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Abstract. To describe the elastic wave scattering, which
reflects the performance of propagation control materials,
the approximate directional cloaks of an elastic wave are
designed using the zero- and first-order approximation
coordinate transformation method. Because the conver-
gence features of fractional Fourier transform (FRFT) are
more acute and sensitive to the frequency change than
those of short time Fourier transform, the spatial signals
in the designed materials are transformed in the FRFT
domain. The spatial frequency changes of elastic waves
through inhomogeneous materials are quantitatively ana-
lyzed under several circumstances. The provided time-fre-
quency analysis method with FRFT can support the design
evaluation of the material parameters. © The Authors. Published
by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribu-
tion of the original publication, including its DOI. [DOI: 10.1117/1.OE.55.11
.110501]
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1 Introduction
The coordinate transformation method, proposed for electro-
magnetic waves controlling and manipulating metamaterials
by Leonhardt and Pendry et al., has been extended to elastic
waves in recent years.1–4 Due to zero- and first-order
approximation method itself and the impedance mismatch in
the materials, the scattering phenomena, which refers to the
frequency changes as waves pass through the media, is
caused in the material design of wave propagation control.5

Generally, the operating mechanism of elastic waves is more
complicated and difficult to control than electromagnetic
waves.3 Furthermore, according to the existing control
theory of wave propagation, some assumptions about the
characteristics of the material, such as the anisotropy of the
medium parameters, the continuity in the radial direction,
and lossless dielectric are necessary but difficult to imple-
ment in practice. It is common that scattering exists in
material designs of wave propagation control, including the

directional cloak design of elastic waves. To reduce the
scattering effects, many methods that simplify the sets of
medium parameters or lower the complexity of the parameters
are utilized.6–8 However, as a precondition, these scattering
phenomena should be described adequately and grasped
accurately, which, especially on the material boundary, only
relies on macroscopic observation of the time domain
waveform for qualitative conclusions without quantitative
analysis.9

In analyzing the dynamic behavior and characteristics of
the elastic media, the complexity and computational burden
can be reduced by the models of homogeneous materials,10,11

which are inhomogeneous in practice.12 The deformation
mechanisms of waves are complex in media, often elastic,
plastic, nonlinear, and anisotropic. Meanwhile, the resulting
models, based on material composition, structure, tempera-
ture, stress paths, history, and so on, are generally applied
under strict conditions.

Since scattering phenomena lead to spatial frequency
changes, the fractional Fourier transform (FRFT)13,14 is a
mathematically suitable tool to analyze scattering phenom-
ena in both time and frequency domains and even in more
complex scenarios of the propagation medium. Based on the
FRFT analysis of scattering phenomena, we established the
correspondence between the maximum matching order of
transformation and the scattering, and provided the basis
for assessing the material design of elastic wave propagation
control.

2 Directional Cloak Design of Elastic Waves
It is complex and difficult to give a completely accurate
description of the elastic waves’ control under normal con-
ditions. But in some applications, the first-order approximate
equations are sufficient. The governing equations of elasto-
dynamics are

EQ-TARGET;temp:intralink-;e001;326;366∇σ ¼ −ω2ρu; σ ¼ C∇u; (1)

where σ is the second-order stress tensor in a certain direc-
tion, ω is the frequency, ρ is the density, u is the displacement
vector, and C is the fourth-order elasticity tensor. Removing
the tensor item and then obtaining Navier’s equation about
the displacement of elastic wave control

EQ-TARGET;temp:intralink-;e002;326;284∇iðCijkl∇kulÞ ¼ −ω2ρijui: (2)

Its first-order approximation is written as (without sum-
mation)

EQ-TARGET;temp:intralink-;e003;326;233σij þ
1

2

∂σij
∂xi

dxi ¼ σji þ
1

2

∂σji
∂xj

dxj; i; j ¼ 1;2; 3; i ≠ j;

(3)

where dxi is the size of an element. As Eq. (3) is difficult to
solve, it can be simplified to

EQ-TARGET;temp:intralink-;e004;326;157σij ¼ σji: (4)

by zero-order approximation with symmetric elasticity tensor.
In fact, Eq. (4) is proper only for high-frequency waves or

slowly varying materials. That is, this approximation method
can be used to design corresponding materials, which also
results in scattering phenomena. The coordinate transforma-
tion method to design elastic wave propagation control*Address all correspondence to: Xiangyang Lu, E-mail: lu_xy2004@126.com
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devices is shown in Refs. 15 and 16. We provide the design
method of linear change materials as follows.

To ensure the materials change linearly in the design, we
use an undetermined coefficients method to solve the trans-
formation relationship, which is expressed as

EQ-TARGET;temp:intralink-;e005;63;573α ¼ axþ b: (5)

When the materials change from 1 toN multiples of trans-
formations, e.g., N ¼ 2, the equation

EQ-TARGET;temp:intralink-;e006;63;522

�
−2.5xþ b ¼ 1

2.5xþ b ¼ 2
(6)

can be obtained.
The factor of change materials can then be obtained by

solving this equation. The material parameters of elastic
waves vary in accordance with the above equations, and then
the corresponding linear change materials can be obtained by
the transformation method.

In linear change materials, the spatial frequency of an
elastic wave also varies linearly as it passes through the
medium. The simulation results about the signal propagation
with linear change media are shown in Fig. 1, where the

constant scaling factor λ ¼ 3 and the background media is
structural steel with material parameters E ¼ 200 Gpa,
υ ¼ 0.33, and ρ ¼ 7850 kg∕m3. The obstacle has material
parameters Eobs ¼ 10E, ρobs ¼ ρ∕10, and υobs ¼ υ.

3 Analysis of Fractional Fourier Transform and Its
Scattering Effects on Directional Cloaks

3.1 Fractional Fourier Transform

The scattering effect leads to the change of signal spatial fre-
quency in dielectric materials, i.e., instantaneous frequency
changes as the space varies. To analyze the nonstationary
signal spatial frequency change, we use the FRFT method,
a signal analysis tool with better convergence that is more
focused on energy than the Fourier transform.13 The
FRFT of a signal is defined by

EQ-TARGET;temp:intralink-;e007;326;452XpðuÞ ¼ fFp½xðtÞ�gðuÞ ¼
Z

∞

−∞
xðtÞ · Kpðt; uÞdt; (7)

where α ¼ pπ∕2 is the rotation angle, p is the fractional
order of transformation, and

EQ-TARGET;temp:intralink-;e008;63;355Kðt; uÞ ¼

8><
>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−j·cot α

2π

q
· exp

�
j · t

2þu2
2

· cot α − j · u · t csc α
�
; α ≠ nπ

δðt − uÞ; α ¼ 2nπ
δðtþ uÞ; α ¼ ð2nþ 1Þπ

(8)

is the transformation kernel.
This means that the signal xðtÞ is expanded into a set of

orthogonal basis of the transform kernel Kpðt; uÞ function
space. Then the u domain is the so-called fractional
Fourier domain. The FRFT degenerates to a classical Fourier
transform when p ¼ 1.

3.2 Estimation Performance Comparison between
Fractional Fourier Transform and Short Time
Fourier Transform

An example illustrates that the FRFT has better convergence
than the STFTwith the following general quintic polynomial
(the signal to match), as shown in Fig. 2
EQ-TARGET;temp:intralink-;e009;63;134

xðtÞ ¼ exp½j2π � ð100 � t5 þ 100 � t4 þ 160 � t3
þ 10 � t2 þ 30 � tÞ�: (9)

Figure 2(a) is the original polynomials to fit. Figures 2(b)
and 2(c) are the fitting results with STFT and FRFT,

respectively. As can be seen from the figures, FRFT has bet-
ter focused features and a better estimation performance
than STFT.

3.3 Fractional Fourier Analysis and Results

To transform the above spatial domain waveforms into the
fractional Fourier domain, substitute the signals acquired
from the materials into Eq. (7), and then get the spatial fre-
quency diagram, as shown in Fig. 3. The fractional order
change in the transformation is a search process to find the
greatest undulation in frequency. We use a method, the so-
called “first-rough and after-accurate scale,” to improve the
frequency accuracy: first, scan the whole rotation angle range
to find the rough maximum in the transform domain with a
big fractional order step, then search the accurate maximum
near the rough maximum with a small fractional order step.

Figure 3(d) shows the signal waveform of the elastic wave
propagation in the middle of the linear change materials. In
the scenario of linear design changes of 1 to 2 times and

Fig. 1 Displacement vector simulation in inhomogeneous materials. (a) Original waves without obstacle,
(b) waves without cloak, and (c) waves with the designed cloak.
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(b)

(c)

Fig. 3 Analysis of scattering effects on directional cloaks. Horizontal: (a) without obstacles, (b) with
obstacles but without cloaks, and (c) with both obstacles and cloaks. Vertical: (d) waveforms of inter-
mediate position in the designed inhomogeneous materials; (e) 3-D diagrams of FRFT signals in
(d) column, where x -label is the transformation angle, y -label is the original signal, and z-label is the
FRFT result; and (f) matching order of FRFT results.

Fig. 2 Fitting results of FRFT and STFT on a general quintic polynomial. (a) The original signal, (b) STFT
estimation, and (c) FRFT estimation.
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without obstacles, the spatial frequency of the elastic wave in
the middle of materials changed linearly.

It is found from the waveforms in the middle of linear
change elastic materials that the waveform is changed
linearly. The frequency modulation rate is changed from
37.2 Hz∕s [the basic waveform without obstacles as
shown in Figs. 3(d)–3(a)] to 3.1 Hz∕s [with the obstacle
in the materials as shown in Figs. 3(d)–3(b)], and is
improved to 58.2 Hz∕s with the designed obstacle and cloak
[Figs. 3(d)–3(c)]. The signal modulation frequency rate is
greatly changed when there is no cloak. And when the
cloak design is added, the signal is improved and is closer
to the original signal.

The three-dimensional (3-D) diagram of above signals
FRFT is shown in Fig. 3(e). When there are no obstacles in
the medium, the waveform is a linear frequency modulated
signal. When there is an obstacle, the frequency modulation
rate is changed. But after adding the cloak, it is better com-
pared with the design without cloaks.

Three cases of FRFT results with matching order are
shown in Fig. 3(f). This figure shows that it is smooth in
the spatial FRFT domain in the absence of obstacles
[Figs. 3(f)–3(a)], and new frequency components are
increased in the case of with obstacles [Figs. 3(f)–3(b)].
Nevertheless, the increased parts become focused with both
obstacle and cloak scenarios [Figs. 3(f)–3(c)].

From the above results, whether in spatial domain dia-
grams or in FRFT transform domain diagrams, it can be seen
that the signals are significantly improved after the cloak
is added.

4 Conclusion
Based on the method of the continuum theory, an elastic
wave approximation cloak can be designed to improve the
signals interrupted by obstacles. But scattering phenomena
occur in the propagation process. FRFT is a suitable tool
used in the signal processing with scattering variable param-
eters. FRFT clearly plays a very important role in the variable
parameters signal processing, as it can not only analyze the
change of signals and evaluate the design of material param-
eters, but also quantitatively illustrate the results of the trans-
formation, thus providing support for the evaluation of the
design methods. This paper studies the design of a simple

device and the theoretical analysis using the zero- and first-
order approximation method. In practical applications, it is
required to further consider the impact of material factors,
such as the size and shape effects on the scattering.
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