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Abstract. Numerous methods are available to measure the spatial frequency response (SFR) of an optical
system. A recent change to the ISO 12233 photography resolution standard includes a sinusoidal Siemens
star test target. We take the sinusoidal Siemens star proposed by the ISO 12233 standard, measure system
SFR, and perform an analysis of errors induced by incorrectly identifying the center of a test target. We show a
closed-form solution for the radial profile intensity measurement given an incorrectly determined center and
describe how this error reduces the measured SFR of the system. Using the closed-form solution, we propose
a two-step process by which test target centers are corrected and the measured SFR is restored to the nominal,
correctly centered values. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.54.7.074104]
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1 Introduction
Measuring the spatial frequency response (SFR) of an optical
system remains an intricate task, with several test method-
ologies available to the optical scientist and engineer, includ-
ing slanted edge tests and measurements from known noise
targets. Modifications to the ISO 12233 photography reso-
lution standard1 in February, 2014, now include a sinusoidal
Siemens star as an approved test target. Work has been con-
ducted to compare the results of the sinusoidal Siemens star
measurement to other techniques, such as edge-spread func-
tion measurements,2,3 and the Siemens star target has been
implemented as a useful test methodology in numerous
applications for SFR measurements.4–11 However, to the
authors’ knowledge, no error analysis of the SFR processing
methods for imagery of a sinusoidal Siemens star has been
conducted.

A piece of the total error analysis for this process has been
conducted by investigating the errors due to inaccurate center
identification, and several findings are presented. The math-
ematical function for the measured intensity of a sinusoidal
Siemens star target with an incorrectly determined center
location is derived and shown to cause effective changes to
the sampled spatial frequency of the sinusoidal Siemens star
target. Small pixel shifts in the center location are shown to
induce significant degradation in the measured SFR com-
pared to the nominal, correctly centered measurements.
Mitigation of the errors introduced by incorrectly determined
centers through increasing angular segmentation of the star
target is discussed, and it is shown that imagers with a better
resolution performance (i.e., higher SFR) suffer more from
incorrectly determined centers than an equivalent system
with a worse performance. Finally, the use of a two-step
process whereby centers are coarsely found then corrected
with the closed-form definition is demonstrated with a
Monte-Carlo simulation. Postcorrected SFR measurements
are shown to produce results consistent with correctly

centered targets for both simulated imagery and real images
from a digital camera.

This document begins by discussing the generalized proc-
ess for measuring the SFR of an optical system from the
image of a sinusoidal Siemens star target. A mathematical
analysis of measured intensity values given a sinusoidal
Siemens star target with an incorrectly determined center
is then discussed. The effects from sampling and optical
aberration are introduced and compared to the mathematical
results. Target segmentation and its effect on measured SFR
are then examined. The mitigation of incorrectly found
centers is then detailed using the derived mathematical def-
inition. Finally, the results are summarized and future areas
of investigation are proposed.

2 Siemens Stars and Spatial Frequency Response
Measurements

A sinusoidal Siemens star is comprised of sinusoidal oscil-
lations in a polar coordinate system such that the spatial
frequency varies for concentric circles of different sizes.
This pattern, displayed in Fig. 1, is defined as

IðθÞ ¼ aþ b sinðωθ − ϕÞ; (1)

where the intensity I is described by a sinusoidal function of
the polar angle θ. In addition, constants a, b, ω, and ϕ re-
present the mean intensity value, the amplitude of the inten-
sity oscillations, the integer number of cycles within the
complete 2π radians of the star, and a potential phase offset
(ϕ ¼ 0 for all examples in this document), respectively. Note
that in Eq. (1), the intensity is not a function of the radius r.
However, the spatial frequency, ξ, is inversely proportional to
the radius via the equation

ξ ¼ ω

2πr
:

Given that ω is constant for a single star, the spatial fre-
quency of a concentric sampled circle increases as the radius*Address all correspondence to: Gabriel C. Birch, E-mail: gcbirch@sandia.gov
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of that circle decreases, thereby allowing for a wide spectrum
of spatial frequencies between the minimum and maximum
radii of the star.

Contrary to this ideal definition, an actual captured image
of the sinusoidal Siemens star is influenced by many real-
world factors that affect the intensity of the image, especially
as a function of spatial frequency. A few of these influential
factors include a nonideal performance due to optical aberra-
tion, sampling effects, and image postprocessing. Therefore,
the actual image response for various spatial frequencies is
desired. This is accomplished by an SFR measurement
which determines image contrast across a range of radii
within the imaged Siemens star.

The process by which images of a sinusoidal Siemens star
are captured by a camera and SFR data is extracted has been
discussed in the literature.3,12 This process generally requires
the steps that follow. First, an image is captured by the im-
aging system under test and regions of interest are identified
within the image (i.e., target locations, fiducial markers, and
so on). Once a Siemens star target has been identified and
linearization of the intensity values has been performed,
circular pixel profiles are extracted for a range of radii.
This circular sampling of a rectangular pixel grid follows
the “nearest” pixel value recommendation of the ISO
12233 standard, which essentially states that any pixel
that the true circular profile passes through is included in
the sampled profile. Hence, no interpolation is performed
and only true pixel samples are used to evaluate the SFR.
Each extracted profile is fit to the known sinusoidal function,
and the contrast level is determined based on the known spa-
tial frequency of the test target. This process is repeated for
varying radii such that image contrast is measured as a func-
tion of spatial frequency. Division of the sinusoidal Siemens
star target into angular wedges is often performed, typically
called target segmentation. The purpose of segmentation is
stated by the ISO document to mitigate local distortion
within the region of the test chart. Segmentation also enables
analysis of SFR at different angular directions (i.e., horizon-
tal SFR versus vertical SFR), which can be a desirable analy-
sis for certain applications. The ISO 12233 standard states
the 8 segments are typically used, but this value is ultimately
chosen by the user.

Because this investigation focuses on the fundamental
errors associated with the analysis of an imaged sinusoidal
Siemens star target, complicating factors are at first removed

and later reintroduced. Initial analysis is done solely in the
mathematics domain, using a mathematically defined sinus-
oidal Siemens target and extracting the entire radial profile
for contrast determination (i.e., a single segment is used).
Images of mathematically generated sinusoidal Siemens
star targets are then examined, and the effects of image sam-
pling and optical aberration are added to the analysis. The
purpose of target segmentation is analyzed further and the
optimal segment number is calculated. Finally, the use of
a two-step process to correct for an incorrect center is dem-
onstrated on both mathematically generated sinusoidal
Siemens star targets, and an image from a digital camera.

3 Errors from Offset Center
In the ideal scenario, the center location of the Siemens star
is determined and the image is sampled about the correct
center. This ensures that each arc of constant radius is
described by a single spatial frequency. However, accurately
calculating the center coordinates of the star can be difficult,
especially in the presence of image distortion or for a low-
resolution image. Any center-finding algorithm is expected
to perform with some error, and the extracted profiles from a
sinusoidal Siemens star target with an incorrectly determined
center will not exhibit pure sinusoidal oscillations. In this
section we first show the mathematically derived closed-
form solution for measured intensity given a sinusoidal
Siemens star and an offset center. Next, we show how this
offset center affects the SFR measurement. The importance
of target segmentation is then discussed. Finally, use of the
closed-form solution to correct for offset centers is proposed
and demonstrated.

3.1 Mathematics of Incorrectly Centered Targets

The perfect sinusoidal Siemens star with a center at r ¼ 0 is
described by Eq. (1), but the measured profiles are not the
same for an image with a misaligned center. The coordinate
systems for the true and offset centers are diagrammed in
Fig. 2.

To find the closed-form definition of the measured sinus-
oidal Siemens star with an arbitrary center offset, we begin
with the parametric equations of a circle centered around the

Fig. 1 Sinusoidal Siemens star target as defined by Eq. (1).

Fig. 2 Coordinate systems used to discuss correctly (blue) and incor-
rectly (red) determined centers for a sinusoidal Siemens star test tar-
get. In this diagram, Cx > 0 and Cy < 0.
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offset center in order to easily translate between the two polar
coordinate systems:

x ¼ Cx þ rm cos θm y ¼ Cy þ rm sin θm;

where rm is the radius referenced from the offset center, θm is
the polar angle, and Cx and Cy are the x and y center offsets
in the Cartesian coordinate system, respectively. Given the
parametric equations, the angle for an offset center circle
relative to the true center is given by

θ ¼ tan−1
�
y
x

�
¼ tan−1

�
Cy∕rm þ sin θm
Cx∕rm þ cos θm

�
: (2)

Figure 3 shows the relationship between the assumed
angle for no center offset (θm) and the actual angle (θ) due
to various offset centers. Because the polar angle is 2π peri-
odic, an offset center modulates θ with various degrees of
severity due to the magnitude of the offset.

The actual sampling angle in the case of an offset center
[Eq. (2)] is substituted into Eq. (1), yielding the equation for
the offset sinusoidal Siemens star

Iðrm;θmÞ¼ aþb sin

�
ω tan−1

�
Cy∕rmþ sin θm
Cx∕rmþ cos θm

�
−ϕ

�
: (3)

This equation reflects the impact of a constant offset
center on the extracted intensity values and the introduction
of a radial dependence that is due to the offset alone.
Therefore, any circular profile extracted from an image of
a sinusoidal Siemens star target with an incorrectly found
center will not yield a pure sinusoidal profile, but rather a
more complex sinusoidal profile modulated with an inverse
tangent component. Furthermore, the deviation from a pure
sinusoidal function increases nonlinearly as the radius of the
extracted profile decreases, as shown in Fig. 3. Restated, this
effect is much stronger at high-spatial frequencies than at
low-spatial frequencies.

Because of the modulation in the θ, the effective angular
frequency, denoted as ωm, for a circular profile extracted for
an offset center also exhibits a one cycle modulation. The
effective angular frequency of Eq. (3) is calculated as

ωm ¼ ∂ðωθ − ϕÞ
∂θm

¼ ω
Cxrm cos θm þ Cyrm sin θm þ r2m

ðCx þ rm cos θmÞ2 þ ðCy þ rm sin θmÞ2
: (4)

To aid in understanding the implications of Eqs. (3) and
(4), an example circular profile taken about the true center is
compared to an equivalent profile taken about an offset
center in Fig. 4. Figure 4(a) shows a 10 cycle sinusoidal
Siemens star target, with a blue dot showing the correct
center of the target (Cx ¼ Cy ¼ 0) and a red dot showing an
offset center in the π∕4 direction (Cx∕rm ¼ Cy∕rm ¼ 0.1).
The intensity patterns extracted in the polar coordinate sys-
tem by the correct (blue) and offset (red) centered circles are
shown in Fig. 4(b), where phase misalignment of the profile
from the offset center appears to be greatest at the angles
orthogonal to the offset angle of π∕4. This misalignment is
also apparent in Fig. 4(c), where the extracted profiles
are more clearly shown as a function of θm. Figure 4(d)

Fig. 3 The relationship between θ and θm as a function of Cx∕rm off-
sets. Note that increasing the offset or decreasing the sampled radius
will increase the difference between θ and θm.

(a) (b)

(c)

(d)

(e)

Fig. 4 (a) A Sinusoidal Siemens star with ω ¼ 10 cycles and two cir-
cular outlines. The blue circle is correctly centered with Cx ¼ 0 and
Cy ¼ 0, and the red circle represents data shifted from the true center
by Cx∕rm ¼ 0.1 and Cy∕rm ¼ 0.1. The blue and red dots represent
the centers of the blue and red circles. (b) A polar coordinate repre-
sentation of the extracted circular profiles for true (blue) and offset
(red) centers. (c) Extracted circular profiles from the correctly (blue)
and incorrectly (red) centered sinusoidal Siemens star. (d) The error
in the polar angle induced by the offset center. (e) The change in
the angular frequency (number of target cycles) induced by the offset
center.
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highlights this error in the polar angle, showing θm versus
the difference of θm and θ.

Supporting the initial observation of profile misalign-
ment, the phase angle error for this offset center is near
zero in the angles aligned with and opposed to the offset
direction, and the largest absolute error is near the angles
orthogonal to the offset direction. Interestingly, the error
caused by the one cycle modulation of the phase angle
does not directly translate to the effective spatial frequency.
Figure 4(e) shows that ωe of the profile from the offset center
is most different from the true ω of the target in the directions
aligned with and opposed to the offset direction.

This difference in the frequency of the extracted profile
has significant implications when assuming a known angular
frequency for calculations of the image contrast at that
known frequency. While this effect may at first seem innocu-
ous, problems arise when fitting a pure sinusoidal function to
Eq. (3), a function with an effective frequency modulation.
The ISO 12233 standard recommends extracting a circular
profile from an image and performing a least squares fit
of the intensity signal with a sine function.

Figure 5 shows the best fit amplitude for a correctly cen-
tered, 72 cycle sinusoidal Siemens star for a range of spatial
frequencies (i.e., a range of radii), and the best fit amplitude
for an incorrectly centered target with a center offset of
ðCx; CyÞ ¼ ð1 px; 0 pxÞ. Significant degradation is possible
in this ideal case, with decreases in best fit amplitude at all
spatial frequencies, and the introduction of contrast inver-
sions at higher frequencies.

3.2 Simulated Images

To examine these effects in a more realistic setting, an 8-bit
image of a sinusoidal Siemens star was generated mathemati-
cally, convolved with a known point spread function (PSF) to
simulate an optical aberration, and SFR data was collected
by fitting different radial profiles with Eq. (1). A Dirac delta
function was chosen to further examine an optically perfect
simulated sinusoidal Siemens star, and a nearly diffraction
limited Cooke triplet PSF, simulated within Zemax optical
design software, was chosen to examine how offset centers
affect a realistic, optically degraded image.

The PSFs and sinusoidal Siemens stars convolved with
each PSF are shown in Fig. 6. The true center location of
each image is known in the generation of these images.
We again choose to fit data to the entire radial profile
(i.e., one segment is used for the analysis in this subsection).
This was chosen so that a comparison could be made
between the purely mathematical analysis of Sec. 3.1, and
the more realistic case of processing an image of a sinusoidal
Siemens star target.

Figure 7 shows best fit contrast (i.e., SFR) versus cycles
per pixel for the two PSFs shown in Fig. 6 and with
an increasing pixel offset value. Also shown is the area
under curve (AUC) for each pixel offset, normalized by the
zero-offset center AUC. Examining Fig. 7(a) for a pixel off-
set of 1 shows a curve that is nearly equivalent to the purely
mathematical analysis in Fig. 5, showing differences only
due to sampling of the simulated image. In Fig. 7(c), SFR
measurements from the Cooke triplet PSF show less degra-
dation for the same pixel offset compared to the Dirac PSF.
This is due to realistic optical systems typically yielding
low-contrast values at high frequencies, which effectively
attenuates the potential errors due to incorrect center loca-
tions. However, a single pixel shift reduces the AUC by
approximately 17% for the Cooke PSF example.

3.3 Error Mitigation Through Angular Segmentation

The ISO 12233 standard states an image of a sinusoidal
Siemens star target should be angularly divided into a
user defined number of segments, typically eight segments,
though 24 segments are mentioned later in the document.
Segmentation is stated as a technique derived to assist the
processing of distorted images without requiring modifica-
tions to the original image. However, angular segmentation

Fig. 5 Spatial frequency response (SFR) extracted from a least
squares best fit of Eq. (1) for a correctly centered sinusoidal
Siemens star, and an SFR measured for a center offset of ðCx ;Cy Þ ¼
ð1 px;0 pxÞ. The sinusoidal Siemens star target has ω ¼ 72 cycles,
and a ϕ ¼ 0.

Fig. 6 Discrete point spread functions (PSFs) of: (a) a delta function,
(b) a nearly diffraction limited Cooke triplet lens system, (c) and (d) the
sinusoidal Siemens star after convolution with the PSFs from (a) and
(b), respectively.
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can also serve the secondary purpose of minimizing errors in
the SFR associated with incorrectly determined centers.
Conceptually, an offset center can be thought of as generat-
ing a nonuniform modulation of the measured signal, as
defined by Eq. (3), similar to that of optical distortion. In
this subsection we investigate the effect of angular segmen-
tation of data on the normalized AUC given an image with an
offset center, and the minimum number of segments needed
to reach at least 95% of the nominal AUC.

An image of a 144-cycle sinusoidal Siemens star was ana-
lyzed by performing a least squares fit given an offset center
ranging from 1 to 10 pixels, in 1 pixel increments, and ana-
lyzing the sinusoidal Siemens star in angular segments rang-
ing from 1 to 72 segments. The best fit contrast was averaged
over all segments, integrated, and compared to the AUC from
the correctly determined center case. The AUC for the zero-
offset center is referred to as the nominal AUC. Figure 8
shows the results of this analysis given the previous two
PSFs convolved with images of a sinusoidal Siemens star in
Fig. 6.

Normalized AUC increases as more segments are used to
analyze a sinusoidal Siemens star image, regardless of the
level of aberration present in the optical system, and larger
offset centers require increased segmentation to reduce
errors. To achieve a 95% AUC measurement, the number
of segments needed scales approximately linearly with the
magnitude of the offset center error. The Dirac PSF con-
volved image requires more segments than the Cooke PSF

convolved image, but both have approximately linear rela-
tionships between the number of segments needed to attain
95% AUC and pixel offset. Higher quality optical systems
are more influenced by offset centers, as shown in the
Dirac PSF case, and require approximately 22 segments to
achieve 95% of the nominal AUC for a 3-pixel offset case.
The realistic optical aberration of the Cooke PSF convolved
image requires at least 10 segments to achieve 95% of the
AUC of the nominal case for a 3-pixel offset. Note that the
maximum shift, Cx ¼ 10, is only 2.22% of the largest radial
sample used to analyze this image.

Repeating the analysis above, but for a 72 cycle sinusoi-
dal Siemens star target, shows the Dirac PSF image requires
half the number of segments compared to the 144-cycle
sinusoidal Siemens star to achieve the same 95% nominal
AUC given a 3-pixel center offset. Using the Cooke PSF,
maintaining a 95% nominal AUC enables an approximate
15% reduction in the number of segments required compared
to the 144-cycle sinusoidal Siemens star. This analysis
appears to indicate that a more complex relationship exists
between required segments and target cycles.

Based on the assumption that the center of the sinusoidal
Siemens star target is found within 3 pixels, using 22 seg-
ments appears to minimize errors induced by incorrectly
determined centers. However, if an error of greater than
3 pixels is expected from the center finding algorithm, the
appropriate number of segments should be increased to
reduce error.

(a) (b)

(c) (d)

Fig. 7 (a) The measured contrast for a perfect (i.e., Dirac PSF convolved) sinusoidal Siemens star with
an increasing center offset error. (b) The AUC measured for (a) from each center offset error, normalized
to the correctly centered AUC value. (c) Measured contrast from a sinusoidal Siemens star convolved
with a realistic Cooke triplet point spread function. (d) The normalized AUC measured for each offset
error from (c).
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3.4 Mitigation Through Proper Location of
Target Center

Regardless of the level of aberration or number of segments
used in analysis, an accurate determination of the true center
reduces error. We propose a two-step method whereby an
initial coarse estimate is made of the center of the target,
a low-frequency single circular profile is extracted from
the image of the sinusoidal Siemens star, fit to Eq. (3),
and constants Cx and Cy are solved for and used to correct
the initial guess. A singular circular profile, as visualized in
Fig. 4(a), will exhibit a changing spatial frequency dependent
upon the magnitude of the center offset error. By extracting
this singular circular profile and fitting Eq. 3, the center offsets
can be measured.

A Monte-Carlo simulation using 10,000 iterations was
performed, where each iteration of the simulation generated
an incorrect pixel offset, chosen via Gaussian weighted ran-
dom number generation using ðσx; σyÞ ¼ ð2 px; 2 pxÞ.
Values were centered about the true center of the test target
(i.e., μ ¼ 0). The simulated image parameters used for
the Cooke triplet PSF analysis in Sec. 3.2 were reused.

Figure 9 shows the offset center locations in red and the cor-
rected center locations in blue after the two-step correction
has been applied. After correction, the mean center error is
0.026 pixels, with a standard deviation of 0.014 pixels.

The results from corrected center locations are compared to
the results without correction by computing the normalized
AUC as a function of pixel offset magnitude. Figure 10
shows these results given a single segment analysis and an
eight segment analysis, identified by the ISO 12233 standard
as the typical segmentation number. Using one segment fitting
and the two-step center estimating process, the maximum
relative error compared to the nominal AUC is 0.136%, and
the maximum deviation from the true SFR at any spatial fre-
quency is 0.37%. Similar results are seen when eight segments
are used, with the maximum relative error compared to the
nominal AUC being 0.026%, and the maximum deviation
from the true SFR at any spatial frequency being 0.39%.
These results clearly show the benefits of using a two-step
center finding method. An additional point to note is that
the number of segments can be reduced if confidence is sus-
tained in the accuracy of the center finding algorithm.

(a) (b)

(c) (d)

Fig. 8 (a) Normalized AUC versus segments for a Dirac PSF convolved target. (b) Segments needed to
maintain 95% nominal AUC for the Dirac PSF convolved target. (c) Normalized AUC versus segments
using the Cooke PSF convolved target. (d) Segments needed to maintain 95% nominal AUC using the
Cooke PSF convolved target. Test target images are the same used in the analysis discussed in Fig. 7,
and used a 144-cycle sinusoidal Siemens star target. These results show that a significant number of
segments must be used when the test target center is not correctly identified. Small shifts can yield large
decreases in AUC if the appropriate number of segments is not utilized in the SFR analysis.
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3.5 Analysis of a Real Image

The previous examples have utilized images created from the
mathematical definition of a sinusoidal Siemens star test
target, as shown in Eq. (1). A similar analysis is performed
using a real image of an ISO 12233:2014 compliant 144-
cycle sinusoidal Siemens star test target taken with a Cannon

EOS 5D Mark III digital camera. The image of the test target
used in this analysis is shown in Fig. 11(a). The center of the
test target is found via human analysis. An error of 10 pixels
in the x-direction is then added to the true center value, and
SFR is measured using 8 segments. Using the techniques
described in Sec. 3.4, the incorrect center is mitigated and

Fig. 9 Offset centers (subpixel) compared to the center of the target, defined as the origin, with red points
as the offsets from the Monte-Carlo simulation, and blue points the corrected offsets after applying a least
squares fit of Eq. (3) to a single circular profile. Pixels are represented by the grid, and a view of the center
pixel is shown on the right.

Fig. 10 Normalized AUC versus pixel offset magnitude. The red data shows normalized AUC using
a single center estimation step that contains some error and no center correction feedback process,
while the blue data shows the results from the proposed two-step center correction method.

(a) (b)

Fig. 11 (a) Real image taken of an ISO 12233:2014 compliant sinusoidal Siemens star target using a
digital camera. The blue x denotes the true center of the test target, as determined by human analysis.
The red circle and dot denote a user added error of 10 pixels in the x -direction. The green square and dot
represent the corrected center using the technique described in Sec. 3.4. (b) Measured SFR for
the nominal, correctly centered case (blue), offset center case (red), and corrected case (green). The
dashed line shows the SFR10 value. The red circle and dot, green square and dot, and blue x show the
SFR10 values for the offset center measurement, corrected center measurement, and nominal case,
respectively.
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the SFR is calculated for this corrected case. Figure 11(b)
shows the SFR for the nominal, uncorrected, and corrected
cases. Before correction, the AUC is 21% less than the nomi-
nal AUC, and the spatial frequency measured with 30%
contrast, called the SFR30, is 17.3% less than the nominal
SFR30. After correction, the AUC is 0.15% greater than the
nominal AUC, and the SFR30 value is 0.43% greater than
the nominal SFR30.

4 Summary and Future Work
Determining the center of a sinusoidal Siemens star test tar-
get image can have significant impact on the SFR extracted
from the image. We define an equation that produces the
sampled radial profile measured given an incorrectly cen-
tered sinusoidal Siemens star. Using this equation we show
that significant errors in SFR measurements can occur. Given
an image generated using the mathematical definition of a
sinusoidal Siemens star target and convolved with a realistic
optical PSF, even a single pixel shift and single segment
analysis can yield a 17% reduction in the measured AUC
compared to the correctly centered nominal AUC. The
importance of using enough segments is explored, and the
use of additional segments is shown to mitigate errors asso-
ciated with offset centers. The effect of segmentation, typi-
cally used as a method to minimize processing needed to
work with distorted images, can decrease the error in the cal-
culated SFR produced by an offset center. However, just a
few pixels offset in the center location require more than
eight segments, which is the number stated to be a typical
user-defined value by the ISO 12233 standard. A two-step
process is defined that first takes an initial coarse estimate
of the target center, then extracts a single circular profile in
order to calculate the location of the true center based on
Eq. (3). Monte-Carlo simulation results show that regardless
of the magnitude of the center offset, or of the numbers of
segments used, the two-step center correction process ena-
bles more precise calculation of the SFR compared to the
true, correctly centered measurement. Finally, the two-step
center correction process is demonstrated using an image of
a sinusoidal Siemens star target taken with a digital camera.

There are several areas that would benefit from further
investigation. A deeper relationship between the offset
center, cycles per target, and aberration content appears to
exist and merits further exploration. Furthermore, an error
analysis of techniques used to mitigate errors due to distor-
tion would be useful.

We conclude by stating that care must be taken when
identifying the center of a sinusoidal Siemens star. This

report shows that error will be intrinsically present in the
SFR results of this test if the center is not correctly identified.
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