494ΛðxÞ¼ jRnj1∕2 exp½−ðx− jtÞTR−1
t ðx− jtÞ�

jRtj1∕2 exp½−ðx− jnÞTR−1
n ðx− jnÞ�

>Λ0;to chooseH1

≤Λ0;to chooseH0
:

(3)

Taking the logarithm and manipulating terms, we obtain the
following detection statistic:
EQ-TARGET;temp:intralink-;e004;63;413

y ¼ DðxÞ ¼ ðx − jnÞTR−1
n ðx − jnÞ

− ðx − jtÞTR−1
t ðx − jtÞ

> g0; to choose H1

≤ g0; to choose H0

; (4)

which compares the Mahalanobis distance of the spectrum
under test from the means of the background and target
PDFs.10 In the above, g0 is the resulting threshold after the
term adjustment. Equation (4) is known as the quadratic
detector.

Manolakis et al. noted that the variable y ¼ D is a random
variable whose probability density depends on which
hypothesis is true.10 If the two conditional probability den-
sities, fðqjH1Þ and fðqjH0Þ, are known, then the probabil-
ities of detection and false alarm are given by

EQ-TARGET;temp:intralink-;e005;63;244Qd ¼
Z∞

g0

fðqjH1Þdq; (5)

and

EQ-TARGET;temp:intralink-;e006;63;179Qfa ¼
Z∞

g0

fðqjH0Þdq: (6)

They also note that the computation of these two integrals is
quite complicated, and the receiver operating characteristic
(ROC) curves can only be evaluated, not so simply, by
using Monte Carlo simulation31 or numerical techniques.32

Another approach to the above is the Reed–Xiaoli
(RX) algorithm that provides a generalized likelihood ratio

test (GLRT) approach to finding targets in clutter.34–37,17

Specifically, it is a generalized hypothesis test formulated
by partitioning the received bands into two groups. In one
group, targets exhibit substantial coloring in their signatures
but either behave like gray bodies or emit negligible radiant
energy in the other group. Xu et al. developed the following
adaptive decision statistics:36

EQ-TARGET;temp:intralink-;e007;326;675gðJÞ ¼ ðbTsR−1JsÞ2
ðbTsR−1bsÞð1 − 1

N J
TR−1JsÞ ≥ g0; (7)

with

EQ-TARGET;temp:intralink-;e008;326;618g0 ¼ K∕
�
1

r0
− 1

�
(8)

[see Ref. 36]. In the above, the multispectral sensor is assumed
to create a set of J-pixel correlated measurement vectors
for the M band. The resulting M × K matrix is given by

EQ-TARGET;temp:intralink-;e009;326;545J ¼ ½jð1Þ; jð2Þ; : : : ; jðKÞ�; (9)

which represents K independent pixel observations from M
correlated image scenes taken from a local window size of
Lx × Ly ¼ K, where the clutter is considered stationary.
Their measurement vectors of spectral observations in each
pixel are given as

EQ-TARGET;temp:intralink-;e010;326;459jðkÞ ¼ ½j1ðkÞ; j2ðkÞ; : : : ; jMðkÞ�T; (10)

for fk ¼ 1; 2; : : : ; Kg. Their approach assumes a known
target signal to be characterized by two vectors:

EQ-TARGET;temp:intralink-;e011;326;405b ¼ ½b1; b2; : : : ; bM�T; (11)

and

EQ-TARGET;temp:intralink-;e012;326;363s ¼ ½s1; s2; : : : ; sK�T; (12)

where

EQ-TARGET;temp:intralink-;e013;326;325bs ¼ b∕kbk; (13)

and

EQ-TARGET;temp:intralink-;e014;326;288sTs ¼ ksk2 ¼ 1: (14)

Figures 1(a) and 1(b) show the probability of detection
versus generalized SNR for Qfa ¼ 10−5 for K ¼ 49 and
K ¼ 81, respectively, as a function of the number of bands
M. Figures 2(a) and 2(b) show the probability of detection
versus GSNR for Qfa ¼ 10−5 forM ¼ 2 andM ¼ 6, respec-
tively, as a function of pixel observations K. In these figures,
GSNR is the GSNR defined by the equation

EQ-TARGET;temp:intralink-;e015;326;185GSNR ≡ bTsR−1bsksk2: (15)

The constant false alarm rate (CFAR) probability of the detec-
tion curve for a perfect MF and Qfa ¼ 10−5 is included in
these two figures to better illustrate the effects of the numbers
of pixel observations and bands, K andM, on Qd.

36 It is clear
in Figs. 1 and 2 that for a given number of bandsM, the prob-
ability of a false alarm and the CFAR probability of detection
both improve as the number of pixel observations increases.
The limit is when K goes to infinity, which results in the
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perfect MF curves these two graphs.36 On the other hand, the
CFAR probability of detection for a fixed number of pixel
observations decreases if more bands are used to provide
the same GSNR. This is because the number of unknown
parameters in the covariance matrix R increases as M gets
larger.36

Hoff et al.6,7 extended to multiple bands the two-band
weighted difference (additive noise) hypothesis test devel-
oped by Stotts.2 Figures 3 and 4 show the output SNR of
their generalized weighted spectral difference detector
using thermal infrared multispectral scanner (TIMS) and spa-
tially modulated, imaging, Fourier transform interferometer
spectrometer (SMIFTS) image sets, respectively.6,7 The first
figure indicates that more than 20 dB gain was obtained for
detection by processing beyond one spectral band. There was
a significant gain of 16 dB in processing just two spectral
bands. Since the first two images processed are very highly

correlated, two-band processing appears to cancels most of
the image clutter. This figure shows that processing an addi-
tional spectral image will not reduce the clutter variance sig-
nificantly over that of the dual-band processing. (The curves
also indicate that the output SNR will gradually level off if
more target-reference bands are added.) The second figure
confirms these comments using a different dataset. Xu
et al.36 and Hallenborg et al.17 also applied a form of the
RX algorithm to TIMS data and found similar performance,
that is, most performance occurs in fewer bands with a small
increase in SNR with additional bands.

Results like these suggest that highly correlated, dual-
band images provide close to the maximum signal process-
ing gain possible. In the author’s opinion, adding target and
clutter bands gives marginal increased detector performance
given the increased computational and sensor design com-
plexity that is required. As we are interested in large signal

Fig. 1 CFAR probability of detection versus generalized signal-to-noise ratio (GSNR) for (a) K ¼ 49 and
(b) K ¼ 81, as a function of spectral bands M, as compared to that of a perfect matched filter (MF).

Fig. 2 CFAR probability of detection versus GSNR for (a) M ¼ 2 and (b) M ¼ 6, as a function of pixel
observations K , as compared to that of a perfect matched filter.
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processing gains with the least complexity, the remainder of
the paper will deal with the two-band optical detection
problem.

3 Dual-Band Resolved Target Detection Theory
Let us assume hypothesis H0 is where we have background
clutter plus system noise only in the two images and within
the N pixel template. The resulting vector is given by

EQ-TARGET;temp:intralink-;e016;326;752jn ¼
�
i1 − b1 − n1
i2 − b2 − n2

�
; (16)

where i1 and i2 are the image vectors; b1 and b2 are the cor-
related background clutter vectors (i.e., fixed background
structure from trees, grass, roads, etc.) at wavelengths λ1
and λ2, respectively, contained in images i1 and i2; and n1;
and n2 are the mean image vectors for the system noise
contained in images i1 and i2, respectively.

The covariance matrix for hypothesis H0 is given by

EQ-TARGET;temp:intralink-;e017;326;640Rn ¼ fjnjTng; (17)

EQ-TARGET;temp:intralink-;e018;326;607 ¼
�

σ21I p12I
p21I σ22I

�
; (18)

with

EQ-TARGET;temp:intralink-;e019;326;556σ2n ≡ statistical variance of image in under H0

¼ σ2b1 þ σ2sn ≈ σ2n1;
(19)

EQ-TARGET;temp:intralink-;e020;326;510σ2t ≡ statistical variance of image it under H0

¼ σ2b2 þ σ2sn ≈ σ2b2;
(20)

EQ-TARGET;temp:intralink-;sec3;326;463σ2t ≡ statistical variance of system noise

because one does not see a salt-and-pepper speckle of system
noise in good-quality imagery. In Eq. (18), we have

EQ-TARGET;temp:intralink-;e021;326;414p12 ¼ Efi1iT2g ¼ σb1σb2ρ ¼ p21: (21)

In this development, the image background clutter is
assumed to be correlated, and the system noise is assumed
to be uncorrelated.

The inverse matrix R−1
n can easily be shown to equal

EQ-TARGET;temp:intralink-;e022;326;338R−1
n ¼

�
σ2fI pI
pI σ2gI

�
; (22)

where

EQ-TARGET;temp:intralink-;e023;326;282σ2f ¼
1

σ2b1ð1 − ρ2Þ ; (23)

EQ-TARGET;temp:intralink-;e024;326;241σ2g ¼
1

σ2b2ð1 − ρ2Þ ; (24)

EQ-TARGET;temp:intralink-;e025;326;201p ¼ −ρ
σb1σb2ð1 − ρ2Þ ; (25)

and ρ is the correlation coefficient between the two images.
Similarly, we find for hypothesis H1 that its resulting

vector is given by

EQ-TARGET;temp:intralink-;e026;326;131jt ¼
�
i1 − s1 − n1
i2 − s2 − n2

�
; (26)

where s1 and s2 are the image vectors for our target pixels
sampled at wavelengths λ1 and λ2, respectively, contained in

Fig. 3 Incremental improvement in signal-to-noise ratio (SNR) pro-
vided by adding clutter and target reference bands collected by
thermal infrared multispectral scanner (TIMS).38

Fig. 4 The incremental improvement in SNR provided by adding
clutter and target reference bands collected by SMIFTS.38
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images i1 and i2. The covariance matrix for hypothesis H1 is
equal to

EQ-TARGET;temp:intralink-;e027;63;730Rt ¼ εfj1jT1g; (27)

EQ-TARGET;temp:intralink-;e028;63;698 ¼ σ2sn

�
I 0

0 I

�
: (28)

This implies that

EQ-TARGET;temp:intralink-;e029;63;647R−1
t ¼ σ−2sn

�
I 0

0 I

�
; (29)

where I and 0 are the N × N identity and null matrices,
respectively.

Let us remove the signal and system noise-mean image
vectors from both images. Then the resulting vector for
H0 becomes

EQ-TARGET;temp:intralink-;e030;63;552mn ¼
�
i1 − b1 þ s1
i2 − b2 þ s2

�
; (30)

EQ-TARGET;temp:intralink-;e031;63;506 ¼
�
i1 þ b1C1

i2 þ b2C2

�
; (31)

where

EQ-TARGET;temp:intralink-;e032;63;455Ck ¼
sk − bk
bk

; for k ¼ 1; 2 (32)

is the Weber contrast column vector for image m0.
The resulting vector for hypothesis H1 is given by

EQ-TARGET;temp:intralink-;e033;63;395mt ¼
�
i1
i2

�
; (33)

and its associated covariance matrix for m0 is still R−1
t .

Substituting into Eq. (4), we have
EQ-TARGET;temp:intralink-;e034;63;328

lnΛ¼ ln

�
p1ði2Þ
p0ði0Þ

�

¼ ln

�jRnj1∕2
jRtj1∕2

�
−σ−2sn ½ i1 i2 �

�
I 0

0 I

��
i1
i2

�

þ½ i1þb1C1 i2þb2C2 �
�
σ2fI pI

pI σ2gI

��
i1þb1C1

i2þb2C2

�
;

¼ ln

�jR0j1∕2
jR1j1∕2

�
−
�

σ23
σ2snσ

2
b1ð1−ρ2Þ

�
iT1 i1

−
�

σ24
σ2snσ

2
b2ð1−ρ2Þ

�
iT2 i2þ

ðiT1b1C1þbT1C
T
1 i1þbT1C

T
1b1C1Þ

σ2b1ð1−ρ2Þ

−ρ
ði2þb2C2ÞTði1þb1C1Þ

σb1σb2ð1−ρ2Þ −ρ
ði1þb1C1ÞTði2þb2C2Þ

σb1σb2ð1−ρ2Þ

þ ðiT2b2C2þbT2C
T
2 i2þbT2C

T
2b2C2Þ

σ2b2ð1−ρ2Þ
> ln Λ0; to chooseH1

≤ lnΛ0; to chooseH0

;

(34)

where

EQ-TARGET;temp:intralink-;e035;326;752σ23 ¼ σ2b1ð1 − ρ2Þ − σ2sn; (35)

and

EQ-TARGET;temp:intralink-;e036;326;718σ24 ¼ σ2b2ð1 − ρ2Þ − σ2sn: (36)

Rewriting Eq. (34), we have

EQ-TARGET;temp:intralink-;e037;326;680

g ¼
�
iT1 i1 þ

�
σ2b1
σ2b2

�
iT2 i2 þ ðiT1b1C1 þ bT1C

T
1 i1 þ bT1C

T
1b1C1Þ

− ρ

�
σb1
σb2

�
ðiT2 i1 þ iT2b1C1 þ bT2C

T
2 i1 þ bT2C

T
2b1C1Þ

− ρ

�
σb1
σb2

�
ðiT1 i2 þ iT1b2C2 þ bT1C

T
1 i2 þ bT1C

T
1b2C2Þ

þ
�
σ2b1
σ2b2

�
ðiT2b2C2 þ bT2C

T
2 i2

þ bT2C
T
2b2C2Þ

�
> g0; to choose H1

≤ g0; to choose H0

: (37)

Since we assume that σ2bið1 − ρ2Þ ≪ σ2sn for i ¼ 1; 2.
Here,

EQ-TARGET;temp:intralink-;e038;326;490g0 ¼ σ2b1ð1 − ρ2Þ
�
lnΛ0 − ln

�
p1ði2Þ
p0ði0Þ

��
: (38)

In Eq. (38), we adjust lnΛ0 to keep g0 nonzero for
correlation coefficients close to 1. This last assumption
σ2bið1 − ρ2Þ ≪ σ2sn says that the best weighted difference
noise reduction essentially is where we become system
noise–limited and the residual clutter is negligible. This
condition would be expected for the closely spaced
bands.39,4,6,7,17

If we further assume that ρ2 ≅ 1, with the appropriate
adjustments of ln Λ0 to keep g0 nonzero, then Eq. (37)
becomes

EQ-TARGET;temp:intralink-;e039;326;331

g ¼
�
iT1 i1 þ

�
σ2b1
σ2b2

�
iT2 i2 þ ðiT1b1C1 þ bT1C

T
1 i1 þ bT1C

T
1b1C1Þ

− ρ

�
σb1
σb2

�
ðiT2 i1 þ iT2b1C1 þ bT2C

T
2 i1 þ bT2C

T
2b1C1Þ

− ρ

�
σb1
σb2

�
ðiT1 i2 þ iT1b2C2 þ bT1C

T
1 i2 þ bT1C

T
1b2C2Þ

þ
�
σ2b1
σ2b2

�
ρ2ðiT2b2C2 þ bT2C

T
2 i2

þ bT2C
T
2b2C2Þ

�
> g0; to choose H1

≤ g0; to choose H0

(39)

EQ-TARGET;temp:intralink-;e040;326;161

¼
����
�
i1 − ρ

�
σb1
σb2

�
i2

�

þ
�
b1C1 − ρ

�
σb1
σb2

�
b2C2

�����
2 > g0; to choose H1

≤ g0; to choose H0

: (40)

Normalizing Eq. (40), we obtain the following test statistic:
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EQ-TARGET;temp:intralink-;e041;63;752

1

N

����
�
i1 − ρ

�
σb1
σb2

�
i2

�
þ
�
b1C1 − ρ

�
σb1
σb2

�
b2C2

�����
2 >
≤

G0

G0
:

(41)

The ½i1 − ρðσb1∕σb2Þi2� term in Eq. (41) is analogous to
the processing for the side-lobe canceller radar, that is, the
weighted-difference equation. 40,41 It can be shown that the
weight ρðσ1∕σ2Þ minimizes the difference-image variance in
a least-mean-square error sense.41

Equation (40) has the form of the equation
EQ-TARGET;temp:intralink-;e042;63;637

1

N

XN
n¼1

jxn þ Anj2; (42)

which implies that the PDF for our test statistics is the
(normalized) central chi-squared density functions with N
degrees of freedom of the form

EQ-TARGET;temp:intralink-;e043;63;560

fðνÞdν ≡ N
2

�
Nv
λ

�ðN−2Þ∕4
e½−ðλþNvÞ∕2�IN−2

2
ð

ffiffiffiffiffiffiffiffiffi
λNv

p
Þdv; (43)

EQ-TARGET;temp:intralink-;e044;63;516 ¼ fχðν;N; λÞdν; (44)

with

EQ-TARGET;temp:intralink-;e045;63;477ϑ ¼
XN
n¼1

A2
n∕σ2: (45)

In Ref. 21, the quantity ϑ ≥ 0 is called the noncentrality
parameter. Consequently, the probabilities of false alarm and
detection are given by

EQ-TARGET;temp:intralink-;e046;63;403Qfa ¼
Z∞

G0

fχðν;N; ϑ0Þdq; (46)

and

EQ-TARGET;temp:intralink-;e047;63;340Qd ¼
Z∞

G0

fχðν;N; ϑ1Þdq; (47)

respectively, where

EQ-TARGET;temp:intralink-;e048;63;283ϑ0 ¼
XN
n¼1

A2
nðH0Þ∕σ2T ¼

��b1C1 − ρ

σ1
σ2

�
b2C2

��2
σ2T

; (48)

EQ-TARGET;temp:intralink-;e049;63;239ϑ1 ¼ 4ϑ0; (49)

with

EQ-TARGET;temp:intralink-;e050;63;202σ2 ¼ σ21ð1 − ρ2Þ þ ασ2sn. (50)

The α ¼ ½1þ ρðσ1∕σ2Þ� multiplier on the system noise
variance in Eq. (50) comes from the increased variance pro-
duced by the weighted difference of the two images.

Following Ref. 21, we define the difference to be the con-
trast noise ratio (CNR), or

EQ-TARGET;temp:intralink-;e051;326;752

CNR ¼ ϑ1 − ϑ0

¼
4
���b1C1 − ρ


σb1
σb2

�
b2C2

��2
ðασ2snÞ

−

���b1C1 − ρ

σb1
σb2

�
b2C2

��2
½σ2b1ð1 − ρ2Þ þ ασ2sn�

≈
4
���b1C1 − ρ


σb1
σb2

�
b2C2

��2
½σ2b1ð1 − ρ2Þ þ ασ2sn�

−

���b1C1 − ρ

σb1
σb2

�
b2C2

��2
½σ2b1ð1 − ρ2Þ þ ασ2sn�

:

(51)

EQ-TARGET;temp:intralink-;e052;326;657 ¼
3
���hb1C1 − ρ

�
σb1
σb2

�
b2C2

i���2
½σ2b1ð1 − ρ2Þ þ ασ2sn�

: (52)

For constant contrast across the target areas, Eq. (52)
becomes

EQ-TARGET;temp:intralink-;e053;326;587CNR ¼
8<
:

NC2
1hðσ2b1ð1−ρ2Þþασ2t Þ

b2
1

i
9=
;
�
1 − ρ

�
σb1
σb2

��
b2C2

b1C1

��
2

:

(53)

Once again, we see that CNR depends on the Weber con-
trast squared, divided by the normalized variance, as found in
the single channel case.21 The ratio ðb2C2∕b1C1Þ is the color
ratio between the two images. The ½: : : �2 term in Eq. (53)
always is positive no matter what the value of the color
ratio is.

4 Theory Validations from Computer Simulation
Results

Let us now determine if our false alarm and detection prob-
abilities agree with computer simulation results. We begin by
validating the equation for the probability of a false alarm.
Specifically, we begin by creating two sets of correlated
8192 × 8192 Gaussian noise images with image correlation
ρ ¼ 0.9995 and image variances equal to σ2b1 ¼ 1.5 and
σ2b2 ¼ 1.0, respectively. We then add separate, independent
system noise with a zero mean and σ2sn ¼ 0.01 to each
image. For these numbers, the weighted difference variance
is equal to σ2WD ¼ σ2b1ð1 − ρ2Þ, which is about a factor of 7
less than σ2t . For this simulation, we set the signal levels for
the target in images 1 and 2 as 6 and 1, respectively, for all
values of index n. Similarly, we set the background mean
levels in images 1 and 2 as 2 and 1, respectively, for all values
of index n. This means the pixel contrasts in images 1 and
image 1 are 2 and 1, respectively. The next step was to proc-
ess the two 8192 × 8192 image sets using the formula in
Eq. (41) to create an estimated PDF for four MF sizes:
N ¼ 25, 49, 81, and 121. Figure 5 is one realization of
the PDF from the N ¼ 25 computer simulation. We next cal-
culated its cumulative probability distribution against certain
detection thresholds, then subtracted this result from unity so
we could compare these results to our equation for the prob-
ability of a false alarm. Referring to Fig. 5, the value of N ¼
25 appears to be large enough that the PDF approximates a
Gaussian PDF by the central limit theorem, which appears to
be also true for the other values of N employed. As a result,
we will use the Gaussian approximation of the noncentral
chi-squared distribution in the calculations to come. From
previous work,21 we know that the probability of a false
alarm for our problem may be approximated as
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EQ-TARGET;temp:intralink-;e054;63;539Qfa ≈
Z∞

G0

�
1ffiffiffiffiffiffiffiffiffiffi
2πs20

p
�
e−ðs−m0Þ2∕s20ds; (54)

with

EQ-TARGET;temp:intralink-;e055;63;480m0 ¼
σ2T ½ϑ0 þ N�

N
; (55)

EQ-TARGET;temp:intralink-;e056;63;431s20 ¼
σ4T ½4ϑ0 þ 2N�

N2
; (56)

EQ-TARGET;temp:intralink-;e057;63;392ϑ0 ¼
XN
n¼1

A2
nðH0Þ∕σ2T ¼

��b1C1 − ρ

σ1
σ2

�
b2C2

��2
σ2T

; (57)

and

EQ-TARGET;temp:intralink-;e058;63;335σ2T ¼ σ2b1ð1 − ρ2Þ þ ασ2sn; (58)

for large values of N. Figure 6 is a comparison of the com-
puter simulation results and the probability of a false alarm
using Eq. (54) as a function of the threshold for N ¼ 25, 49,
81, and 121 with image correlation ρ ¼ 0.9995. This figure
shows good agreement between theory and simulation, with
the approximation getting better for low probabilities of
a false alarm as N increases.

Similarly, we find that the probability of detection can be
approximated as

EQ-TARGET;temp:intralink-;e059;326;653Qd ≈
Z∞

G0

�
1ffiffiffiffiffiffiffiffiffiffi
2πs21

p
�
e−ðs−m1Þ2∕s21ds; (59)

with

EQ-TARGET;temp:intralink-;e060;326;585m1 ¼
σ2d½ϑ1 þ N�

N
; (60)

EQ-TARGET;temp:intralink-;e061;326;546s21 ¼
σ4d½ϑ1 þ 2 N�

N2
; (61)

EQ-TARGET;temp:intralink-;e062;326;507ϑ1 ¼ 4
XN
n¼1

A2
nðH0Þ∕σ2d; (62)

and

EQ-TARGET;temp:intralink-;e063;326;451σ2d ≈ ασ2sn; (63)

for large values of N. Figure 7 compares computer simula-
tion results with the probability of detection using Eq. (59) as
a function of the threshold for N ¼ 25, 49, 81, and 121. This
figure again shows good agreement between theory and sim-
ulation. The probability of detection depicts the same kind of
cross-over performance shown in the single-channel case
reported by Stotts and Hoff.21 As with the single-channel
case, the computer simulation results verify the fact that
this theory is valid when the weighted difference of the
two image contrasts is negative.

Fig. 5 Example PDF for N ¼ 25.

Fig. 6 Comparison of computer simulation results with probability of
false alarm, Eq. (54), for N ¼ 25, 49, 81, and 121.

Fig. 7 Comparison of computer simulation results with probability of
detection, Eq. (54), for N ¼ 25, 49, 81, and 121.
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5 Assumptions Sensitivity
Recall in the previous section that our test statistic develop-
ment required σ2bi ≫ σ2sn and σ2bið1 − ρ2Þ ≪ σ2sn for i ¼ 1; 2.
As noted earlier, the former assumption is not a constraint
because all good-quality images do not have any system
noise speckle evident. However, the second assumption is
not as clear. To assess the effect of this assumption, a set
of similar computer simulations as described above were per-
formed, but the value of N was kept fixed and the image
correlation coefficients were varied. Figures 8–10 shows a
comparison of computer simulation results and the probabil-
ity of a false alarm using Eq. (54) as a function of the thresh-
old for ρ ¼ 0.9995, 0.995, 0.9853, 0.9535, and 0.8771 for
N ¼ 25, 49, and 121, respectively. Table 1 shows a com-
parison between the weighted-difference variance and the
system noise variance for these values of image correlation
coefficients. Again, the Gaussian approximation agrees
with the data better as N increases. It is apparent from this
figure that we have good-to-reasonable agreement between

theory and simulation for image correlation coefficients of
ρ ¼ 0.9995, 0.995, and 0.9853. Referring to Table 1, this
means that the assumption appears good for weighted-differ-
ence variances on the order of the differenced system noise
variance level. The comparison for ρ ¼ 0.9535 appears to
be in good agreement for false alarm probabilities less
than 10−3 but degrades as the false alarm probability goes
to 10−4 and below and N is lower. Here, the weighted vari-
ance is over five (5) times the differenced system noise
variance. For ρ ¼ 0.8771, we find good agreement above
the 50% level, but the comparison becomes poor for low
false alarm probabilities and smaller values of N. This is
not too surprising since the weighted variance is almost
14 times the differenced system noise variance. In both of
these latter cases, our theory acts as a lower bound for the
false alarm probability. Let us now look at the detection
probability.

Figure 11 gives a comparison of the computer simulation
results and the probability of detection using Eq. (59) as
a function of the threshold for ρ ¼ 0.9995, 0.995, 0.9853,
0.9535, and 0.8771 for N ¼ 121. Similar plots are found
for N ¼ 15 and 49. In all cases, the comparison is good
for all values of image correlation. This is not too surprising
since we are always interested only in detection probabilities
above a few percent levels where the noise floor under
hypothesis 1 comprises the Gaussian system noise.

Fig. 8 Comparison of computer simulation results with probability of
false alarm, Eq. (52), for N ¼ 25 and ρ ¼ 0.9995, 0.995, 0.9853,
0.9535, and 0.8771.

Fig. 9 Comparison of computer simulation results with probability of
false alarm, Eq. (52), for N ¼ 49 and ρ ¼ 0.9995, 0.995, 0.9853,
0.9535, and 0.8771.

Fig. 10 Comparison of computer simulation results with probability of
false alarm, Eq. (52), for N ¼ 121 and ρ ¼ 0.9995, 0.995, 0.9853,
0.9535, and 0.8771.

Table 1 Comparison of weighted-difference and differenced system
noise variances for various image correlation coefficients.

Image correlation
coefficient

Weighted-difference
variance

Differenced system
noise variance

0.9995 0.001499625 0.025

0.995 0.0149625 0.025

0.9853 0.043775865 0.025

0.9535 0.136256625 0.025

0.8771 0.346043385 0.025
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Our conclusion from the above is that this hypothesis test
is good for those dual-band spectral image correlations
where the resulting weighted difference variance is on the
order of, or lower than, the differenced system noise vari-
ance. The correlation between images is still high but is
not necessarily required to be above 0.9. This suggests
that the test statistic is more robust than the approximation
suggests, but it should not be expected to detect targets well
when the correlation coefficient is low.

6 Application of Theory to Real Data
In this section, we will apply our theory to the TIMS dataset
used by other LRT researchers, recognizing that we will be
working with data containing coarsely resolved targets and
no system noise. Our intent is to illustrate the theory’s per-
formance under nonoptimal conditions.

The six-band thermal infrared multispectral scanner
(TIMS) data have been used by many researchers to validate

their additive-noise target detection algorithms over the
years.36,17 TIMS is an airborne sensor that covers six thermal
infrared spectral bands with center wavelengths of 8.35,
8.74, 9.12, 9.83, 10.69, and 11.6 μm. Because of its design,
the TIMS sensor does not have system noise. The TIMS
dataset that will be used here is from a 1985 night experiment
sensing terrain on the outskirts of Adelaide, Australia. These
recorded data were 256 × 256 images of rural terrain cover-
ing several main roads, narrow secondary roads, and some
structures. Pixel resolution was a nominal 8 m for this
data run. Hallenborg et al. reported that there was a high
band-to-band correlation among the various images in this
dataset, which they expected for graybody radiation from
natural terrain.17

Figures 12(a) and 12(b) show sample images from the
TIMS channel 1 (8.35 μm) and channel 2 (8.74 μm) data-
sets, respectively. Qualitatively, both images look the same
as expected. Figures 13(a) and 13(b) show the PDF histo-
grams for the channel 1 and 2 images, respectively. Clearly,
Figs. 12(a) and 12(b) show that sample images from the
histograms look Gaussian-like, but they also look slightly
different, and their tails are more populated than expected in
a Gaussian distribution. Fortunately, the images are highly
correlated. Figure 14 shows a scatterplot of these two
images, illustrating good correlation between the two data-
sets. The correlation coefficient between these two sets of
data is 0.9961. Similar PDFs, scatter plots, and correlations
can be derived from analysis of images from channels 3 and
4 and channels 5 and 6. Following Xu et al.,36 the images
were high-pass filtered to remove the low-frequency spatial
components using a 9 × 9 element blocking filter located at
the origin in the Fourier plane of both images. Locations of
the known targets set analyzed in this paper and in the afore-
mentioned papers are shown in Fig. 15.17

As noted by Xu et al.36 and Hallenborg et al.,17 there is a
large number of high-intensity points besides the chosen tar-
get set. These unresolved points can be traced to unresolved
buildings and roads at the test site, which are clearly seen in
Fig. 15. This figure depicts all pixel intensities greater than
three standard deviations of the difference image of channels

Fig. 11 Comparison of computer simulation results with probability
of detection, Eq. (59), for N ¼ 121 and ρ ¼ 0.9995, 0.995, 0.9853,
0.9535, and 0.8771.

Fig. 12 (a) Adelaide TIMS channel 1 (256 × 256) image and (b) Adelaide TIMS channel 2 (256 × 256)
image.
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1 and 2 (the total number of pixels is 214). These residual
structures essentially create a fixed pattern in all the TIMS
imagery that create false detections when processed with
anyone’s LRT; that is, they resemble many of the selected
targets identified in Fig. 15.

Let us now look at the CFAR performance of our detector
against three sets of TIMs image pairs, channels 1 and 2,
channels 3 and 4, and channels 5 and 6. In the previously
cited works, Xu et al.36 and Hallenborg et al.17 used a
spatial processing vector s created out of an 11 × 11 spatial
processing window (N ¼ 121) chosen for “reasonable detec-
tion loss” and “adaptability.”36 The center of the 11 × 11win-
dow contains a 5 × 5 target shape distribution extracted from
the image pixel area centered at (51,134), the location of
rural house A. The additional pixels in this 5 × 5 profile con-
tain intensities generated by terrain adjacent to the house.
The additional pixels outside the shape profile, but within
the 11 × 11 window, were set to zero. In this analysis, we
will only use the exact number of pixels that comprise a
selected target; specifically, we will use the three pixel con-
trasts containing the rural house A, which are located at (51,
133), (52,133), and (51,134), respectively, in all the images.
One can call the target quasiresolved, which is not the
theory’s basic assumption. That said, the results below sug-
gest that the theory may be useful in that situation as well. In
addition, in all the original spectral images, rural house A
essentially has intensity values close to those of the clutter
levels and does not stand out, that is, it is a low-contrast tar-
get. The parameters needed in the test statistic are computed
using the entire image; the final test statistic output param-
eters were derived from a smaller portion of the image away
from the three-sigma points, namely, in an area defined by
points ðx; yÞ ¼ ð1;1Þ to ðx; yÞ ¼ ð1;51Þ to ðx; yÞ ¼ ð100;51Þ
to ðx; yÞ ¼ ð100;1Þ.

Figure 17 shows all the detected points from processing
channel 1 and 2 imagery using Eq. (41) and a CFAR level of
10−14. The CFAR threshold was derived from Eq. (47). Of
the eight possible targets shown in Fig. 15, the statistical test
was only able to detect four of them, which included rural
house A, our selected target. The rest of the points in this
image are false detections. Comparing this figure to Fig. 16,
the test was able to eliminate a large number of the possible
false detection points, but not to the level the previous

Fig. 13 (a) Histogram of Adelaide TIMS channel 1 image and (b) histogram of Adelaide TIMS channel 2.

Fig. 14 Scatter plot of Adelaide TIMS channel 1 and Adelaide TIMS
channel 2 intensity data.

Fig. 15 Locations of the selected targets in the Adelaide TIMS
images.

Optical Engineering 103109-10 October 2015 • Vol. 54(10)

Stotts: Resolved target detection in clutter using correlated, dual-band imagery



researchers did. They detected seven potential targets, of
which five were “true detections of similar structures when
compared to ordinary satellite imagery.”17 That is a 71%
success rate. Figure 17 shows many more, many of them
clumped together. However, given the large difference
between the sizes of the processing window, this result is
not too bad.

Figure 18 depicts all the detected points from processing
channel 3 and 5 imagery at a CFAR level of 10−14. Of the
eight possible targets, the statistical test was only able to
detect three of them, again including rural house A.
However, there is a large number of false target detections.
Obviously, channels 3 and 4 were not a good choice for dis-
criminating the real target from the residual building and
road clutter.

Figure 19 shows all the detected points from processing
channel 5 and 6 images at a CFAR level of 10−14. Of the
eight possible targets, the statistical test detected four, which

again included rural house A. Comparing this figure to
Fig. 16, the test was able to eliminate most of the possible
false detections, showing results more on the line that Xu
et al.36 and Hallenborg et al.17 for channel 1 and 2 processing
with their algorithms. This suggests that with the right
selection of targets and two associated spectral bands, the
test could provide good target detectability and false alarm
rejection.

Table 2 compares the measured weighted-difference
and test statistic variances derived from the test statistic
processing of the three TIMS channel sets. Clearly, the cor-
relation coefficient is very high between the channel sets, as
noted earlier. The weighted-difference standard deviations
agree very well, providing clutter reduction similar to that
in side-lobe canceler applications. Unfortunately, the test
statistic standard deviations are reasonably close but not
in agreement as in the theoretical calculation. The author
believes this is because the standard deviation approximation

Fig. 16 False target map comprised unresolved buildings and roads
in Adelaide TIM imagery.

Fig. 17 Detections from processing channel 1 and 2 imagery using
Eq. (41) and CFAR level of 10−14.

Fig. 18 Detections from processing channel 3 and 4 imagery using
Eq. (41) and CFAR level of 10−14.

Fig. 19 Detections from processing channel 5 and 6 imagery using
Eq. (41) and CFAR level of 10−14.
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for the noncentral chi-squared PDF usually requires a large
N to achieve a Gaussian approximation under the central
limit theorem. In addition, the presence of the fixed residual
pattern and lack of system noise probably contribute to the
differences as well. Table 3 shows the improvement by the
test statistic processing relative to the original image, which
is above 18 dB in all cases. This table suggests a significant
improvement in target detectability from the proposed test
statistic. Although the data did not meet all the theory’s
assumptions, the demonstrated performance in the above
figures and tables is encouraging and offers a potentially
important tool for processing dual-channel, resolved target
imagery with reasonable complexity and effectiveness.
More validation of this test statistic is certainly warranted
if appropriate datasets can be found.

7 Summary
This paper developed a log-likelihood ratio test statistic for
resolved target detection in dual-band imagery because pre-
vious work indicates that most of the processing gains come
from processing just two bands. Simple, closed-form equa-
tions for its closed-form probabilities of false alarm and
detection are provided. Computer simulation results vali-
dated the theory. A CFAR version of the theory is applied
to real, available multiband data with quasiresolved target
sets and fixed bandwidth noise. The results show very rea-
sonable performance in target detectability using three sets
of correlated dual-band images. Finally, the paper showed
that the resolved target detection problem depends on the
weighted difference between the dual-band target contrasts.
The theoretical development reaffirms that the SNR/CNR is
approximately that weighted difference squared, divided by
the normalized total image noise variance.
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