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Abstract. This paper presents a near-real-time stereo matching method using both cross-based support regions
in stereo views. By applying the logical AND operator to the cross-based support region in the reference image
and target image, we can obtain an intersection support region, which is used as an adaptive matching window.
The proposed method aggregates absolute difference estimates in the intersection support region, which are
combined with the census transform results. The census transform with a fixed window size and shape is
applied, and only the resultant binary code of the pixel in the intersection support region is used. From
Middlebury images and their ground truth disparity maps, we compute the area similarity ratio of support regions
in stereo views. Then, a conditional probability of observing a correct disparity estimate with respect to the area
similarity ratio is examined. By taking a natural logarithm of the probability, a relative reliability weight about the
area similarity of support regions is obtained. The initial matching cost is then combined with the reliability weight
to obtain the final cost, and the disparity with the minimum cost is chosen as the final disparity estimate.
Experimental results demonstrate that the proposed method can estimate accurate disparity maps. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in
part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.57.2.023103]
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1 Introduction
Stereo vision applications based on stereo matching are
becoming increasingly common, ranging from mobile
robotics to driver assistance system. The goal of stereo
matching is to determine a precise disparity, which indicates
the difference in the location of the corresponding pixels.
The corresponding pixels between two images of the
same scene are established based on similarity measures.
Dense stereo matching to find the disparity for every pixel
between two or more images has been actively researched for
decades.1–10

Stereo matching algorithms are classified into global and
local approaches.1 Local methods utilize the color or inten-
sity values within a finite support window to determine the
disparity for each pixel. Global methods compute all dispar-
ities of an image simultaneously by optimizing a global
energy function.2–10 Global methods, which define a global
energy function with a data term and smoothness term, help
produce accurate disparity maps. To find the minimum
global energy function, various global optimizers, such as
dynamic programming (DP),5,6 belief propagation,7 and
graph cuts,8 have been proposed. Local algorithms select
the potential disparity with the minimal matching cost at
the pixel; hence, they are efficient and easy to implement.

Local stereo methods commonly use matching windows
with a fixed size and shape, but the estimation results are
greatly influenced by irrelevant pixels within the window
considered. Improved local algorithms that reduce the
error effects of irrelevant pixels can be divided into two
categories.3 Local stereo methods focus on selecting either

the optimal window among predefined multiple windows
or selecting point by point to adaptively support a window’s
size and shape.9,10 However, building windows of various
sizes and shapes adaptive to neighboring intensity distribu-
tion is time-consuming. Adaptive-weight methods assign
different support weights to pixels in the given window
by evaluating color similarity and geometric proximity,2

but textureless regions, repeated patterns, and occlusion
regions are not readily amenable to this solution.

This paper introduces an adaptive stereo matching
method using the cross-based support regions in stereo
views. The size and shape of the cross-based support region
are chosen adaptively according to local color information
and spatial distance. By applying the AND logical operator
to the cross-based support region in both the reference image
(left) and target image (right), an intersection support region
can be obtained, which is then used as an adaptive matching
window. The proposed method aggregates absolute differ-
ence (AD) estimates in the adaptive matching window,
which are combined with the census transform results.

From the Middlebury reference images and their ground
truth depth maps,11 a conditional probability of observing a
correct disparity estimate with respect to the similarity ratio
of the areas in the cross-based support regions in stereo views
can be calculated. When the cross-based support region in
the target image is similar to that in the reference image,
the area similarity ratio is close to 1, and a more accurate
disparity value can be obtained. By taking the natural log
probability, a relative reliability weight value based on the
area similarity ratio is obtained. The initial matching cost
is then combined with the reliability weight to obtain the
final cost, and the disparity with the minimum cost is chosen
as the final disparity estimate. Experimental results demon-
strate that the proposed algorithm based on reliability weight*Address all correspondence to: Hyunki Hong, E-mail: honghk@cau.ac.kr
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provides more accurate disparity estimates than previous
methods.

The main contributions of this paper are twofold. First,
using both support regions in stereo views enables a disparity
map to be more accurately estimated. The intersection region
of cross-based support regions in the reference image and
target image is used as an adaptive matching window.
Second, a reliability weight based on the area similarity
ratio of both support regions in stereo views is introduced.
The reliability weight represents the probability of correct
disparity estimation with respect to the area similarity
between stereo views. The shaded box in Fig. 1 represents
the main components of our contribution.

2 Proposed Method

2.1 Building Intersection Support Region

In a textureless region, large matching windows to consider
enough pixels are needed to overcome their erroneous
matching costs, whereas in highly textured regions at depth
discontinuities, smaller windows are needed to avoid over-
smoothing. To address this problem, a cross-based support
region construction method that can adaptively alter the win-
dow’s shape and size is proposed,3,4 which considers only
the support region of the reference image. Another method
considers cross-based support regions in both target and
reference images, but the regions are used only for initial
matching cost aggregation.12 In this paper, an area where
the cross-based support regions in both the target and refer-
ence images intersect is used as an adaptive support window
for matching cost computation.

Reference 4 presented the enhanced construction rules to
determine the shape of the cross-based support regions.
Figure 2 shows how an upright cross with four arms for
the anchor pixel p ¼ ðx; yÞ is constructed. Table 1 shows

a pseudocode to determine the arm length l and endpoint,
pe of the horizontal and vertical directions with respect to p.
Here, pn is the n’th pixel along the scanning direction of each
arm: pn ¼ ðx–n; yÞ in the left arm and pn ¼ ðxþ n; yÞ in

Fig. 1 Proposed algorithm.

Table 1 Cross-based support region construction.

void function SupportRegionConstruction (anchor pixel p)

{

for (i ¼ 1; i <¼ 4; i þþ) % the scanline direction of the i ’th arm
of p

l ½i � = armLength (p); % Length of the i ’th arm is saved as l ½i �.

}

int function armLength (anchor pixel p)

{

n ¼ 1;

for (; n ≤ L1; n þþ) {

if (ðDcðpn;pÞ < τ1Þ && (Dcðpn;pn−1Þ < τ1)) {

if (n > L2) {

if (Dcðpn;pÞ < τ2) continue;

else break;

}

} else break;

}

return n;

}

Fig. 2 Construction of upright cross with four arms for anchor
pixel p.3,4

Optical Engineering 023103-2 February 2018 • Vol. 57(2)

Lee and Hong: Near-real-time stereo matching method using both cross-based support regions in stereo views



the right arm, and the maximum number of pn is set to L1. In
Table 1, we examine whether the color differences Dcðpn; pÞ
and Dcðpn; pn−1Þ are lower than τ1 along the scanning direc-
tion of each arm. The color differenceDcðpn; pÞ is defined as
the maximum AD between pn and p in RGB channels:
Dcðpn; pÞ ¼ maxi¼R;G;BjIiðpnÞ − IiðpÞj. Two successive
pixels (pn and its predecessor pn−1) are examined so that
the arm will not go beyond the edges of the image. When
the arm length is longer than L2 (n > L2), the lower color
threshold value τ2 (τ2 < τ1) is used in the color difference
computation to control the arm length more flexibly. In
this paper, τ1, L1, τ2, and L2 are the experimentally preset
threshold values 27, 21, 15, and 13, respectively. Then,
the support region of pixel p is modeled by merging the hori-
zontal arms of all the pixels (for example, green colored row
of q in Fig. 2) lying on the vertical arms of pixel p. Each
horizontal line (left arm and right arm) of q is examined
as shown in Table 1, and the arm length l and endpoint
qe are determined. Since the color distribution is different
for each row of pixel q lying on the vertical arms of p,
the support region of p is not rectangular.

In the AD method, the matching cost is computed as the
AD in color/intensity between corresponding pixels.1 The
matching costs in the support region are aggregated within
two passes along the horizontal and vertical directions. In the
first pass, the matching costs are aggregated from the end-
point’s predecessor qe−1 of the left arm of any pixel q to the
endpoint’s predecessor of the right arm. In other words, the
horizontal summation of matching costs is performed on
every pixel q lying on the vertical arms of pixel p.
Then, the intermediate results of qs on the vertical arms
are aggregated vertically to obtain the final cost. Both passes
can be efficiently computed with one-dimensional integral
images.3,4

Given a pixel p ¼ ðx; yÞ in the reference image, our goal
is to establish its corresponding pd ¼ ðx–d; yÞ in the target
image accurately. Since the stereo rig is assumed to be rec-
tified, we only examined a horizontal translation. Here, we
can acquire a support region SRðpÞ in the reference image
and the support regions SR 0ðpdÞ in the target image along
a candidate disparity level d. Using the logical AND oper-
ation of the cross-based support region in the reference
image and target image, the support region with the same
size and shape, called the intersection support region, can
be obtained.

Assuming that neighboring pixels with similar colors
have similar disparities, previous methods built cross-based
support regions for initial matching cost aggregation.3,4

However, when the intensity distribution is complex, con-
structing the cross-based support regions of a surface with
the same depth information is difficult. Furthermore, a sup-
port region of insufficient size may be built in this case. If the
total arm length in both horizontal directions is less than five
pixels, the proposed method sets the length of the support
region to five pixels to consider the minimum neighborhood
region.

2.2 Computing Initial Matching Cost

In the cross-based support region method,4 the initial match-
ing cost Cðp; dÞ is computed by combining the AD measure
and census transform in an exponential function. More
specifically, given two corresponding pixels p and pd,

two cost values CADðp; dÞ and Ccensusðp; dÞ are computed
individually.

CADðp; dÞ is defined as the average intensity difference of
p and pd in RGB channels by Eq. (1). In the original census
transform, the brightness value of anchor pixel p is compared
with the brightness values of pixels NðpÞ in the census win-
dow W. In Eq. (2), function ξðÞ returns 1 if the brightness
value IðpnÞ of the neighborhood pixel is higher than the
counterpart IðpÞ of the central pixel and 0 if the brightness
value of the neighborhood pixel is lower than that of the cen-
tral pixel by comparing the brightness values between pixels.
Using the concatenation operator ⊗, the pixel-based bright-
ness comparison results are encoded into the bit-string CðpÞ.
More specifically, CðpÞ, consisting of 0 and 1, refers to the
relative brightness distribution of neighborhood pixels on the
basis of the central pixel of the window.

By considering only the resultant binary code of the pixel
pn in the intersection support region ISRðpÞ, we can reduce
the errors caused by irrelevant pixels. This means that pn is
a pixel in the intersection region of NðpÞ and ISRðpÞ.
The census transform result is obtained from the hamming
distance of the two bit-strings of pixel p and the correspond-
ing pd

EQ-TARGET;temp:intralink-;e001;326;499CADðp; dÞ ¼
1

3

X
i¼R;G;B

jILefti ðpÞ − IRighti ðpdÞj; (1)

EQ-TARGET;temp:intralink-;e002;326;453

CðpÞ ¼ ⊗
pn∈ISRðpÞ∩NðpÞ

ξðp;pnÞ;

ξðp; pnÞ ¼
�
1; if IðpÞ < IðpnÞ
0; otherwise

: (2)

The length of the bit-string by census transform depends
on the size of the census mask. The proposed method stores
the bit-string CðpÞ by census transform in a one-byte unit.
For example, when the census window is 9 × 7 pixels,
62 bits are generated by the brightness comparison. Then,
eight strings of one-byte length are encoded, and the first
two bits of the eighth string are “do not care” bits. An exclu-
sive-OR operation of the binary string in the reference image
and in the target image is performed in the census transform.
A look-up table that contains the exclusive-OR operation
results of all two bit-strings (of one-byte length) is used
for computation efficiency.

CADðp; dÞ is normalized with the maximum intensity
value (255) as Eq. (3). When the AD measure and census
transform are combined, Mei et al.4 used the exponential
function. First, it maps different cost measures (AD measure
and census transform) to the range [0,1], such that the cost
values will not be severely biased by one of the measures.
Second, it allows easy control of the influence of the outliers
in each cost measure.

A clipping function is used for efficient implementation,
instead of the exponential function used in Ref. 4.
CN_ADðp; dÞ is aggregated in the intersection support region
ISRðp; dÞ, which are normalized with the area of the inter-
section support region area½ISRðp; dÞ� as Eq. (3). The size
and shape of the intersection support region is determined
for the candidate disparity levels (0 − dmax−1). In the
same way, Ccensusðp; dÞ is normalized with the area of the
intersection of NðpÞ and ISRðp; dÞ, and then clipped in
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Eq. (4). Here, λAD and λcensus are the threshold values for the
clipping functions. Two parameter values are determined by
considering the matching costs of the AD measure and cen-
sus transform, and CN_ADðp; dÞ and Ccensusðp; dÞ are normal-
ized by λAD and λcensus, respectively. In Eq. (5), the initial
matching cost Cðp; dÞ is computed with CSADðp; dÞ and
Ccensusðp; dÞ. To give the relative weight of importance for
two cost measures directly, wAD and wcensus parameters
are included

EQ-TARGET;temp:intralink-;e003;63;653

CN_ADðp; dÞ ¼
min

�
CADðp;dÞ

255
; λAD

�

λAD
;

CSADðp; dÞ ¼
P

pn∈ISRðpÞCN_ADðpn; dÞ
Area½ISRðp; dÞ� ; (3)

EQ-TARGET;temp:intralink-;e004;63;567Ccensusðp; dÞ ¼
min

�P
Hamming½CleftðpÞ;CrightðpdÞ�
Area½ISRðp;dÞ∩NðpÞ� ; λcensus

�

λcensus
;

(4)

EQ-TARGET;temp:intralink-;e005;63;502Cðp; dÞ ¼ wADCSADðp; dÞ þ wcensusCcensusðp; dÞ: (5)

The size and shape of the intersection support region vary
greatly with disparity levels. If a census transform is applied
to the intersection support regions at every disparity level, its
computational load is very high. Hence, a census transform
with a fixed window size and shape is applied, and only the
resultant binary code of the pixel in the intersection support
region is used as Eq. (2). Even if the size of the intersection
support region is larger than the census transform window,

the result of the census transform with the fixed window is
used as CðpÞ.

2.3 Area Similarity Ratio of Intersection Support
Regions

The proposed method introduces a relative reliability weight
based on the similarity ratio of the areas of the cross-based
support regions between stereo views. The area of the inter-
section support region is divided by the area of the cross-
based support region in the reference image. The obtained
area ratio Ri (0.0 to 1.0) represents the area similarity
between the support region in the reference image and target
image.

Figure 3 shows the process of computing the area simi-
larity ratio and assigning reliability weights at each disparity
level in more detail. The figure shows both the candidate cor-
responding pixels and their support regions in the target
image with respect to the anchor pixel in the reference
image. Here, the anchor pixel in the cross-based support
region is indicated by a white dot. In the winner takes all
(WTA) strategy, the disparity with the minimum cost
value is generally selected as the final disparity estimate.1

Accordingly, the reciprocal value of the reliability weight
based on the probability is multiplied by the initial matching
cost at each disparity level.

From the Middlebury reference images and their ground
truth depth maps, the conditional probability of observing a
correct disparity estimate on the condition that the area sim-
ilarity ratio Ri is given is examined. To compute this prob-
ability, the number of cases where correct disparity estimates
are obtained from Ri is divided by the total number of image
pixels (width × height). The area similarity ratio is divided

Fig. 3 Process of area similarity ratio computation at each disparity level.
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into a constant sampling interval, which covers the range of
Ri (8 to 256 levels).

It is common practice to keep separate training and testing
datasets. To do so, the probabilities of observing a correct
disparity estimation given the area similarity are computed
in 2005 to 2006 Middlebury benchmark reference images
(14 images). More specifically, 2005 benchmark images
(Art, Books, Dolls, Moebius and Reindeer) and 2006 bench-
mark images (Baby1, Bowling1, Cloth1, Flowerpots,
Lampshade1, Midd1, Monopoly, Plastic, and Wood1) are
used as training datasets. The 2001 and 2003 Middlebury
benchmark reference images (Tsukuba, Venus, teddy, and
cones) are used as testing datasets for quantitative perfor-
mance evaluation. In addition, 2005 and 2006 Middlebury
database sets (aloe, laundry, rock1, and cloth4) are used
as testing datasets for qualitative performance evaluation.

Figure 4(a) shows the distribution of the averaged condi-
tional probability according to Ri (i ¼ 16) in 14 reference
images (2005 to 2006 Middlebury benchmark sets). When
the cross-based support region in the target image is similar
to that in the reference image (i.e., the area similarity ratio is
close to 1), a more accurate disparity value is obtained. Here,
an extremely small support region (area less than 5 × 5) is
excluded from this estimation procedure because it will
yield a small denominator, which may cause ambiguity in
the area similarity ratio computation.

By taking the natural log probability, a relative reliability
weight according to the area similarity ratio is obtained.
In general, since the probability value is too small, its log-
arithm result may be negative. Here, the probability value is
multiplied by 105 to make the logarithm results of the mini-
mum probability value positive. Then, the logarithm results
are normalized with the value at the last sampling level.
Figure 4(b) shows the reciprocal value of the reliability
weight according to the Ri. The weighted matching cost dis-
tribution of the anchor pixel is examined in the disparity esti-
mation procedure.

2.4 Disparity Refinement

Unreliable disparity values could still be obtained owing to
occlusions, repetitive structures, and texture-less regions. To
eliminate these matching ambiguities, a four-direction scan-
line optimizer based on a semiglobal matching method is
used.4,13,14 Given the scanline directions (two along the hori-
zontal directions, and two along the vertical directions), the
path cost at pixel p and disparity d is updated, penalizing the
disparity changes between neighboring pixels. The final cost

for pixel p and disparity d is obtained by averaging the path
costs from four directions.

Using left–right consistency (LRC) checking, the match-
ing ambiguity regions can be obtained.2,3 The edge propaga-
tion (EDP) method is then used as an optimization process
with color continuity and edge information.15 The EDP
method propagates the disparity values to the peripheral
regions, considering the color differences of pixels and
the edge costs of regions. When the cost value of an adjacent
pixel is small, the disparity values of neighborhood pixels are
propagated. The proposed method uses WTA to determine
the disparity value in the cost volume, and then performs
the LRC check for outlier detection. In addition, unstable
disparity estimation values are refined by iterative region vot-
ing and proper interpolation procedures.3

3 Experimental Results
The experiment was carried out using a PC with Intel(R)
Core(TM) i7-6700 CPU @3.40 GHz, NVIDIA Geforce
GTX 1070 graphics card, and VS 2013, OpenCV 2.4.13
development environment. The proposed algorithm was
implemented on a GPU-based CUDA 8.0 platform with mul-
tithreads and parallel programming.

Figure 5 shows the Tsukuba, Venus, teddy, and cones
stereo datasets (2001 and 2003), their ground truth disparity
maps, and the disparity map results from our method. Table 2
shows four reference benchmark image resolutions and
their maximum disparity levels. Table 3 shows quantitative
evaluation results by stereo matching algorithms for the
Middlebury database set. In Middlebury stereo evaluation,
the percentage of bad matched pixels (BMP) is used as the
error measure.1 The BMP is based on counting the disparity
estimation errors exceeding a threshold value, and the most
commonly used value is 1 pixel. In this paper, the threshold
value for the BMP is set to 1. The matching errors of pre-
vious methods are listed with their original rank, as reported
in the Middlebury benchmark. In this comparison, the area
similarity ratio is divided into four sampling intervals (8, 16,
32, and 64 levels).

Table 3 shows that the sampling interval of Ri exhibits
some influence on the disparity estimation results. However,
when the sampling interval of Ri is too narrow, it becomes
difficult for the reliability weight to reflect precisely the cor-
relation between Ri and the correct disparity estimate. When
the sampling interval of Ri is 64 levels, the smallest average
errors (bold values) are obtained. So, the sampling interval of
Ri is set to 64 levels in this experiment. The proposed

Fig. 4 (a) Averaged conditional probability according to area similarity ratio and (b) reciprocal value of the
reliability weight.
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method provides better results compared with previous algo-
rithms except the AD-census method.2,4,7,16,17 Table 3 shows
that the performance of the proposed method is better or
nearly the same as the AD-census method.4 Using the adap-
tive matching window based on the intersection support
regions in stereo views, the proposed method can reduce
the errors caused by irrelevant pixels in the initial matching
cost computation. The experimental results show that the
reliability weight based on the area similarity ratio of support
regions is helpful for accurate disparity estimation. A pre-
vious algorithm based on color segmentation and a plane
estimation procedure is also considered. The performance
of the method in the Middlebury test is high but involves
significant computational load. Here, performances are
evaluated in the nonoccluded region, all (including half-
occluded) regions, and regions near depth discontinuities,
denoted as “non-occ,” “all,” and “disk,” respectively. Here,
λAD, wAD, λcensus, and wcensus are set to 0.1, 0.2, 0.8, and 1.0,
respectively. Additionally, the spatial and color control
parameters in EDP are set to 40 and 20, respectively.

Reliability measures are used to evaluate how the reliable
disparity value is obtained and to reduce the average error of

the disparity map.18,19 Two reliability measures are used to
evaluate matching performance: the peak-ratio naive
(PKRN) and the maximum likelihood metric (MLM).19

PKRN computes the ratio of the minimum cost C1 and
the second minimum cost C2 as Eq. (6). MLM obtains a
probability density function for the disparity of the minimum
cost. MLM measures the relative minimum cost value com-
pared with the sum of the total minimum cost values as
Eq. (7). Here, ε and σ are set to 128 and 8, respectively.
More specifically, the confidence methods measure the dis-
parity estimate’s likelihood of being correct and generate
reliable disparity maps by selecting among multiple hypoth-
eses for each pixel

EQ-TARGET;temp:intralink-;e006;326;278PKRN ¼ C2 þ ε

C1 þ ε
− 1; (6)

EQ-TARGET;temp:intralink-;e007;326;236MLM ¼ e−C1∕2σ2P
e−C1∕2σ2

: (7)

Figure 6 shows the confidence maps of the disparity
estimation results by the proposed method. EDP in the
refinement procedure replaces the matching cost distribu-
tion with a new quadric cost distribution based on the sta-
ble disparity value. Hence, we examine the disparity
estimation results before performing the EDP process.
In Fig. 6, the first row shows PKRN confidence maps
of the depth estimation, and the second row shows
MLM confidence maps. In addition, the first column
shows the confidence map of the depth estimation without
adaptive window and reliability weight. The second col-
umn shows the confidence map of the depth estimation

Fig. 5 (a) Tsukuba, Venus, teddy, and cones stereo images (from left to right).11 Disparity maps (b) by
previous method16 and (c) by the proposed algorithm (Ri , i ¼ 64).

Table 2 Four reference stereo images and their parameters.

Tsukuba Venus Teddy Cones

Resolution 384 × 288 434 × 383 450 × 375 450 × 375

Maximum
disparity level

16 20 60 60
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with adaptive window and no reliability weight consider-
ation. The third column shows the confidence map of the
depth estimation with both adaptive window and reliability
weight. Confidence maps using PKRN and MLM are non-
linearly scaled for visualization. Here, brighter regions
with high confidence values represent more reliable dispar-
ity estimates. Figure 6 shows that the proposed method
with adaptive window and reliability weight can improve
disparity estimation performance in the detailed parts,
such as the book shelf and light stand (marked in colored
circles).

Table 4 shows the modular computation performance on
CUDA implementation for stereo images. In many stereo
matching studies, the computation loads have been evaluated
based on the fixed maximum disparity levels of benchmark
stereo images.3,20 In Table 2, the resolution and the maxi-
mum disparity level of teddy images are 450 × 375 and 60,
respectively, which are the same as those of Cones images.
The resolution and maximum disparity level of both teddy

and cones images are higher than the other two images.
Overall, computation loads are highly dependent on both
the image resolution and maximum disparity level. This
means that less matching cost computations are performed
in Tsukuba and Venus images.

Initially, cross-based support regions in stereo views and
their intersection regions along the disparity level are built.
The area similarity ratio of the intersection region and the
census transform within the 9 × 7window are also computed
at this stage. In the initial matching cost computation step,
two procedures have almost the same processing time:
(1) finding the pixels in the intersection region and comput-
ing AD estimates, and (2) combining AD aggregation results
with census transform results and considering the reliability
weight in the matching cost computation. The proposed
method obtains the final disparity map in 20.12 to 139.17 ms
(7.2 to 49.7 frame∕s).

In this experiment, the average sizes of support regions
in cones and teddy images are 235.01 and 454.77 pixels,

Table 3 Percentage of BMPs for Middlebury database set.

Tsukuba Venus Teddy Cones

Aver.Non-occ All Disc Non-occ All Disc Non-occ All Disc Non-occ All Disc

AD-census4 1.07 1.48 5.73 0.09 0.25 1.15 4.10 6.22 10.90 2.42 7.25 6.95 3.97

Proposed method 8 1.82 2.33 6.91 0.12 0.31 1.47 3.59 6.95 10.19 1.80 7.36 5.34 4.01

16 1.34 1.87 6.40 0.15 0.35 1.85 3.69 6.93 10.48 1.76 7.31 5.21 3.95

32 1.30 1.84 6.35 0.15 0.35 1.89 3.72 7.00 10.51 1.77 7.25 5.22 3.95

64 1.29 1.81 6.42 0.16 0.35 1.95 3.73 6.97 10.53 1.76 7.17 5.19 3.94

DoubleBP7 0.88 1.29 4.76 0.13 0.45 1.87 3.53 8.30 9.63 2.90 8.78 7.79 4.19

Previous method16 1.71 2.46 7.54 0.15 0.51 1.73 4.43 10.3 12.70 2.80 8.81 7.88 5.09

AdaptWeight2 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26 6.67

DCB grid17 5.90 7.26 21.00 1.35 1.91 11.20 10.50 17.20 22.20 5.34 11.90 14.90 10.90

Fig. 6 PKRN (first row) and MLM (second row) confidence maps: (a), (d) without adaptive window and
reliability weight; (b), (e) with adaptive window and no reliability weight; and (c), (f) with both adaptive
window and reliability weight.
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respectively. This means that there are more homogeneous
color regions in teddy images than in cones images. More
pixels are examined to construct the support regions in
teddy images. Therefore, in teddy images, the computation

time of the initial step with the support region construction is
longer than that in Cones images. The size of the support
region has little effect on the matching cost computation
step, because the integral image of matching cost is

Table 4 Computation time (ms) of modules.

Initial setting Matching cost computation Scanline optimization LRC check and EDP Refinement Total

Tsukuba 4.08 5.34 7.32 2.24 1.14 20.12

Venus 6.95 9.14 14.34 3.42 1.37 35.22

Teddy 15.03 22.27 91.72 7.98 2.17 139.17

Cones 14.59 22.25 91.71 8.02 2.57 139.26

Fig. 7 (a) Stereo images (left view) and (b) ground truth.11 Disparity maps by (c) MGMmethod,22 (d) DCB
grid,17 and (e) proposed method (Ri , i ¼ 64).
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employed in the cost aggregation. The numbers of occlusion
pixels by LRC check in teddy images and cones images are
18,404 and 19,479, respectively. Then, the refinement step
(LRC check and iterative region voting) is performed to over-
come occlusion regions. In Table 4, the computation of the
refinement step in cones images takes longer time than that
in teddy images. Table 4 shows that the scanline optimization
step requires longer computation time. To improve perfor-
mance further, we will consider another optimization
method based on parallel GPU architecture for computation
efficiency.21

In Figs. 7 and 8, the proposed method is qualitatively
compared with previous methods.17,22 The test is performed
for 2005 and 2006 Middlebury database sets (aloe, laundry,
rock1, and cloth4) and the book arrival sequence,23 a real-
world stereo video clip captured in an uncontrolled environ-
ment. Figures 7(c)–7(e) show the disparity maps by the
MGM method, DCB grid method, and proposed method,
respectively. In the MGM method, a refinement procedure

is not included and the disparity results are expressed in
pseudo color. However, we can see roughly matching per-
formance by the MGM method. The disparity maps by the
proposed method have more distinct boundaries of objects
and are less noisy. However, further considerations to
eliminate errors in the occluded and textureless regions
(such as backgrounds in rock1 image) are needed. The
reference images (the 1st and 20th frames) and their dispar-
ity results are shown in Fig. 8, respectively. The next two
columns show the results produced by previous methods.
(DCB grid’s source code is downloaded from author’s
project website at https://www.cl.cam.ac.uk/research/
rainbow/projects/dcbgrid/, and disparity results by the
MGM method are obtained using an online demo on
author’s website at http://dev.ipol.im/~faccilol/mgm.) The
last column shows the results by the proposed method.
In the same manner, the proposed method is compared
with two algorithms on outdoor scene image sequence,
as shown in Fig. 9.

Fig. 8 Snapshots of book arrival stereo sequence from FhG-HHI database:19 (a), (e) Reference frame.
Disparity maps by (b), (f) MGM method;22 (c), (g) DCB grid;17 and (d), (h) proposed method (Ri , i ¼ 64).

Fig. 9 (a), (e) Outdoor scene images. Disparity maps by (b), (f) MGM method;22 (c), (g) DCB grid;17 and
(d), (h) proposed method (Ri , i ¼ 64).
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4 Conclusion
This paper presents a near-real-time stereo matching method
using cross-based support regions in both the reference and
target images. The proposed method obtains the intersection
region of the cross-based support regions in stereo views.
The intersection region is used as an adaptive matching win-
dow for initial matching cost computation. When the area of
the support region in the reference image is similar to that in
the target image, the candidate disparity is likely to be the
correct disparity value. The proposed method computes
the reliability weight based on this probability from the
Middlebury reference database sets. Experimental results
show that the proposed method with CUDA implementation
provides improved matching accuracy and processing
efficiency.
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