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Abstract. We present a block-matching and Wiener filtering approach to atmospheric turbulence mitigation for
long-range imaging of extended scenes. We evaluate the proposed method, along with some benchmark
methods, using simulated and real-image sequences. The simulated data are generated with a simulation
tool developed by one of the authors. These data provide objective truth and allow for quantitative error analysis.
The proposed turbulence mitigation method takes a sequence of short-exposure frames of a static scene and
outputs a single restored image. A block-matching registration algorithm is used to provide geometric correction
for each of the individual input frames. The registered frames are then averaged, and the average image is
processed with a Wiener filter to provide deconvolution. An important aspect of the proposed method lies in
how we model the degradation point spread function (PSF) for the purposes of Wiener filtering. We use a
parametric model that takes into account the level of geometric correction achieved during image registration.
This is unlike any method we are aware of in the literature. By matching the PSF to the level of registration in this
way, the Wiener filter is able to fully exploit the reduced blurring achieved by registration. We also describe
a method for estimating the atmospheric coherence diameter (or Fried parameter) from the estimated motion
vectors. We provide a detailed performance analysis that illustrates how the key tuning parameters impact sys-
tem performance. The proposed method is relatively simple computationally, yet it has excellent performance in
comparison with state-of-the-art benchmark methods in our study.© The Authors. Published by SPIE under a Creative Commons
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1 Introduction
When imaging at long ranges through the atmosphere, the
acquired images are highly susceptible to degradations
from atmospheric turbulence.1–3 Fluctuations in the index
of refraction along the optical path length, driven by temper-
ature and pressure variations, give rise to spatially and tem-
porally varying blur and warping. This is a well-researched
area with respect to astronomical imaging.3 In astronomical
imaging, with narrow fields of view, the degradation caused
by the atmosphere can usually be modeled as isoplanatic.
That is, the atmospheric effects are uniform across the
image. This gives rise to warping that is a global image
shift, and the blurring can be modeled with a spatially invari-
ant point spread function (PSF). Wide field-of-view imaging,
at long ranges through the atmosphere, generally leads to
anisoplanatic imaging conditions. Here, the atmospheric
PSF varies significantly across the field of view of the
imaging sensor.

Adaptive optics has proven to be effective in treating the
isoplanatic problem.4 However, for the anisoplanatic prob-
lem, mitigation methods are generally based on acquiring
and digitally processing a sequence of short-exposure (SE)

images.5 Short integration time means that warping during
integration is minimized, reducing a major source of blurring.
However, under anisoplanatic imaging conditions, there is
still temporally and spatially varying warping and blurring
to contend with. Note that with long-exposure (LE) images,
turbulence-induced image warping gets temporally inte-
grated. While this has the advantage of “averaging out”
the geometric warping, to reveal the correct scene geometry,
it also leads to high levels of blurring that may be difficult to
treat effectively with image restoration.

One important class of turbulence mitigation algorithms is
bispectral speckle imaging.6–16 This method seeks to recover
the ideal image in the Fourier domain, by estimating the
magnitude and phase spectrum separately. The magnitude
spectrum is obtained with an inverse filter, or pseudoinverse
filter, based on the LE optical transfer function (OTF). The
phase is estimated using properties of the bispectrum.7,9,10,16

Another class of turbulence mitigation algorithms uses
some form of dewarping, fusion, and then blind deconvolu-
tion.8,15–21 Other related methods can also be found in the
literature.22–28 With most of these methods, a motion-com-
pensated temporal average of video frames is computed
first. The motion compensation, prior to temporal averaging,
reduces the motion blurring that might otherwise be seen in
LE imaging. In the case of a static scene, the true geometry
can be revealed with a prototype image obtained with a
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sufficiently long temporal average (or LE). Input frames can
be registered to the prototype to provide turbulent motion
compensation. As we shall show, even global frame registra-
tion can be of benefit. Performing such registration with
a dynamic scene, containing moving objects, presents addi-
tional challenges.24,26,29 The current paper limits its scope to
static scenes. Fusion is often done next by simple temporal
averaging. This reduces noise and averages the spatially and
temporally varying speckle PSFs in the individual frames.
The result is an image that appears to be blurred with a spa-
tially invariant PSF (with less blurring than an LE PSF).
A blind image restoration process is then used to jointly
estimate the spatially invariant PSF and true image. Note
that using blind deconvolution has its challenges. First, it
can be very computationally demanding. Also, unless a sig-
nificant amount of a priori knowledge is incorporated, the
recovered PSF and image may not be accurate.30

Here, we present a block-matching and Wiener filtering
(BMWF) approach to atmospheric turbulence mitigation
for long-range imaging of extended scenes. We seek to lev-
erage the rich theoretical work on atmospheric turbulence to
aid in the design of a practical image restoration algorithm.
We evaluate the proposed method, along with some bench-
mark methods, using simulated and real-image sequences.
The simulated data are generated with a simulation tool
developed by one of the current authors.31 These data pro-
vide objective truth and allow for a quantitative error analy-
sis. The proposed turbulence mitigation method takes a
sequence of SE frames of a static scene and outputs a single
restored image. The images are globally registered to the
temporal average and then reaveraged. This forms our proto-
type with the approximately correct geometry. A block-
matching algorithm (BMA) is used to align the individual
input frames to the prototype. We discuss how atmospheric
statistics can help in setting the tuning parameters of the
BMA. The BMA method here also uses a prefilter on the
individual frames, so they better match the power spectrum
of the prototype image for improved registration. The BMA
registered frames are then averaged to generate a fused
image. The final step is deconvolving the fused image using
a Wiener filter.

An important aspect of the proposed method lies in how
we model the degradation PSF. We use a parametric model
that takes into account the level of geometric correction
achieved during image registration. This is unlike any
method we are aware of in the literature. By matching the
PSF to the level of registration in this way, the Wiener filter
is able to fully exploit the reduced blurring achieved by
registration. We also describe a method for estimating the
atmospheric coherence diameter (or Fried parameter) from
the same estimated motion vectors used for restoration.
We provide a detailed performance analysis that illustrates
how the key tuning parameters impact the BMWF system
performance. The proposed BMWF method is relatively
simple computationally, yet it has excellent performance in
comparison with state-of-the-art benchmark methods in our
study.

The remainder of this paper is organized as follows. In
Sec. 2, we present our observation model. This includes
key statistics and the OTF models. The proposed BMWF
turbulence mitigation approach is described in Sec. 3. The
efficacy of the BMWF turbulence mitigation, in comparison

with some benchmark methods, is demonstrated in Sec. 4.
Finally, we offer conclusions in Sec. 5.

2 Optical Turbulence Modeling

2.1 Atmospheric Turbulence Statistics

One of the most important statistics that can be derived from
the widely used Kolmogorov turbulence model is the atmos-
pheric coherence diameter (or Fried parameter).3,32 This is
given as

EQ-TARGET;temp:intralink-;e001;326;642r0 ¼
�
0.423

�
2π

λ

�
2
Z

z¼L

z¼0

C2
nðzÞ

�
z
L

�
5∕3

dz

�−3∕5
; (1)

where λ is the wavelength and C2
nðzÞ is the refractive index

structure parameter profile along the optical path. Note that
this expression is for spherical wave propagation, and z is the
distance from the source (i.e., z ¼ 0 at the source and z ¼ L
at the camera). As we will see, this parameter is central to
the PSF model needed for deconvolution.

Another very salient statistic is the tilt variance for a point
source. This is the angle of arrival variance of a point source
due to turbulence. An expression for the one-axis tilt vari-
ance, for the spherical wave case, is given as33

EQ-TARGET;temp:intralink-;e002;326;490σ2ϕ ¼ 2.91D−1∕3
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�
z
L

�
5∕3
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where D is the aperture diameter and σ2ϕ is measured in radi-
ans squared. Combining Eqs. (1) and (2) and converting
the tilt variance into a spatial distance on the focal plane,
we obtain the spatial-domain tilt standard deviation as

EQ-TARGET;temp:intralink-;e003;326;403σr ¼
:4175λl

r5∕60 D1∕6
; (3)

where l is the focal length and σr is measured in units of
distance.

2.2 Optical Transfer Functions

When imaging in atmospheric turbulence, the overall camera
OTF can be modeled to include the atmospheric OTF and
the diffraction OTF. This is given as

EQ-TARGET;temp:intralink-;e004;326;277HαðρÞ ¼ Hatm;αðρÞHdifðρÞ; (4)

where ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
and u and v are the spatial frequencies

in units of cycles per unit distance. The atmospheric OTF
model typically used is given as3
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The parameter α relates to the level of motion blur from tilt
variance. More will be said about this shortly. The diffrac-
tion-limited OTF for a circular exit pupil is given as34
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(6)
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where ρc ¼ 1∕ðλf∕#Þ is the optical cutoff frequency and
the f-number is f∕# ¼ l∕D. Let us define the LE transfer
function, which includes diffraction, as

EQ-TARGET;temp:intralink-;e007;63;719HLEðρÞ ¼ H0ðρÞ ¼ Hatm;0ðρÞHdifðρÞ: (7)

Similarly, the SE transfer function is given as

EQ-TARGET;temp:intralink-;e008;63;677HSEðρÞ ¼ H1ðρÞ ¼ Hatm;1ðρÞHdifðρÞ: (8)

The above equation is the fully tilt-compensated and time
averaged transfer function.3 An alternative SE OTF is given
by Charnotskii.35

With the two main transfer functions defined, we now
highlight a very interesting and important relationship
between them that comes from the original development
of Eq. (5). That is, it can be shown that

EQ-TARGET;temp:intralink-;e009;63;567Hatm;αðρÞ ¼ Hatm;1ðρÞGαðρÞ; (9)

where GαðρÞ is a Gaussian, given as

EQ-TARGET;temp:intralink-;e010;63;524GαðρÞ ¼ exp

�
−ð1 − αÞ3.44 ðλlÞ2

r5∕30 D1∕3
ρ2
�
: (10)

This means that atmospheric OTF from Eq. (5) can be
expressed as the SE OTF, multiplied by the Gaussian,
GαðρÞ, yielding
EQ-TARGET;temp:intralink-;e011;63;443HαðρÞ ¼ Hatm;1ðρÞGαðρÞHdifðρÞ ¼ HSEðρÞGαðρÞ: (11)

In the spatial domain, the functions are also circularly
symmetric, so we have

EQ-TARGET;temp:intralink-;e012;63;390hαðrÞ ¼ hSEðrÞ � gαðrÞ; (12)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and * is the convolution operator.

Based on the Fourier transform properties of a Gaussian,
the spatial-domain function resulting from the inverse
Fourier transform gαðrÞ ¼ FT−1½GαðρÞ� is also Gaussian.
This is given as

EQ-TARGET;temp:intralink-;e013;63;304gαðrÞ ¼
2σ2gðαÞ

π
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�
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where
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:4175λl
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2

: (14)

Comparing the above equation with the theoretical tilt stan-
dard deviation in Eq. (3), we see that

EQ-TARGET;temp:intralink-;e015;63;182σ2gðαÞ ¼ ð1 − αÞσ2r : (15)

Alternatively, the standard deviations can be expressed as

EQ-TARGET;temp:intralink-;e016;63;138σgðαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p
σr ¼ βσr; (16)

where β ¼ ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p
, or equivalently, α ¼ 1 − β2.

Thus, Eq. (12) shows that the parametric atmospheric
PSF, hαðrÞ, is the SE PSF convolved by a Gaussian motion
blur impulse response. When α ¼ 0 (or equivalently β ¼ 1),

the Gaussian motion blur standard deviation is the theoretical
tilt standard deviation in Eq. (3). That is, σgðαÞ ¼ σr, and
we get the LE PSF

EQ-TARGET;temp:intralink-;e017;326;719hLEðrÞ ¼ hSEðrÞ � g0ðrÞ: (17)
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Fig. 1 Overall system PSFs with different α for the optical system
parameters in Table 1 with (a) C2

n ¼ 0.25 × 10−15 m−2∕3 (r 0 ¼
0.1097 m) and (b) C2

n ¼ 1.00 × 10−15 m−2∕3 (r 0 ¼ 0.0478 m). Note
that as alpha increases, the PSF narrows.

Table 1 Optical parameters for simulated data.

Parameter Value

Aperture D ¼ 0.2034 m

Focal length l ¼ 1.2 m

f -number f∕# ¼ 5.9 m

Wavelength λ ¼ 0.525 μm

Spatial cutoff frequency ρc ¼ 322.8410 cyc∕mm

Object distance L ¼ 7 km

Nyquist pixel spacing (focal plane) δN ¼ 1.5488 μm
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In the frequency domain, we have

EQ-TARGET;temp:intralink-;e018;63;568HLEðρÞ ¼ HSEðρÞG0ðρÞ: (18)

When the motion blur standard deviation is zero (i.e., α ¼ 1
or equivalently β ¼ 0), Eq. (12) gives the SE PSF. For
0 < α < 1, Eq. (12) gives us the SE PSF convolved with
a Gaussian motion blur somewhere between full tilt com-
pensation and no tilt compensation. In the literature, it is

typically the LE OTF (α ¼ 0 or β ¼ 1) that is used for
image restoration. However, if some level of registration
is applied to the SE images (even if only global image regis-
tration), prior to fusion and deconvolution, we show that bet-
ter results can be achieved by tuning α to the level tilt motion
compensation. This gives us a powerful way to match the
deconvolution step with the tilt correction processing step.

Examples of atmospheric PSFs, hαðrÞ, from Eq. (12) are
shown in Fig. 1. The optical system parameters correspond-
ing to these plots are from the simulated data used in Sec. 4.
The specific parameters are listed in Table 1. Figure 1(a) is
for C2

n ¼ 0.25 × 10−15 m−2∕3 (r0 ¼ 0.1097 m) and Fig. 1(b)
is for C2

n ¼ 1.00 × 10−15 m−2∕3 (r0 ¼ 0.0478 m). Note how
the choice of α has a very significant impact on the width of
the PSF for both levels of turbulence. As α is reduced, the
Gaussian blurring component smoothes out and widens the
PSF. We seek to match the α (or equivalently β), used in our
PSF model, to the level of tilt correction provided by the
registration stage of processing.

2.3 Observation Model

Given the information in the preceding subsections, we are
now ready to define the model we use to relate observed SE
frames to a truth image. Note that the model is similar to that

e

Fig. 2 Proposed BMWF turbulence mitigation system block diagram.
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Fig. 3 Overall system OTFs with different α for the optical system parameters in Table 1 with
(a) C2

n ¼ 0.25 × 10−15 m−2∕3 (r 0 ¼ 0.1097 m) and (b) C2
n ¼ 1.00 × 10−15 m−2∕3 (r 0 ¼ 0.0478 m). The

system OTFs multiplied by the Wiener filter frequency responses with Γ ¼ 0.0002 are also shown to
illustrate the effective OTF with restoration. Note that as alpha increases, the OTF widens.
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described earlier by Fraser et al.17 The observed frames are
expressed in terms of a spatially varying blur operator and a
spatially varying geometric warping operator. In particular,
observed frame k is given as

EQ-TARGET;temp:intralink-;e019;63;708fkðx; yÞ ¼ s̃kðx; yÞfh̃kðx; yÞ½zðx; yÞ�g þ ηkðx; yÞ; (19)

where x, y are spatial coordinates, k is the temporal frame
index, zðx; yÞ is the ideal image, and ηkðx; yÞ is an additive
noise term. The geometric warping operator is defined such
that

EQ-TARGET;temp:intralink-;e020;63;632hs̃kðx; yÞ½zðx; yÞ�i ¼ g0ðx; yÞ � zðx; yÞ; (20)

where h·i represents a temporal ensemble mean operator. The
blurring operator is defined such that

EQ-TARGET;temp:intralink-;e021;63;579hh̃kðx; yÞ½zðx; yÞ�i ¼ hSEðx; yÞ � zðx; yÞ: (21)

Using this model, note that the ensemble mean of the
observed frames is given by

EQ-TARGET;temp:intralink-;e022;63;525hfkðx; yÞi ¼ g0ðx; yÞ � hSEðx; yÞ � zðx; yÞ
¼ hLEðx; yÞ � zðx; yÞ: (22)

Now, consider the case where perfect tilt correction is
applied to the SE frames. Let this tilt correction operator
be expressed as s̃−1k ðx; yÞ½·�. Applying this to Eq. (19) and
comparing this to Eq. (21), we get

EQ-TARGET;temp:intralink-;e023;63;435hs̃−1k ðx; yÞ½fkðx; yÞ�i ¼ hh̃kðx; yÞ½zðx; yÞ�i
¼ hSEðx; yÞ � zðx; yÞ: (23)

However, in practice, ideal tilt correction may not be pos-
sible. One reason for this is that BMA registration requires
a finite size block for matching and the actual tilt warping
varies continuously. Thus, any block-based estimate will
tend to underestimate the true tilt for a given point, by virtue
of the spatial averaging effect.36,37 Thus, we define a partial
tilt correction operator as s̃−1k;αðx; yÞ½·�. Applying this to the SE
frames, and applying an ensemble mean, yields

EQ-TARGET;temp:intralink-;e024;63;294fðx; yÞ ¼ hs̃−1k;αðx; yÞ½fkðx; yÞ�i
¼ gαðx; yÞ � hSEðx; yÞ � zðx; yÞ ¼ hαðx; yÞ � zðx; yÞ:

(24)

This result gives the rational for using hαðx; yÞ as the deg-
radation blur model for fully or partially tilt corrected
imagery. The value of α can be selected based on the
expected residual tilt variance after registration, σ2gðαÞ.
In this context, the variable α, defined by Eq. (15), can be
considered a registration tilt-variance reduction factor.
Equivalently, the variable β, defined by Eq. (16), can be con-
sidered a residual RMS tilt scaling factor.

3 Turbulence Mitigation Approach

3.1 Block-Matching and Wiener Filtering Turbulence
Mitigation

A block diagram representing the proposed BMWF turbu-
lence mitigation algorithm is provided in Fig. 2. The input

is a set of N SE frames fkðx; yÞ, for k ¼ 1; 2; : : : ; N. We
assume that these frames are sampled such that they are
free from aliasing. Treating turbulence and aliasing simulta-
neously has been explored in the literature25,26,38,39 but it is
not addressed here.

The input frames are buffered and averaged. Next, robust
global translational registration is used to align the N frames
to the average. A least-squares gradient-based registration
algorithm is used. This method is based on Lucas and
Kanade40 but includes the robust multiscale processing
described by Hardie et al.41,42 The frames are reaveraged
after this global alignment to produce the prototype image
with the desired geometry. This step also gives us the oppor-
tunity to compensate for any camera platform motion. For
ground-based systems, translations may be sufficient. For
airborne applications, affine registration at this stage may
be appropriate.41

Next, a BMA algorithm43 is used to estimate the local
motion vectors for each pixel within each frame. The images
are then interpolated, based on the motion vectors, to match
the geometry of the prototype. Note that there is a mismatch
between the level of blurring in the raw frames and the pro-
toype being matched. One of the features of our method is
that we prefilter the raw frames, using the Gaussian tilt blur,
g0.5ðx; yÞ from Eq. (13). Note that this is only done for
the purposes of BMA, and we revert to the raw frames
for subsequent processing.

As discussed in Sec. 2.3, the registration will not be ideal,
and the accuracy of the registration is quantified by the
parameter α (or equivalently β). The BMA registered frames
are then expressed as s̃−1k;αðx; yÞ½fkðx; yÞ�, as shown in Fig. 2.
Let us define the BMA block size as B × B pixels, and let the

Table 2 Simulation parameters used in generating simulated
frames.31

Parameter Value

Path length L ¼ 7 km

Propagation step Δz ¼ 700 m

Cropped screen samples N ¼ 256

Propagation screen width X ¼ 0.9699 m

Propagation sample spacing Δx ¼ 0.0038 m

Number of phase screens N ¼ 10 (9 nonzero)

Phase screen type Modified von Kármán
with subharmonics

Inner scale l0 ¼ 0.01 m

Outer scale L0 ¼ 300 m

Image size (object plane) 2.3218 × 2.3218 m

Image size (pixels) 257 × 257 pixels

Pixel skip 4 pixels (65 × 65 PSF array)

Input image dynamic range 256 digital units

Gaussian noise variance 4 digital units
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search window be S × S pixels in size (as defined by the posi-
tion of the block centers). We use an exhaustive search
within the search window, using the full rectangular blocks,
and employ the mean absolute difference metric. We present
results using a whole pixel search and subpixel search.
The subpixel results are obtained by upsampling the images
with bicubic interpolation. Because of its widespread use in

image compression, much work has been done regarding
performance analysis, speed enhancements, and hardware
implementations of BMA.43 We leverage that work by incor-
porating the BMA here. The key parameters for BMA are B
and S. If knowledge of the atmospheric coherence diameter,
r0, is available, we can predict the amount of motion using
Eq. (3). Exploiting this, we employ a search window that

Table 4 PSNR (dB) results using 200 frames of simulated data with ση ¼ 2.0.

C2
n × 1015 (m−2∕3)

Method 0.10 0.25 0.50 1.00 1.50

Raw frames 22.94 21.24 20.09 19.11 18.60

Average 24.10 22.44 21.18 20.04 19.44

Global registration + average 25.02 23.53 22.17 20.83 20.12

BMA + average 25.46 24.36 23.06 21.57 20.74

BMA (sub) + average 25.57 24.45 23.13 21.61 20.77

NDL image21 25.25 24.26 23.14 21.72 20.73

NRIR21 + average 25.24 24.11 22.76 21.13 20.22

Average + Wiener (optimized) 31.21 26.87 24.51 22.61 21.52

Average + Wiener (Γ ¼ 0.0002, β ¼ 1.0) 30.49 26.60 24.27 22.44 21.31

Global registration + average + Wiener (optimized) 33.94 30.76 27.68 24.94 23.55

Global registration + average + Wiener (Γ ¼ 0.0002, β ¼ 0.5) 33.82 30.76 27.66 24.92 23.53

BMA + average + Wiener (optimized) 34.25 32.96 31.33 28.41 25.98

BMA + average + Wiener (Γ ¼ 0.0002, β ¼ 0.1) 34.19 32.91 31.31 28.41 25.97

BMA (sub) + average + Wiener (optimized) 34.12 33.22 31.69 28.74 26.16

BMA (sub) + average + Wiener (Γ ¼ 0.0002, β ¼ 0.1) 34.12 33.22 31.69 28.72 26.12

NDL21 + Wiener-diffraction (optimized) 29.51 26.88 24.51 22.26 20.99

NRIR21 + average + Wiener-diffraction (optimized) 30.15 27.12 24.30 21.72 20.54

Bispectral speckle imaging7,9,16 30.34 27.26 24.89 22.24 20.81

The bold entries represent the highest PSNR for that level of turbulence.

Table 3 Theoretical statistical parameters for the different levels of simulated atmospheric turbulence and related restoration parameters.

C2
n × 1015 (m−2∕3)

Parameter 0.10 0.25 0.50 1.00 1.50

Isoplanatic angle θ0 (Pixels) 6.62 3.82 2.52 1.66 1.30

BMA search size S (Pixels) 3.00 5.00 7.00 11.00 13.00

BMA block size B (Pixels) 15.00 15.00 15.00 15.00 15.00

Theoretical RMS G-tilt σr (Pixels) 0.8831 1.3962 1.9746 2.7925 3.4201

Estimated RMS G-tilt σ̂r (Pixels) 0.8269 1.3781 1.9601 2.9022 3.5321

Theoretical r 0ðmÞ 0.1902 0.1097 0.0724 0.0478 0.0375

Estimated r̂ 0ðmÞ 0.2058 0.1115 0.0730 0.0456 0.0360
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includes �2 standard deviations, giving S ¼ 2b2σr∕δNc þ 1
pixels, where δN is the pixel spacing measured on the focal
plane.

With regard to block size, the larger these are, the less
sensitive the BMA is to noise and warping. However,
with increased size, there tends to be an increased underes-
timation of the true local motion from atmospheric tilt.36,37

Thus, a balance is required. The exact amount of underesti-
mation will depend on the block size, the particular C2

nðzÞ
profile, and optical parameters.36,37 Notwithstanding this,
we have found that a fixed block size of B ¼ 15 pixels is
effective for the range of turbulence conditions used in
the simulated imagery. Furthermore, our results show that
the corresponding residual RMS tilt factor is approximately
a constant β ¼ 0.1 in the simulated imagery.

The next step of the BMWF method is to simply average
the registered frames, as shown in Fig. 2. This gives rise to
the result in Eq. (24). This step is important for two main
reasons. First, it reduces noise and reduces the impact of
any BMA errors. Second, by averaging the spatially varying
blurring, it allows us to accurately model the resulting blur
as spatially invariant,17 as shown in Eq. (24). This justifies
the use of a spatially invariant deconvolution step. The

deconvolution step is implemented here using a Wiener filter.
The frequency response of the Wiener44 filter is given as

EQ-TARGET;temp:intralink-;e025;326;730HWðu; vÞ ¼
Hαðu; vÞ�

jHαðu; vÞj2 þ Γ
; (25)

where Γ represents a constant noise-to-signal (NSR) power
spectral density ratio. The output, after applying the Wiener
filter, can be expressed as

EQ-TARGET;temp:intralink-;e026;326;655ẑðx; yÞ ¼ FT−1½HWðu; vÞFðu; vÞ�; (26)

where Fðu; vÞ ¼ FTffðx; yÞg and fðx; yÞ is given by
Eq. (24). Note that FTð·Þ and FT−1ð·Þ represent the Fourier
and inverse Fourier transforms, respectively. In practice, we
are using sampled images and the fast Fourier transform
(FFT) for implementing Eq. (26). Since we are assuming
Nyquist sampled images, the property of impulse invariance
applies.45 The images are padded symmetrically to minimize
ringing artifacts associated with the circular convolution that
results from FFT products.

Examples of the atmospheric OTF, HαðρÞ, from Eq. (11),
are shown in Fig. 3. The optical system parameters corre-
sponding to these plots are listed in Table 1. Figure 3(a)
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Fig. 4 Wiener filter parameter optimization using 200 simulated frames with C2
n ¼ 1.00 × 10−15 m−2∕3.

Wiener filter operating on: (a) the BMA registered frame average, (b) globally registered frame average,
and (c) unregistered frame average. The highest PSNR is marked with a red “x.”
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is for C2
n ¼ 0.25 × 10−15 m−2∕3 (r0 ¼ 0.1097 m), and

Fig. 3(b) is for C2
n ¼ 1.00 × 10−15 m−2∕3 (r0 ¼ 0.0478 m).

Also shown in Fig. 3 are the degradation OTFs multiplied
by the Wiener filter transfer function in Eq. (25) for Γ ¼
0.0002 (the value used for the simulated and real data
with 200 frames). Clearly, as α approaches 1 (equivalently
β approaches 0), the degradation OTF is more favorable to
high spatial frequencies. The signal will be above the noise
floor out to a higher spatial frequency. Consequently, the
Wiener filter is able to provide gain out to a higher spatial
frequency, without being overwhelmed with noise. This
greatly extends the effective restored system OTF. When the
degradation OTF value gets below the noise floor, governed
by Γ, the Wiener filter in Eq. (25) succumbs, as shown in
Fig. 3. Note that with the illustrated NSR, the effective band-
width of the sensor is nearly doubled, going from α ¼ 0 (no
registration or tilt correction) to α ¼ 1 (full tilt correction).
Matching the degradation model to the level of registration
is essential to exploiting the full benefits of the registration.

Another important thing to note from Fig. 3 is that the
degradation OTF has no zeros up to the optical cutoff fre-
quency. Thus, the blur degradation is theoretically invertible
(barring noise and quantization). Given this, and the fact that
we often can expect a low NSR because many frames are
averaged, the computationally simple Wiener filter tends
to give excellent performance. More complex deblurring
methods may be warranted when additional ill-posed blur-
ring functions and/or very high levels of noise are present.
However, we observed negligible performance gains using
more complex regularization-based image restoration meth-
ods in our experiments.

3.2 Estimating the Atmospheric Coherence Diameter

To define the degradation OTF in Eq. (11) and the corre-
sponding Wiener filter in Eq. (25), we require the parameter
r0. This can be measured using a scintillometer. However, in
most practical imaging scenarios, it will not be known.
Estimating this parameter from observed imagery is an active
area of research.30,36,37 In some applications, it may be pos-
sible to set this parameter manually, based on subjective
evaluation of the restoration results.

Here, we propose a method for estimating r0 from the
BMA motion vectors used in the BMWF algorithm. Based
on Eq. (3), it is clear that r0 is directly related to the warping
motion in the observed imagery. The BMA motion vectors
can give us an estimate of the warping motion. However,
note that it is important that we exclude any camera platform
motion or within scene motion when doing this. If the
residual RMS tilt is βσr from Eq. (16), the reduction in
tilt due to registration is ð1 − βÞσr. Let the BMA single-
axis RMS motion, converted from pixels to distance on the
focal plane, be denoted as σBMA. Now we can estimate σr as
σ̂r ¼ σBMA∕ð1 − βÞ. Using this and Eq. (3), we obtain an
estimate of the atmospheric coherence diameter as

EQ-TARGET;temp:intralink-;e027;63;154r̂0 ¼
�
:4175ð1 − βÞλl
σBMAD1∕6

�
6∕5

: (27)

4 Experimental Results
In this section, we present a number of experimental results.
These include results for both simulated and real SE image
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Fig. 7 Simulation results for the atmospheric coherence diameter
(Fried parameter) estimation from the BMA motion vectors using
Eq. (27). Here, the N ¼ 200 simulated frames are used at the five C2

n
levels. The same BMA parameters are used as shown in Table 3 and
β ¼ 0.1.
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Fig. 5 BMA parameter optimization using 200 simulated frames with
C2

n ¼ 1.00 × 10−15 m−2∕3.
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Fig. 6 Restoration performance versus the number of input frames for
C2

n ¼ 1.00 × 10−15 m−2∕3.
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sequences. We also provide a comparison with state-of-the
art benchmark methods. One benchmark is the bispectral
speckle imaging method.7,9,16 Our implementation uses
apodization with 16 × 16 pixel tiles9 and incorporates local
registration alignment with each tile, as this gave the best
bispectrum method performance. Another benchmark is
the method of Zhu and Milanfar.21 Our results for this
method come from publicly available MATLAB® code,
provided courtesy of the authors. They use a B-spline
nonrigid image registration (NRIR) of SE frames. This is
followed by temporal regression to produce what the
authors refer to as a near-diffraction-limited (NDL) image.
Zhu and Milanfar21 suggest that blind deconvolution be
applied to the NDL image. However, blind deconvolution
code is not provided by those authors. Here, we have
exact knowledge of the diffraction PSF, and, therefore,
we apply a parameter-optimized Wiener filter to decon-
volve diffraction-only blur from the NDL image. We also
compute the temporal average of the NRIR frames as an
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Fig. 9 Restoration results using N ¼ 200 frames with C2
n ¼ 0.25 × 10−15 m−2∕3. (a) Raw frame 1, (b) raw

frame average (no registration), (c) BMA registered frame average, and (d) BMA (sub) + average +
Wiener filter output. Video 1 (MOV, 824 KB [URL: http://dx.doi.org/10.1117/1.OE.56.7.071503.1])
shows the raw frames on the left and BMA on the right.
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Fig. 8 Truth image used for simulated image sequence.
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alternative (bypassing the NDL regression operation), as an
additional comparison.

4.1 Simulated Data

The simulated data are generated using an anisoplanatic sim-
ulation tool described by Hardie et al.31 The optical param-
eters used are listed in Table 1, and the simulation parameters
are listed in Table 2. Five different levels of turbulence are
simulated, and some statistical parameters for these scenarios
are listed in Table 3. Additive-independent Gaussian noise,
with a standard deviation of ση ¼ 2 digital units, is added to
each simulated frame. The metric we use to evaluate the
simulated data results is peak signal-to-noise-ratio (PSNR).
Our first set of results is forN ¼ 200 temporally independent
frames; then, we show results for N ¼ 30 frames.

4.1.1 Results using 200 simulated frames

The PSNR results using 200 temporally independent frames
are reported in Table 4. For the BMA algorithm, the search

window size is set to S ¼ 2b2σr∕δNc þ 1 pixels. The block
size is a constant B ¼ 15 pixels. We report results for both
whole pixel BMA and subpixel BMA in Table 4. We use the
theoretical r0 for each sequence for our OTF model. For the
Wiener filter, we also report two sets of results. One where
the optimum Γ and β are searched for and used and another
where fixed parameters are employed. The fixed NSR is
Γ ¼ σ2η∕ð100NÞ, where N is the number of frames. The
fixed residual tilt factors are: β ¼ 1.0 (α ¼ 0.00) for the
Wiener filter applied to the raw frame average (i.e., LE
PSF), β ¼ 0.5 (α ¼ 0.75) for the Wiener filter applied to
the global registration average, and β ¼ 0.1 (α ¼ 0.99) for
the Wiener filter applied to BMA registered average. It is
interesting to see in Table 4 how the PSNR increases by
incorporating different levels of registration before averag-
ing. As might be expected, the highest PSNR values are
obtained with the subpixel BMA registration. It is also clear
that there is a big boost in performance by adding the Wiener
filter. The best results in Table 4 are generally from the sub-
pixel BMA + average + Wiener filter.
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Fig. 10 Restoration results using N ¼ 200 frames with C2
n ¼ 1.00 × 10−15 m−2∕3. (a) Raw frame 1,

(b) raw frame average (no registration), (c) BMA registered frame average, and (b) BMA (sub) + average
+ Wiener filter output. Video 2 (MOV, 816 KB [URL: http://dx.doi.org/10.1117/1.OE.56.7.071503.2])
shows the raw frames on the left and BMA on the right.
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An analysis of the Wiener filter performance, as a func-
tion of Γ and β, is provided in Fig. 4 for N ¼ 200 and
C2
n ¼ 1.00 × 10−15 m−2∕3. Figure 4(a) shows the PSNR sur-

face for the Wiener filter applied to the BMA registered
frame average. Note that the optimum β is near 0.1 and
the optimum Γ is near 0.0002. This suggests that the BMA
registration is about 90% effective in eliminating the RMS
tilt (and ∼10% remains). A similar surface plot is provided
in Fig. 4(b) for the globally registered frame average (i.e., no
BMA). Here, the optimum β is near 0.5, suggesting that
the global registration is about 50% effective in eliminating
the RMS tilt. Finally, Fig. 4(c) is for no registration at all.
Here, the optimum β is approaching 1.0, as would be
expected for an LE image. This analysis shows that the β
parameter should be matched to the level of tilt correction
provided by the registration.

An analysis of the BMA parameters is shown in Fig. 5 for
N ¼ 200 and C2

n ¼ 1.00 × 10−15 m−2∕3. In particular, this
plot shows the PSNR values as a function of B and S.
Here, one can see that the optimum block size is near
B ¼ 15, and the optimum search window size does not
increase after S ¼ 11. It is clear that small block sizes
give much lower PSNRs. This is likely due to an insufficient
amount of information for accurate matching, given the
atmospheric degradations. Also, one can see that larger

search windows generally do not hurt performance, but
they do add to the computational load.

Figure 6 shows the system PSNR as a function of the
number of input frames for C2

n ¼ 1.00 × 10−15 m−2∕3.
Performance increases dramatically for the first 30 frames
or so and then becomes more incremental. However,
additional frames continue to improve performance. Note
that the curve is not monotonically increasing. The drops
are likely due to the introduction of frames with large shifts,
relative to the truth image.

Estimation of the atmospheric coherence diameter is illus-
trated in Fig. 7. The continuous curve shows the relationship
from Eq. (3). The five simulation turbulence levels are shown
with blue circles. The red squares show the estimated param-
eters from Eq. (27), using the BMA motion vectors with the
parameters in Table 3, and β ¼ 0.1. This result appears to
show a promising level of agreement between the estimates
and true r0 values.

Let us now turn our attention to image results. The truth
image is shown in Fig. 8. Several output images, formed
using N ¼ 200 and C2

n ¼ 0.25 × 10−15 m−2∕3, are shown in
Fig. 9. Figure 9(a) shows a single raw frame. Figure 9(b)
shows the temporal frame average with no registration.
The subpixel BMA registered frame average is shown in
Fig. 9(c). Finally, the subpixel BMA + average + Wiener

Table 5 PSNR (dB) results using 30 frames of simulated data with ση ¼ 2.0.

C2
n × 1015 (m−2∕3)

Method 0.10 0.25 0.50 1.00 1.50

Raw frames 22.87 21.17 20.04 19.07 18.56

Average 24.03 22.37 21.14 20.01 19.41

Global registration + average 24.99 23.50 22.14 20.80 20.09

BMA + average 25.43 24.34 23.03 21.54 20.71

BMA (sub) + average 25.55 24.43 23.09 21.58 20.73

NDL image21 25.23 24.24 23.13 21.60 20.62

NRIR21 + average 25.22 24.07 22.72 21.10 20.18

Average + Wiener (optimized) 29.07 25.52 23.59 22.03 21.14

Average + Wiener (Γ ¼ 0.0013, β ¼ 1.0) 28.91 25.36 23.45 21.99 21.12

Global registration + average + Wiener (optimized) 31.84 28.61 25.98 23.76 22.63

Global registration + average + Wiener (Γ ¼ 0.0013, β ¼ 0.5) 31.75 28.61 25.98 23.76 22.62

BMA + average + Wiener (optimized) 32.28 30.76 28.94 26.23 24.31

BMA + average + Wiener (Γ ¼ 0.0013, β ¼ 0.1) 32.28 30.75 28.94 26.22 24.29

BMA (sub) + average + Wiener (optimized) 32.55 31.10 29.24 26.44 24.42

BMA (sub) + average + Wiener (Γ ¼ 0.0013, β ¼ 0.1) 32.54 31.10 29.24 26.41 24.39

NDL21 + Wiener-diffraction (optimized) 29.25 26.69 24.44 22.09 20.86

NRIR21 + average + Wiener-diffraction (optimized) 29.72 26.82 24.14 21.64 20.48

Bispectral speckle imaging7,9,16 29.50 26.63 24.29 21.87 20.55

The bold entries represent the highest PSNR for that level of turbulence.
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filter output is shown in Fig. 9(d). Here, the fixed-parameter
Wiener filter is used. Note that the temporal average in
Fig. 9(b) is rather blurry, as it is effectively equivalent to
the true image corrupted with the LE PSF. The BMA regis-
tered average has corrected geometry and a blur level that is
comparable to the observed SE frames. We see that by
matching the PSF to the BMA registered average excellent
results are possible, as shown in Fig. 9(d).

A similar set of results is shown in Fig. 10. These images
are the same as Fig. 9, except we have increased the turbu-
lence to C2

n ¼ 1.00 × 10−15 m−2∕3. The raw SE frame is
noticeably more corrupted than in Fig. 9. Also, the blurring
in Figs. 10(b) and 10(c) is far more pronounced than in
the corresponding images in Fig. 9. However, despite the
increased turbulence, the subpixel BMA + average +
Wiener output in Fig. 10(d) maintains much of the original
detail. This is a consequence of having a very high signal-to-
noise ratio, by virtue of the large number of input frames, and
of an effective match between the PSF model and the blur in
BMA registered average.

4.1.2 Results using 30 simulated frames

The next set of results is for the restoration methods using
N ¼ 30 input frames. The quantitative PSNR results are
shown in Table 5. The results are similar to those in Table 4,
but as expected, with fewer frames the PSNR values drop
somewhat. The best results in Table 5 are for the subpixel
BMA + average + Wiener filter, and these results are signifi-
cantly better than those of the benchmark methods.

To allow for a subjective comparison of the proposed
method and the benchmark methods, output images from
several methods are shown in Fig. 11 for the N ¼ 30
frame input, with C2

n ¼ 1.00 × 10−15 m−2∕3. Figure 11(a)
shows the temporal average, followed by the Wiener filter,
using the LE PSF model. Figure 11(b) shows the NRIR +
NDL image from Zhu and Milanfar,21 followed by the Wiener
filter using the diffraction-only PSF model. Figure 11(c)
shows the bispectral speckle image output.7,9,16 Finally,
Fig. 11(d) shows the BMA + average + Wiener filter output,
with subpixel BMA and fixed-parameter Wiener filter. The
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Fig. 11 Restoration results using 30 frames with C2
n ¼ 1.00 × 10−15 m−2∕3. (a) Raw frame average (no

registration) + Wiener filter, (b) NRIR + NDL21 + Wiener (diffraction), (c) bispectral speckle imaging
method,7,9,16 and (d) BMA (sub) + average + Wiener filter output.
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result in Fig. 11(a) is limited because no tilt correction is
used, and the LE PSF is used in the Wiener filter. The
NRIR + NDL + Wiener filter image in Fig. 11(b) provides
improved results, but some areas remain highly blurred and
there appear to be some artifacts at the edges. The bispectrum
output in Fig. 11(c) also looks better than the LE restoration
in (a) but is fundamentally limited by its use of the LE PSF
model in recovering the magnitude frequency spectrum. The
bispectrum method also tends to suffer from tiling artifacts
when treating high levels of turbulence, as can be seen in
Fig. 11(c). Processing without using tiles eliminates the
tiling artifacts but leads to a lower quantitative performance
(hence the use of tiles here). The subpixel BMA + average +
Wiener filter output in Fig. 11(d) appears to have the best
overall detail, with no major artifacts. This is supported
by the quantitative analysis in Table 5.

The processing time for the various algorithms and their
components is provided in Table 6. Note that the proposed
method has a significantly shorter run time than the bench-
mark methods using our MATLAB® implementations.
However, run times with other implementations may differ.
For the bispectral imaging method, processing time can be
reduced by reducing the number of tiles and eliminating tile-
based registration. Furthermore, hardware acceleration can
be employed to speed up the multidimensional FFTs used
with this method.

4.2 Real Data

Our final set of experimental results uses a real-image
sequence acquired from a tower to a truck and an engineering
resolution target at a distance of 5 km. The resolution target
is made up of a sequence of vertical and horizontal three-line
groups. The five large groups on the right side have bars with
the following widths: 7.00, 6.24, 5.56, 4.95, and 4.91 cm.
The optical parameters for this sensor are listed in Table 7.

The sensor sampling is very close to Nyquist, so the Wiener
filter is evaluated and implemented at the pixel pitch of the
sensor (i.e., no resampling of the imagery is performed).
A scintillometer is used to provide an estimate of r0, as
shown in Table 7. This value has been confirmed by analysis
of an edge target, imaged within the larger field of view of
the camera. Assuming a constant C2

nðzÞ profile, note that the
isoplanatic angle, when converted to pixels, is only 0.25 pix-
els. This gives rise to warping that is highly uncorrelated at
a small scale. This makes BMA registration somewhat less
effective than we saw in the simulated data. For this reason,
we have chosen to use a residual RMS tilt factor of β ¼ 0.4
(compared with β ¼ 0.1 for the simulated data). An estimate
of the atmospheric coherence diameter using Eq. (27), for
β ¼ 0.4, is shown in Table 7.

The image results using the real data are shown in Fig. 12.
Figure 12(a) shows raw frame 1. The NRIR + NDL21 +
Wiener filter output using N ¼ 30 input frames is shown in
Fig. 12(b). The bispectrum output7,9,16 is shown in Fig. 12(c),
also forN ¼ 30 and using the scintillometer r0. The 30 frame
average + Wiener filter using the LE PSF with scintillometer
r0 is shown in Fig. 12(d). The subpixel BMA + average +
Wiener output is shown for N ¼ 30 and N ¼ 200 in
Figs. 12(e) and 12(f), respectively. Here, we use the r̂0 esti-
mated from the BMA, with β ¼ 0.4 and Γ ¼ 0.0002. Note
that the results obtained using the scintillometer r0 are very
similar. The BMWF results appear to provide the best overall
subjective quality and recover the resolution target lines
notably better than the benchmark methods. We attribute
this to a reduction in tilt blurring, by means of the BMA

Table 6 Algorithm run times for processing 30 simulated
257 × 257 pixel frames to produce a single output frame. Processing
was done with MATLAB® 2016a using a PC with Intel(R) Xeon(R)
CPU E5-2620 v3 at 2.40 GHz, 16 GB RAM, and running Windows
10. For the BMA method S ¼ 11, B ¼ 15, and 3× subpixel BMA.

Algorithm/component Run time (s)

BMA + average + Wiener 9.60

BMA (sub) + average + Wiener 203.29

NRIR + NDL + Wiener21 3125.26

Bispectrum7,9,16 613.65

Global registration 1.03

Whole pixel BMA 8.56

Subpixel BMA 202.25

NRIR21 3090.25

Average image fusion 0.0012

NDL image fusion21 35.00

Wiener filter 0.0125

Table 7 Optical parameters for the real sensor data.

Parameter Value

Aperture D ¼ 57.150 mm

Focal length l ¼ 926 mm

f -number f∕# ¼ 16.203

Wavelength λ ¼ 0.785 μm

Spatial cutoff frequency ρc ¼ 78.620 cyc∕mm

Object distance L ¼ 5 km

Nyquist pixel spacing (focal plane) δN ¼ 6.36 μm

Detector pitch (focal plane) δs ¼ 6.50 μm

Undersampling 1.022

Scintillometer path averaged C2
nðzÞ C2

n ¼ 7.44 × 10−15 m−2∕3

Isoplanatic angle (assuming constant
C2

nðzÞ)
θ0 ¼ 0.26 (Pixels)

Scintillometer Fried parameter r 0 ¼ 28.4 mm

Estimated Fried parameter (for β ¼ 0.4) r̂ 0 ¼ 26.0 mm

Theoretical RMS tilt for scintillometer r 0 σr ¼ 1.46 (Pixels)

BMA estimated RMS tilt (for β ¼ 0.4) σ̂r ¼ 1.61 (Pixels)
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registration, and by the proper matching of the PSF model
to the residual tilt blurring.

5 Conclusions
We have presented a block-matching and Wiener filter-based
approach to optical turbulence mitigation. In addition to the
restoration method, we have also presented a method for esti-
mating the atmospheric coherence diameter from the BMA
motion vectors. We demonstrate the efficacy of this method
quantitatively, using simulated data from a simulation tool
developed by one of the authors. Results using real data
are also provided for evaluation. The proposed restoration
method utilizes a parametric OTF model for atmospheric
turbulence and diffraction that incorporates the level of tilt
correction provided by the registration step. By matching
the PSF model to the level of registration, improved results
are possible, as shown in Fig. 4. For the BMA component of

our algorithm, we present a few innovations. For example,
we use a search window size determined by the theoretical
RMS tilt, when r0 is available. The BMA also uses a prefilter
on the raw frames, so they better match the prototype in spa-
tial frequency content. Compared with benchmark methods,
the proposed method provides the highest PSNR restorations
in our study, as shown in Tables 4 and 5.

We quantify the level of registration tilt correction by
what we term the residual RMS tilt factor, β, or equivalently,
the tilt variance reduction factor, α ¼ 1 − β2. Recall that β is
such that the residual RMS tilt, after registration, is βσr,
where σr is the theoretical uncorrected RMS tilt given in
Eq. (3). Given α and r0 and the optical system parameters,
the degradation OTF model is given by Eq. (11) and the
Wiener filter is given by Eq. (25). We have demonstrated
that α can have a significant impact on the degradation
OTF and corresponding restored image OTF, as shown in
Figs. 1 and 3, respectively.
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Fig. 12 Restoration results using real-image sequence. (a) First raw frame, (b) 30 frame NRIR + NDL21 +
Wiener (diffraction) output, (c) 30 frame bispectral speckle imaging output,7,9,16 (d) 30 frame average +
Wiener filter output, (e) 30 frame BMA (sub) + average + Wiener filter output, and (f) 200 frame BMA
(sub) + average + Wiener filter output. Video 3 (MOV, 507 KB [URL: http://dx.doi.org/10.1117/1.OE.56.7
.071503.3]) shows the raw frames on the top and BMA on the bottom.
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In cases where r0 is known, it is possible to infer β from
Eq. (27), using the BMA motion vectors. If one does not
have knowledge of r0, it can be estimated from Eq. (27)
using an assumed β and the BMA motion vectors. Thus,
a complete restoration can be achieved with the assumption
of only one unknown parameter, β (or α). Note that this
parameter is linked to the size of the BMA block size B,
along with the camera parameters, and the C2

nðzÞ profile. We
achieved excellent results using a constant B ¼ 15 pixels,
assuming a corresponding β ¼ 0.1 for the simulated data
and β ¼ 0.4 for the real data studied here. In practice, it
may be possible to perform a search over β and evaluate
the results subjectively or by some other metric.
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