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Abstract. In modern optical element manufacturing, center artifacts are a common problem. A center artifact is a
shape error that is rotationally symmetrical, steep, and localized at the center. These properties cause character-
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1 Introduction
Optical elements such as lenses, mirrors, and prisms are tra-
ditionally fabricated by grinding, smoothing, and polishing.1

Recently, point processing methods, such as precision turn-
ing and magnetorheological finishing have become widely
used.1–6 The former is mainly applied to generate aspherical
profiles on soft materials, such as plastics4 and infrared
materials.4–6 The latter is widely applied to precision finish-
ing or when introducing small asphericity to optical surfaces.

One of the common problems with these point finishing
methods is center artifacts7 (this is also called “center
error”8,9). Center artifacts are rotationally invariant figure
errors and localized at the center of optical surfaces. The typ-
ical interferometric image is shown in Fig. 14 of Ref. 8,
Fig. 2.3 of Ref. 9, and page 13 of Ref. 10.

Center artifacts can affect imaging performance of optical
systems. As will be described in Sec. 3, the steep figure error
of center artifacts in the front group in wide angle lenses seri-
ously affects image performance at the center image field and
causes characteristic diffraction rings because the ray fan of
the image is narrow in the front group. Even though center
artifacts are small in spread size, they can cause serious
defects in image quality in this case. Therefore, tolerancing
on center artifacts is one of the important issues in optical
design and fabrication. Since the influences of center arti-
facts have not been fully analyzed, we should properly
model their figures for appropriately evaluating tolerance.

In the field of optical design and production, the figure
error of optical surfaces from the designed form is generally
expressed by the set of Zernike polynomials.11 This set of
polynomials was first introduced by Zernike12 and there
are many ways to arrange them.11,13,14 Among these, the
set of Fringe Zernike polynomials which contains 37 specific
terms of circle polynomials15,16 is commonly utilized. One
of the practical examples is expressed in Ref. 17 by the

use of Grid Sag and Fringe Zernike Surfaces in Zemax.
The components of figure error that cannot be expressed
by the Fringe Zernike polynomials are classified as midspa-
tial frequency errors, which are considered as somewhat
random.18,19 However, center artifacts are never expressed
by Fringe Zernike expansion and can hardly be evaluated
by midspatial frequency error because their peak-to-valley
(PV) is large relative to that of midspatial frequency.

To date, the image defects that are caused by center arti-
facts have not been sufficiently discussed and evaluated. We
have investigated this issue and provided a new method for
expressing the shape of center artifacts in this paper.

First, we investigated a new mathematical expression of
center artifacts. We infer that the normal distribution function
provides a close approximation of center artifacts because
the normal distribution function is bell shaped. Also since
the normal distribution function is characterized by its
width and height, the tolerance of the drawing is simple
and can be easily understood for manufacturing. Before
approximating by the normal distribution function, we
employ Zernike fitting to remove figure errors of lower
frequencies. Since the normal distribution function is not
available in most optical software, it is necessary to rewrite
it as a polynomial. However, doing this by using an even-
order aspherical surface is not suitable for two reasons:
one is that the Taylor expansion of the normal distribution
function does not provide a suitable approximation function
with any practical finite number of terms. The other is that
Fringe Zernike expansion of the normal distribution func-
tion provides insufficient approximation for steep normal
distribution.

Next, we constructed a method for describing steep nor-
mal distribution by utilizing odd-order surfaces. In our inves-
tigations of the characteristics of odd-order surfaces,20,21 we
have analogically predicted that steep normal distribution
can be sufficiently represented by a small finite number
of power terms including odd-order terms which can be
used in many kinds of optical design software. Actually,*Address all correspondence to: Takao Tanabe, E-mail: t-tanabe@soc-ltd.co.jp
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we confirmed the fulfillment of this prediction numerically.
Therefore, we could properly express the center artifacts by a
small finite number of power terms including odd-order
terms. Thus using commercial optical software, we could
numerically calculate the changes in point-spread-function
(PSF) and modulation transfer function (MTF) caused by
center artifacts. Hence, our evaluation method for center arti-
facts is effective in optical design and development.

2 Mathematical Expressions for Center Artifact

2.1 Impossibility of Expressing Center Artifacts by
Fringe Zernike Polynomials

In optical element manufacturing, it is common to describe
manufacturing errors using Fringe Zernike polynomials.
Reference 16 represents some practical methods for repre-
senting irregular surfaces by the use of Zernike polyno-
mials. However, it is impossible to express center artifacts
this way. One reason is that the width of a low Zernike
polynomial, such as Z9 is too wide to express steep center
artifacts. Another reason is that higher Zernike polyno-
mials, such as Z16, Z25, Z36, and Z37 have ripples at the
outer region of the aperture. To numerically prove this, let
us take a precision turned plastic lens as an example as
follows.

The surface deviation is measured using UA-3P, a
three dimensional measurement system along two per-
pendicular directions on the lens surface. Since these
two profiles do not differ largely from each other, the sur-
face profile can be approximated as rotationally invariant.
Figure 1 shows one direction, in which the horizontal axis is
the normalized radial coordinate and the vertical axis is the
deviation in millimeters. The marginal coordinate corre-
sponds to 26-mm diameter in exact scale. The blue line
describes surface profile in one direction and the red line
its approximation represented by the rotationally invariant
Fringe Zernike polynomials (Z1; Z4; Z9; Z16; Z25; Z36, and
Z37). Figure 2 represents the difference between the two
lines. Although Zernike fitting can provide an approxima-
tion for lower frequency errors, it is completely insufficient
to express the center artifact. Therefore, we needed to
construct a new mathematical method to express center
artifacts.

2.2 Approximation of Center Artifacts by Normal
Distribution Function

As seen in Sec. 2.1, so as to express the shape of center arti-
facts mathematically, we should introduce another math-
ematical representation other than Zernike polynomials.
Since center artifacts are sharply convex shaped localized
at the center, they can be represented by the normal distri-
bution function. Equation (1) can provide a simple math-
ematical model for representing a center artifact.

EQ-TARGET;temp:intralink-;e001;326;649fðrÞ ¼ A exp

�
−
r2

σ2

�
: (1)

In this mathematical model, the maximum is A, the mini-
mum is 0, and full width at half maximum (FWHM) of fðrÞ
is 2.53σ. We do not need the DC component in Eq. (1),
because it is automatically considered by Zernike polyno-
mials fitting. When σ becomes smaller, the profile of the
center profile becomes steeper. In the case of Fig. 2, we
decided A ¼ 0.0036, σ ¼ 0.0546 by least square method.
Figure 3 compares the Zernike fitting error and the math-
ematical model described in Eq. (1).

Figure 4 shows the residual of figure error. This figure
represents that the use of normal distribution approximates
the center artifact profile with submicron accuracy, which is
satisfactory for precision turned plastic lenses. Therefore, we
concluded that it is suitable to express the shape of the center
artifact by the use of the normal distribution function. Also
since the normal distribution function is characterized by its
width and height, the tolerance of the drawing is simple and
can be easily understood for manufacturing.
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Fig. 1 An example of surface figure error and its Zernike
approximation.
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Fig. 2 Fitting error of center artifact using 12th-order Fringe Zernike
polynomials.

-

0

0.0025

0.005

–1.5 –1 –0.5 0 0.5 1 1.5

–0.005

P
ro

fi
le

 d
ev

ia
ti

on
 (

m
m

)

Normalized radius

Zernike fitting error Approximation by normal distribution

–0.0025

Fig. 3 Zernike fitting error and its approximation by Eq. (1).
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2.3 Impossibility of Expressing the Normal
Distribution Function by Even-Order Aspherical
Surfaces

Section 2.2 represents the possibility of expressing center
artifacts using the normal distribution function. However,
since the normal distribution function is generally not pre-
pared in ordinary optical design software, we should rewrite
Eq. (1) as the general form for aspherical surfaces.

In Secs. 2.3.1 and 2.3.2, we will discuss the expression
of normal distribution by the use of even-order surfaces, the
most popular surface type in optical design. Subsection 2.3.1
employs Taylor expansion of normal distribution and
Sec. 2.3.2 employs Zernike expansion. We will show that
these two methods do not provide sufficient approximation
for the normal distribution.

2.3.1 Approximation by Taylor expansion

First, we considered Taylor expansion, which is the most
direct method to obtain polynomials. Equation (2) represents
the result of expanding expð−r2∕σ2Þ to the power series of r.
EQ-TARGET;temp:intralink-;e002;63;353

exp

�
−
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σ2

�
∼1−

r2

σ2
þ1

2

r4

σ4
−
1

6

r6

σ6
þ · · ·þð−1Þn

n!

�
r2

σ2

�
n

þ · · · :

(2)

However, the power series of Eq. (2) does not provide
suitable approximation using any finite number of terms.
Figure 5 compares the power series up to 30th (the upper
limit of ordinary even-order aspherical surface in code-V™)

with the original normal distribution function expð− r2

σ2
Þ for

σ ¼ 0.2. Figure 5 represents that the power series is an accu-
rate approximation for r < 0.5, however, it diverges over the
outer area, providing that this power series is not valid for
expressing center artifact shape.

2.3.2 Approximation by Zernike expansion

Next, we considered Zernike expansion for the normal dis-
tribution function. The example of a center artifact described
in Sec. 2.1 cannot be approximated by Fringe Zernike poly-
nomials. However since Zernike polynomials are complete,
the normal distribution function can be expressed using
a sum of Zernike polynomials.

Equation (3) describes rotationally invariant Zernike
polynomials20

EQ-TARGET;temp:intralink-;e003;326;579QnðtÞ ¼
ð−1Þn
n!

dn

dtn
tnð1 − tÞn; (3)

where t is the square of the radial coordinate r. Table 1 rep-
resents the relationship between Eq. (3) and Fringe Zernike
polynomials

Fringe Zernike expansion of function fðtÞ is
EQ-TARGET;temp:intralink-;e004;326;493

fðtÞ ¼ c0QoðtÞ þ c1Q1ðtÞ þ c2Q2ðtÞ þ c3Q3ðtÞ þ c4Q4ðtÞ
þ c5Q5ðtÞ þ c6Q6ðtÞ; (4)

where cn’s are Fringe Zernike coefficients which are calcu-
lated by

EQ-TARGET;temp:intralink-;e005;326;421cn ¼ ð2nþ 1Þ
Z1

0

fðtÞQnðtÞdt: (5)

Note that Fringe Zernike polynomials satisfy orthogonal-
ity, but the ordinary normalization is not satisfied.

To estimate the accuracy of Fringe Zernike expansion
of center artifacts, we calculated Fringe Zernike coefficients
cn for the normal distribution function expð−r2∕σ2Þ.
Equations (4) and (5) lead to Eq. (6) and Table 2 represents
the numerical result
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Fig. 4 The residual of an approximation using normal distribution
function.
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Table 1 Relationship between QnðtÞ of Eq. (3) and Fringe Zernike
polynomials.

Definition
in Eq. (3)

Fringe
Zernike Description

Q0ðtÞ Z 1 1

Q1ðtÞ Z 4 2r 2 − 1

Q2ðtÞ Z 9 6r 4 − 6r 2 þ 1

Q3ðtÞ Z 16 20r 6 − 30r 4 þ 12r 2 − 1

Q4ðtÞ Z 25 70r 8 − 140r 6 þ 90r 4 − 20r 2 þ 1

Q5ðtÞ Z 36 252r 10 − 630r 8 þ 560r 6 − 210r 4 þ 30r 2 − 1

Q6ðtÞ Z 37 924r 12 − 2772r 10 þ 3150r 8 − 1680r 6

þ 420r 4 − 42r 2 þ 1
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EQ-TARGET;temp:intralink-;e006;63;537cn ¼ ð−1Þn ð2nþ 1Þ
n!

Z1

0

expð−t∕σ2Þ d
n

dtn
tnð1 − tÞndt: (6)

Figure 6 compares normal distribution functions for σ ¼
0.2; 0.1; 0.05 with their Fringe Zernike expansion and
Table 3 lists the coefficients explicitly. Figure 6 explains
that the Fringe expansion of the normal distribution function
for small σ is insufficient to approximate the original func-
tions even if all terms up to the 37th (upper limit of Fringe
Zernike polynomials) are used. Thus, the set of Fringe
Zernike polynomials is inappropriate to express the shape
of the normal distribution function.

The discussion in Secs. 2.2, 2.3.1, and 2.3.2 leads to the
conclusion that the shape of a steep center artifact can be
expressed by neither finite number even-order terms nor
by Fringe Zernike expansion.

2.4 Expressing the Normal Distribution Function by
Power Terms Including Odd-Order

Since we proved that the normal distribution function is not
represented by even-order aspherical surfaces in Sec. 2.3, we
introduced odd-order aspherical surface in order to express
center artifact. According to our investigations of the char-
acteristics of odd-order surfaces, we have analogically
predicted that center artifact shape can be sufficiently repre-
sented by a small finite number of power terms including
odd-order terms which can be used in most optical design
software.

Equation (7) represents a polynomial of order N including
odd-order

EQ-TARGET;temp:intralink-;e007;326;355gðrÞ ¼ a0 þ a1jrj þ a2jrj2 þ a3jrj3þ · · · aN jrjN: (7)

When the curve z ¼ gðrÞ passes through N þ 1 points
ðrk; zkÞk ¼ 0; 1; · · · ; N, the coefficients ak are the solution
of the following linear equation:
EQ-TARGET;temp:intralink-;e008;326;289

a0 þ a1r0 þ a2r20 þ a3r30þ · · · aNrN0 ¼ z0

a0 þ a1r1 þ a2r21 þ a3r31þ · · · aNrN1 ¼ z1

..

.

a0 þ a1rN þ a2r2N þ a3r3Nþ · · · aNrNN ¼ zN: (8)
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Fig. 6 Comparison of normal distribution functions for σ ¼ 0.2; 0.1;0.05 and their Fringe Zernike
expansion.

Table 2 Fringe Zernike coefficients of expð−r 2∕σ2Þ.

n cn

0 σ2ð1 − e−1∕σ2 Þ

1 6σ4ð1 − e−1∕σ2 Þ − 3σ2ð1þ e−1∕σ2 Þ

2 ð60σ6 þ 5σ2Þð1 − e−1∕σ2 Þ − 30σ4ð1þ e−1∕σ2 Þ

3 ð840σ8 þ 84σ4Þð1 − e−1∕σ2 Þ − ð420σ6 þ 7σ2Þð1þ e−1∕σ2 Þ

4 ð15120σ10 þ 1620σ6 þ 9σ2Þð1 − e−1∕σ2 Þ
− ð7560σ8 þ 180σ4Þð1þ e−1∕σ2 Þ

5 ð332640σ12 þ 36960σ8 þ 330σ4Þð1 − e−1∕σ2 Þ
− ð166320σ10 þ 4620σ6 þ 11σ2Þð1þ e−1∕σ2 Þ

6 ð8648640σ14 þ 982800σ10 þ 10920σ6 þ 13σ2Þð1 − e−1∕σ2 Þ
−ð4324320σ12 þ 131040σ8 þ 546σ4Þð1þ e−1∕σ2 Þ

Table 3 Fringe Zernike coefficients for normal distribution function.

Coefficients

σ

0.2 0.1 0.05

c0 0.040000 0.010000 0.002500

c1 −0.110400 −0.029400 −0.007463

c2 0.155840 0.047060 0.012313

c3 −0.170330 −0.062012 −0.016982

c4 0.157875 0.073546 0.021400

c5 −0.128731 −0.081267 −0.025508

c6 0.094161 0.085104 0.029253
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Fig. 7 Maximum approximation error versus σ for Eq. (7).
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We considered the function expð−r2∕σ2Þ and choose N þ
1 points as ðrk; zkÞ ¼ f k

N ; exp½−ð kNÞ2∕σ2�g at even intervals
in the region r ∈ ½0;1�. By resolving the linear equation
Eq. (8), the coefficients ak’s were obtained. Figure 7
shows the maximum approximation error curves of
Eq. (7) with respect to σ.

Figure 7 explains that the approximation error is nearly
saturated when the degree N exceeds 6. In practice,
Fig. 8 shows that the normal distribution function can be
fully approximated by polynomials of order N ¼ 6 for
σ ¼ 0.2; 0.1, and 0.05.

The discussion of this section gives an explicit method for
approximating center artifacts by polynomials including
odd-order.

3 Optical Simulation with Our Proposed
Mathematical Model

3.1 Optical Design

Using the new mathematical model we proposed in Sec. 2,
we discuss how image quality is affected by center artifacts.
For this purpose, we considered a projection lens which is a
modified design from Ex. 2 of Ref. 22. The specification is
listed in Table 4. Table 5 represents the lens data and Fig. 9
shows the optical configuration of this design. This design
consists of eight lenses in which both sides of the second
lens are aspherical. Equation (9) is the aspherical description
of this design.

EQ-TARGET;temp:intralink-;e009;63;312z ¼ cr2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ kÞc2r2

p þ A2r2 þ A4r4þ · · · þA12r12;

(9)

where c is the curvature, k is the conic constant, r is the (un-
normalized) radial coordinate, and An are the aspherical
coefficients. Aspherical coefficients up to 12th are used in
this design.
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Fig. 8 Approximation curves for σ ¼ 0.2;0.1, and 0.05.

Table 4 Design specifications for projection optics.

Description Design specifications

Magnification 71.9×

Effective F number 2.4

Image circle 20-mm diameter

Wavelength Visible (460 to 630 nm)

Table 5 Lens design data.

Surface Radius Thickness Glass Conic

OBJ Infinity 0

1 Infinity 2000

2 28 3 S-FSL5

3 14.71695 5

4 14.06305 3 PMMA −0.4915

5 6.768793 20.10655 −1.096

6 44.69331 3.789097 S-LAH51

7 −68.9588 12

STO Infinity 15

9 1000 2 S-NBH51

10 21.67184 11 S-FPL51

11 −14.7272 2 S-LAH63

12 −29.2365 0.1

13 65.6066 7.5 S-FPL51

14 −36.5626 1

15 68.06173 4 S-TIL26

16 −1000 7.388574

17 Infinity 25 S-BSL7

18 Infinity 3

19 Infinity 1.05 S-FSL5

20 Infinity 1.012085

IMA Infinity

Aspherical coefficients:

Surface 4 Surface 5

A2 0.000000 × 1000 0.000000 × 1000

A4 −3.483769 × 10−04 −3.948001 × 10−04

A6 2.620559 × 10−06 4.177955 × 10−06

A8 −1.516800 × 10−08 −2.989014 × 10−08

A10 4.881588 × 10−11 1.045121 × 10−10

A12 −6.235464 × 10−14 −7.943251 × 10−14
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Since the size of a pixel for the display device is 10 μm2,
the Nyquist frequency is 50 lines per millimeters. Thus,
Fig. 10 represents the designed MTF curve of this lens in
the region, with a maximum frequency twice its Nyquist fre-
quency. The horizontal axis represents spatial frequency and
the vertical axis MTF values. As shown in Fig. 10, using
aspherical lenses, we obtained excellent optical performance.
However, since precision turned plastic lenses sometimes
have center artifacts at the lens axis, the image quality of
the field center degenerates remarkably in this case.
Therefore, the tolerance of PV value and width of center arti-
facts must be properly obtained.

3.2 Mathematical Representation of Actual Center
Artifacts

Aspherical lenses are directly generated from blanks of poly
(methyl methacrylate) (PMMA). Figure 11 represents the

photograph of an actual aspherical lens. Figures 12(a) and
12(b) represent the measured deviation of the manufactured
plastic lens from the designed value. Figure 12(a) is the front
surface and Fig. 12(b) the rear surface. Table 6 represents the
Zernike approximation obtained by direct calculation of
inner products of actual surface figure errors and Zernike
polynomials.

By removing the component that was expressed by Fringe
Zernike polynomials, Fig. 13 represents the approximations
of center artifacts using the normal distribution function. The
parameters in Eq. (1) for each surface are shown in Table 7.
Parameter A represents the height of the center artifact. The
parameter σ shows the width of the center artifact and has no
dimension since the radial coordinate is normalized. The sol-
ution of linear Eq. (8) for each σ provides its aspherical
coefficients.

Layout

Fig. 9 Optical configuration of the lens represented in Table 4.
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Fig. 10 MTF curve for the design described in Table 4 (blue line: on-axis, green-line: marginal tangential
and radial).

Fig. 11 Photograph of the actual turned aspherical lens.
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In solving Eq. (8), we normalized A ¼ 1 for convenience
and Table 7 lists the solutions. Since the coefficients listed in
Table 8 are normalized to unify the peak, multiplying actual
A (artifact height) to the coefficients provides the actual
aspherical coefficients. In addition, when we converted
these parameters to match those of an optical simulation pro-
gram, we had to take care that the polynomial equals the
function of the normalized radial coordinate. Figure 14 com-
pares the measured figure errors and the final approximation
shapes of center artifacts which contain Fringe Zernike coef-
ficients and odd-order terms.

At the end of this subsection, we discuss the approxima-
tion accuracy of the mathematical model for center artifacts.
Table 9 shows the PV error of the measured figure and
PV residual errors of three approximation methods discussed
above.

Because of the narrow width of the center artifact in the
front surface, Fringe Zernike fitting does not approximate
the figure error. Specifically, the Zernike fitting residual of
the first surface remains 4.6 μm in PV value, which cannot
be negligible. However, our new model that employs both
Fringe Zernike and normal distribution reduces the residual
by 75%. The polynomial model provides almost the same
residual as the normal distribution model. Consequently,
our mathematical model described in this paper can provide
a better description of figure errors that contain center artifacts.

3.3 Optical Simulation

By adding aspherical coefficients for the actual center artifact
to the designed lens data, we could evaluate how center arti-
facts affect the optical performances such as MTF and PSF.

The aspherical surface is represented by Eq. (10):

EQ-TARGET;temp:intralink-;e010;326;413z ¼ cr2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ kÞc2r2

p þ
X6
k¼2

A2kr2 k

þ
�X6

k¼1

ckQkðr2Þ þ
X6
k¼1

akrk
�
: (10)

In this formula, the first two terms are the original
designed form. The additional term, fP6

k¼1 ckQkðr2Þ þP
6
k¼1 akr

kg, represents the figure error. The formerP
6
k¼1 akr

k
P

6
k¼1 ckQkðr2Þ is Fringe Zernike components

error and the latter
P

6
k¼1 akr

k the polynomial representation
of center artifacts.

Figure 15 compares the designed MTF, the MTF with
Fringe Zernike components error, and the MTF with both
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Fig. 12 Measured deviation of the turned lens from the designed shape.

Table 6 Zernike expansion coefficients of the front and rear surfaces.

Front surface Rear surface

c0 −4.380795 × 10−04 −4.060442 × 10−04

c1 −2.054843 × 10−04 −6.654129 × 10−04

c2 4.636624 × 10−04 3.253009 × 10−04

c3 −3.911798 × 10−04 −1.218029 × 10−04

c4 3.681959 × 10−04 2.640439 × 10−05

c5 2.059885 × 10−04 −2.239883 × 10−05

c6 −1.108508 × 10−04 9.774386 × 10−05
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Fig. 13 Approximation of center artifacts using normal distribution function.
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Zernike components and center artifacts for the axial image
point. Furthermore, Fig. 16 compares the designed PSF,
the PSF with Zernike components, and the PSF with both
Zernike components and center artifacts. These figures re-
present that the Zernike components are so small that the
values of MTF and PSF remain as high as designed value.
On the contrary, the center artifacts obviously affect the PSF.
Figure 16(c) shows characteristic diffraction rings around the
center, and they affect the imaging quality, such as MTF as
shown in Fig. 15(c).

These characteristic diffraction rings and deterioration in
MTF are very common in practical lens manufacturing.
Hence, the mathematical model of center artifacts can re-
present the image degeneration of image quality as practical
optical systems.

4 Summary
We have proposed an advanced approach to simulate center
artifacts shapes for improving image quality by the use of
general polynomial forms including odd-order terms. For
generating aspherical profiles, precision turning has become
common in processing plastics or infrared materials.
However, this method can also produce the characteristic
shape error called center artifact or “center error.” Center arti-
facts are rotationally invariant and localized at the center of
lens surfaces.

In optical design and manufacturing, surface deviations
from designed forms are usually represented by Fringe
Zernike polynomials. In addition, components that cannot
be represented by Fringe Zernike polynomials are classified
as midspatial frequency errors and regarded as random con-
stituents. However, since it is impossible to express center
artifacts using Fringe Zernike expansion and they can hardly
be evaluated by midspatial frequency errors, the effects of
center artifacts have not been properly evaluated, thus toler-
ancing center artifacts has been next to impossible.

In this paper, we have constructed a practical new
method for modeling center artifacts suitable for optical

simulation. We have found that center artifacts can be rep-
resented by normal distribution function and this function
can sufficiently be expressed by polynomials including
odd-order terms. Since ordinary polynomial surfaces are
applicable for commercial optical design software, our
model can be applied to practical optical design. In our sim-
ulation, we have shown that our method provides simple
and easy evaluations of center artifacts. In addition, since
the shape of the normal distribution function is decided
by only standard deviation which corresponds to the
width of a bell-shaped curve, this representation provides
simple charactrization of center artifacts for optical draw-
ing, tolerancing, and fabrication. Through our research,
we propose a useful new method for optical design and
development.
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Fig. 14 Measured figure errors and the final approximation shapes.

Table 8 Aspherical coefficients of approximation polynomials.

Front surface Rear surface

a0 1.000000 × 1000 1.000000 × 1000

a1 −1.469677 × 1001 −1.469924 × 1001

a2 8.117187 × 1001 8.119338 × 1001

a3 −2.204062 × 1002 −2.204779 × 1002

a4 3.148497 × 1002 3.149646 × 1002

a5 −2.266836 × 1002 −2.267726 × 1002

a6 6.476508 × 1001 6.479178 × 1001

Table 9 P-V errors of measured figure and P-V residuals of three
approximation methods (units are in millimeters)

P-V
errors of
measured
figure

Fringe Zernike
approximation

residuals

Fringe
Zernike

and normal
distribution
residuals

Zernike
and odd-
order

residuals

Front
surface

0.0056 0.0046 0.0012 0.0015

Rear
surface

0.0029 0.0013 0.0007 0.0009

Table 7 The parameters of actual fabricated lens for Eq. (1).

Parameter Front surface Rear surface

σ (no dimension) 0.0546 0.0508

A (mm) 0.0036 0.0008
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Fig. 16 Comparison of PSF of axial image.

0.5

0.6

0.7

0.8

0.9

1.0

TS 0.0000 mm TS 0.0000 mm TS 0.0000 mm

0
0.0

0.1

0.2

0.3

0.4

Spatial frequency in cycles per mm

Projection Optics_Extened_PSF.ZMX
Configuration 1 of 1

M
od

ul
us

 o
f 

th
e 

O
T

F

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.1

0.2

0.3

0.4

M
od

ul
us

 o
f 

th
e 

O
T

F

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.1

0.2

0.3

0.4

M
od

ul
us

 o
f 

th
e 

O
T

F

Polychromatic diffraction MTF

2017/01/10
Data for 0.5500 to 0.5500 μm.
Surface: Image

Projection Optics_Only Zernike.ZMX
Configuration 1 of 1

Polychromatic diffraction MTF

2017/06/19
Data for 0.4861 to 0.6563 μm.
Surface: Image

10 20 30 40 50 60 70 80 90 100 0
Spatial frequency in cycles per mm

10 20 30 40 50 60 70 80 90 100 0
Spatial frequency in cycles per mm

10 20 30 40 50 60 70 80 90 100

Projection Optics_Only Zernike.ZMX
Configuration 1 of 1

Polychromatic diffraction MTF

2017/06/19
Data for 0.4861 to 0.6563 μm.
Surface: Image

Fig. 15 Comparison of MTF of axial image.
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