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1 Introduction
The moiré effect is a physical phenomenon of linear optics.
The moiré patterns appear as a result of an interaction
between transparent layers of a repeated structure1 when
superposed layers are viewed through. Several examples
of the moiré effect are shown in Fig. 1 (a bridge, a facade
of a building, an air conditioner grid, a textile curtain, etc.).

The visual appearance of the moiré patterns depends on
characteristics of gratings and on the location of the
observer.2 In the case of two gratings, the patterns look
like an added series of repeated stripes, which could look
bright, vivid, and sometimes even unpredictable.

The moiré effect is not unknown in the literature. A gen-
eral description of the moiré effect can be found in several
books (Refs. 1–3), which also include many useful exam-
ples. A perfectly illustrated book, Ref. 4 is full of excellent
moiré images. There are also research papers, specifically
Refs. 5–10, which describe various aspects of the moiré
effect. Examples of the moiré effect in digital devices are
shown in Fig. 2.

In gratings of similar layouts, the moiré patterns repro-
duce the structure of the gratings as in the moiré magnifier,11

see Fig. 3. This figure also shows that with all other condi-
tions equal, the period of the moiré patterns is the same in
gratings of different geometric layouts.

Generally speaking, visual displays can be either dynamic
or static. The dynamic displays are CRT TV, LCD, and
OLED. The examples of static displays are a printed picture
or photograph, poster, and postcard. In visual displays, the
moiré effect may create an unwanted and sometimes unex-
pected image of bands (as in Fig. 1) or patterns (as in Fig. 3).
Such additional visual background decreases the contrast on
the display screen and consequently reduces the image qual-
ity; therefore in imaging and displays, the moiré effect is an
undesirable adverse visual effect.12,13 The elimination or the
reduction of the moiré patterns in displays is an important
issue of improvement in the visual quality. The necessity
of the minimization of the moiré patterns in three-

dimensional (3-D) displays was first stated14 in the early
2000s. This is especially important for autostereoscopic 3-
D displays,15–23 where the moiré effect may often occur
due to their typical design.

The moiré effect was observed not only under visible light
but also under rays and beams of different nature, for in-
stance, in electron beams,23 infrared light,24 and x-rays,25

as well as at the nanoscale in graphene layers.26

Finding characteristics of patterns based on the layouts
of the layers is a direct problem.27–31 An inverse problem
is to find the position (shape) of another grating based
on the observed moiré patterns when positions of an
observer and of one grating are known together with the
parameters of the grating; this is a topic of the 3-D shape
measurement.2,32–37

In contrast, it appears to be possible to arrange the moiré
patterns so the resulting pattern would carry useful
informational content (including 3-D). The first solution
of this previously unknown moiré problem was proposed
in Ref. 38 and implemented in Ref. 39. Also, the moiré effect
can be used for other purposes, such as the moiré interfer-
ometry,40–42 the moiré deflectometry,43 the optical align-
ment,44,45 the visual security (cryptography),46,47 and many
other applications.

That is to say, this is a twofold moiré problem that on the
one hand, deals with minimization of the moiré effect to
improve the image quality;48 and on the other hand, with
its maximization to measure distances,49,50 as well as to dis-
play meaningful images38 in 3-D displays based entirely on
the moiré effect as the main physical principle, or to improve
security.51–53 An image in a 3-D moiré display is shown in
Fig. 4. In each application example mentioned in this para-
graph, the understanding of the behavior of the moiré pat-
terns is needed.

There are many approaches to investigate the moiré effect.
In some cases, solutions can be found from direct analytical
considerations. The indicial method can be used to find
locations of the characteristic points (minima or maxima)
of the patterns. The indicial and direct approaches require
simplification, such as a simplified structure, small angles,
smooth functions (nearly sinusoidal), etc.
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Dealing with spectra represents a generalized appro-
ach.54–56 Using spectral trajectories,57 the behavior of the pat-
terns can be estimated geometrically. As the equations of the
trajectories are derived from the geometric characteristics of
the gratings, the estimation can be made without calculations
of spectra. This makes the spectral trajectories suitable for an
interactive computer simulation.

The tutorial is based on the authors’ knowledge and com-
prehension of the moiré phenomenon and experience in

investigating it for a decade. It includes several methods
to find characteristics of the moiré patterns in various situa-
tions that are presented.

After sections, we provide exercises. We hope that the
exercises can make readers to think deeply, and this way
to improve their understanding of the considered topics.
Implied is a self-check as, for example, the same result
obtained by an independent method. This is probably one
of the best methods of verification. Nevertheless, whenever

Fig. 1 Moiré patterns around us (a) fence, (b) building, (c) air conditioner grid of a building (d) curtain,
(e) pen holder, (f) mesh and its shadow, and (g) bridge.
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readers would send their solutions to the authors, the readers’
notes and comments will be considered and replied to with
the greatest pleasure.

The tutorial is arranged as follows: Secs. 2–5 deal with
the moiré effect directly, in the spatial domain, whereas
Secs. 6–8 deal with spectra (the spectral domain).
Namely, in Sec. 2, we explain the indicial equation method.
In Secs. 3 and 4, we describe the plain coplanar and nonco-
planar sinusoidal gratings. Section 5 gives an example of the

moiré effect in a 3-D object, a cylinder. Then, Secs. 6 and 7
present such fundamental issues as the wave vector of the
moiré patterns in terms of the vector sum and the basics
of two-dimensional (2-D) Fourier transform. Section 8
describes the spectral trajectories. After discussion about
the visual effects in displaced or rotated plane gratings in
Sec. 9, a conclusion finalizes the tutorial.

2 Indicial Equation
The indicial equation is an analytical method to calculate the
characteristic locations of fringes, implying that the locations
of the minima/maxima of gratings are known. In this
approach, a line grating is modeled by a series of thin
lines (a sketch of a family of lines), i.e., some kind of a wire-
frame of the maxima (or minima) only, with the intensity
profile ignored. The lines of the moiré bands connect the
intersections of these families of lines of gratings. As
soon as the equations of these intersections can be calculated
based on the given equations of the families, technically the
equations of the moiré bands can be found as analytical
expressions.

As an easy example, consider two families of the equidis-
tant parallel lines in the xy-plane: the horizontal lines with
period T1 and the slanted lines with period T2 (rotated at the
angle α). The sketch lines of the gratings are shown by solid
lines in Fig. 5; the moiré patterns comprise the third family of
lines with the period Tm at the angle θ (shown by dotted lines
connecting the intersections in a shortest way). These spots
or relatively low visual densities are visually connected as
brighter spaces between darker areas, and the moiré patterns
appear.

The periods of bright and dark lines are identical. Without
loss of generality, consider the maxima. The equations of
two families are

EQ-TARGET;temp:intralink-;e001;326;217y ¼ mT1; (1)

EQ-TARGET;temp:intralink-;e002;326;187x sin αþ y cos α ¼ nT2; (2)

where x, y are coordinates, m and n are the integer numbers
enumerating the lines in the families. The p’th line connects
the intersections with the following numbers:

EQ-TARGET;temp:intralink-;e003;326;128m − n ¼ q; (3)

where q is another integer.
Excludingm and n from Eqs. (1)–(3), we obtain the equa-

tion of the q’th intersection, i.e., the q’th moiré line

Fig. 2 Moiré patterns in the digital world (a) scanned image and
(b) 3-D displays.

Fig. 3 Same period of moiré patterns in (a) square and (b) hexagonal
grids of identical periods.

Fig. 4 Image in a moiré display.

Fig. 5 Sketch of the indices.
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EQ-TARGET;temp:intralink-;e004;63;752−xT1 sin αþ yðT2 − T1 cos αÞ ¼ T1T2q: (4)

This equation represents the family of the parallel lines of
lower spatial frequency (whose period is longer than the
period of either grating). From the equation of the straight
line, Eq. (4) can be rewritten in the normal form

EQ-TARGET;temp:intralink-;e005;63;686y sin θ þ x cos θ − p ¼ 0: (5)

We can obtain the tangent of the orientation angle of the
moiré line

EQ-TARGET;temp:intralink-;e006;63;633 tan θ ¼ −T1 sin α

T2 − T1 cos α
¼ − sin α

T2

T1
− cos α

; (6)

as well as the distance between two successive moiré lines
(when the index q changes by one unit), i.e., the period of the
moiré patterns

EQ-TARGET;temp:intralink-;e007;63;558Tm ¼ T1T2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 − 2T1T2 cos αþ T2

2

p
¼ T2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2 T2

T1
cos αþ

�
T2

T1

�
2

s : (7)

In the case of the identical gratings (T1 ¼ T2), Eqs. (6)
and (7) are simplified. The angle becomes

EQ-TARGET;temp:intralink-;e008;63;442 tan θ ¼ − sin α

1 − cos α
¼ − cot

α

2
; (8)

which means the half angle between the gratings of equal
periods; the period in this case is

EQ-TARGET;temp:intralink-;e009;63;379Tm ¼ T1

2 sin α
2

: (9)

Equations (6) and (7) correspond to Eq. (2.9) from Ref. 1
with θ1 ¼ 0, whereas Eqs. (8) and (9) correspond to
Eq. (2.10) there. A visual illustration of the moiré effect
in the identical gratings is shown in Fig. 6 (α ¼ 5 deg).

2.1 Exercises

1. Calculate the period and orientation of the moiré
patterns in the parallel line gratings with their periods
1 and 1.1 mm.

2. The same for the identical gratings (period 2 mm)
installed at the angles of 0 deg, 5 deg, and 10 deg.

3. Calculate the period of the moiré patterns in the square
grids with the same periods and angles as in the prob-
lems 1 and 2.

4. The same for the line grating 1 mm and 30 deg-
rhomboidal grid 1.1 mm at the angle of 25 deg
between them.

5. Describe the shape of the moiré patterns in the circular
(radial/concentric) grating + line grating.

3 Sinusoidal Coplanar Gratings
The profile of the gratings also can be taken into account. For
example, the analytical expressions of the moiré bands can
be obtained for the sinusoidal gratings. The moiré patterns
are the patterns of a longer period. The estimation of their
visual appearance is based on the wave numbers.

3.1 Two Line Gratings

An interaction between the gratings can be modeled math-
ematically by the multiplication of transparency functions
of the gratings. For instance, a one-dimensional (1-D) sinus-
oidal line grating (whose intensity profile along certain
direction is a sinusoidal function) can be described by its
transparency function t ¼ ð1þ cos k · xÞ∕2, where k is
the wave vector (inversely proportional to the period), and
x is the coordinate axis. A sinusoidal grating is shown in
Fig. 7(a).

A result of the interaction between two gratings Fig. 7(a)
can be written as

EQ-TARGET;temp:intralink-;e010;326;345

t12 ¼ t1t2 ¼
1

2
½1þ cosðk1 · xÞ� ·

1

2
½1þ cosðk2 · xÞ�

¼ 1

4
½1þ cosðk1 · xÞþ cosðk2 · xÞþ cosðk1 · xÞcosðk2 · xÞ�

¼ 1

4

�
1þ cosðk1 · xÞþ cosðk2 · xÞþ

1

2
cos½ðk1 þ k2Þ · x�

þ 1

2
cos½ðk1 − k2Þ · x�

�
; (10)

where k1 and k2 are the wave vectors of the gratings; the
expression k · x means the dot product of the vectors k
and x.

For the moiré effect, we need the smallest wave number.
In Eq. (10), the first term is the constant bias (a “DC” term),
the second and third terms are the gratings themselves,
whereas the fourth and fifth terms represent combinational
spatial frequencies (sum and difference). In Eq. (10), the
term with the smallest wave number (and with the lowest
spatial frequency) is the fourth term proportional to
cos½ðk1 − k2Þ · x�.Fig. 6 Moiré patterns in overlapped gratings.
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3.2 Square Grid + Line Grating

Superimposed gratings model a typical structure of many
displays. A square grid can be thought as a pair of overlapped
orthogonal gratings, whereas the barrier (or lenticular) plate
can be modeled by a line grating. Accordingly, for two super-
posed rectangular gratings, we need two such pairs, four gra-
tings total. For the square grid superposed with the line
grating, we need three gratings. Examples of the grating
and the grid are shown in Fig. 7.

The transparency function of overlapped gratings
obtained by the multiplication is
EQ-TARGET;temp:intralink-;e011;63;457

t123 ¼ t1t2t3 ¼
1

16
½1þ cosðk1x · x1Þ�½1þ cosðk1y · y1Þ�

× ½1þ cosðk2x · x2Þ�: (11)

The vector relationship Eq. (11) can be rewritten in a sca-
lar form. For that purpose, the dot products in Eq. (11) can be
rewritten as follows:
EQ-TARGET;temp:intralink-;e012;63;370

k1x · x1 ¼ ρkð1;0Þ · ðx; yÞ ¼ ρkx

k1y · y1 ¼ ρkð0;1Þ · ðx; yÞ ¼ ρky

k2x · x2 ¼ kðcos α; sin αÞ · ðx; yÞ
¼ kðx cos αþ y sin αÞ; (12)

where k is the wave number of the first grating, α is the angle
between the wave vectors of the gratings, and

EQ-TARGET;temp:intralink-;e013;326;560ρ ¼ k1∕k2; (13)

is the ratio of wave numbers which are the moduli of the cor-
responding wave vectors as follows, k1 ¼ jk1j; k2 ¼ jk2j.
Substituting Eq. (12) into Eq. (11), we have
EQ-TARGET;temp:intralink-;e014;326;498

t123 ¼ t1t2t3 ¼
1

16
ð1þ cos ρkxÞð1þ cos ρkyÞ

× f1þ cos½kðx cos αþ y sin αÞ�g

¼ 1

16
ð1þ cos ρkxþ cos ρkyþ cos ρkx cos ρkyÞ

× f1þ cos½kðx cos αþ y sin αÞ�g

¼ 1

16

�
1þ cos ρkxþ cos ρkyþ 1

2
cos ρðkx− kyÞ

þ 1

2
cos ρðkxþ kyÞ

�
f1þ cos½kðx cos αþ y sin αÞ�g:

(14)

Similarly, applying the equation for the product of cosines
several times, we have

EQ-TARGET;temp:intralink-;e015;63;285t123 ¼
1

16
½1þ cos ρkxþ cos ρkyþ cosðcos αkxþ sin αkyÞ�

þ 1

32

8><
>:

cos ρkðx − yÞ þ cos ρkðxþ yÞ
þ cos½ðρþ cos αÞkxþ sin αky� þ cos½ðρ − cos αÞkx − sin αky�
þ cos½cos αkxþ ðρþ sin αÞky� þ cos½− cos αkxþ ðρ − sin αÞky�

9>=
>;

þ 1

64

(
cos½ðρþ cos αÞkxþ ð−ρþ sin αÞky� þ cos½ðρ − cos αÞkxþ ðρþ sin αÞky�
þ cos½ðρþ cos αÞkxþ ðρþ sin αÞky� þ cos½ðρ − cos αÞkxþ ðρ − sin αÞky�

9=
;:

(15)

The following identity means the rotation of coordinates
by the angle θ ¼ arctan b∕a

EQ-TARGET;temp:intralink-;e016;63;118 cosðaxþ byÞ ¼ cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
x 0
�

¼ cosðkx 0Þ; (16)

where

EQ-TARGET;temp:intralink-;e017;326;140k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
: (17)

Applying Eq. (17) to Eq. (15), we can obtain the wave
numbers of all terms of Eq. (15). These wave numbers
are listed below in the same order as in Eq. (15)

Fig. 7 (a) Sinusoidal 1-D grating and (b) sinusoidal 2-D grid.
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EQ-TARGET;temp:intralink-;e018;63;752

ki ¼ 0; ρ; ρ; 1;
ffiffiffi
2

p
· ρ;

ffiffiffi
2

p
· ρ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 2ρ cos αþ 1

q
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 − 2ρ cos αþ 1

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 2ρ sin αþ 1

q
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 − 2ρ sin αþ 1

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρ2 þ 2ρ cos α − 2ρ sin αþ 1

q
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρ2 − 2ρ cos αþ 2ρ sin αþ 1

q
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρ2 þ 2ρ cos αþ 2ρ sin αþ 1

q
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρ2 − 2ρ cos α − 2ρ sin αþ 1

q
; i ¼ 1; : : : ; 14: (18)

Equation (18) shows that there are eight different non-
constants (i.e., depending on the angle) wave numbers
among 14 terms of Eq. (15).

The symmetry of the problem suggests that the angular
range (domain) to be considered in the case of the square
grid is [0 deg, 45 deg]. All calculations can be made within
this domain only; the angles outside it can be reduced into
the domain by means of finding the remainder of the division
by 45.

None of eight nonconstant functions equals 0 within the
domain. Only two functions fall down to 0 at the edges; the
function

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 2ρ cos αþ 1

p
¼ 0 at the left edge (α ¼ 0)

with ρ01¼0, and the function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρ2−2ρ cos α−2ρ sin αþ1

p
at the right edge (α ¼ 45 deg) with ρ11 ¼ 1∕

p
2. Both

cases describe infinitely long waves, which represent the
strongest moiré waves because according to our visibility
assumption48 that the waves with longer periods are better vis-
ible (this assumption is confirmed later experimentally by the
direct amplitude measurements58). The corresponding wave
numbers are

EQ-TARGET;temp:intralink-;e019;63;389k01ðρ; αÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 2ρ cos αþ 1

q
; (19)

EQ-TARGET;temp:intralink-;e020;63;353k11ðρ; αÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρ2 − 2ρ cos α − 2ρ sin αþ 1

q
: (20)

The functions defined in Eqs. (19) and (20) are continu-
ous and monotonous; one of them is rising, another falling.
Therefore, they must intersect within the domain at certain
α0, and the period at that point is definitely shorter than at the
edges, and the moiré patterns are less visible. Thus, the moiré
patterns can be minimized.

In the left “half” of the domain (0 < α < α0), the function
defined in Eq. (19) prevails, i.e., it has lower values which
correspond to the longer wavelengths. In the right “half” of
the domain (α0 < α < 45 deg), the function defined in
Eq. (20) prevails. The best visible patterns at the left edge
of the domain are represented by the first function. At larger
angles, the visibility falls down (because the wavelength
shortens) until the intersection point. After that point, the
best visible patterns are represented by the second function;
the visibility increases and reaches another maximum at the
right edge of the domain. Therefore in general, the visibility
of the moiré patterns is lowest at the intersection point α0.

Examples of the moiré patterns are shown in Fig. 8; the
corresponding gratings are shown in Fig. 7. Figure 8 shows
the moiré patterns at the angles near the edges of the domain
and near its middle for the size ratios of 1 and 0.707 (namely,
the angles slightly deviated from 0 deg, 45 deg, and 27 deg).
Note that the period of the patterns in Figs. 8(b)–8(e) is not
much longer than the period of the gratings.

Let us find the intersection of the functions defined by
Eqs. (19) and (20). Substitute ρ1 mentioned above into
the first function, and ρ2 into the second one. At the inter-
section, the two functions are equal, i.e.,

EQ-TARGET;temp:intralink-;e021;326;433

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2 cos αþ 1

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ffiffiffi
2

p cos α −
2ffiffiffi
2

p sin αþ 1

s
;

(21)

which is equivalent to the following equation:

Fig. 8 Moiré patterns: size ratio 1, angles 2 deg, 27 deg, and 43 deg in (a), (b), and (c), respectively; size
ratio 0.707 and the same angles in (d), (e), and (f), respectively.
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EQ-TARGET;temp:intralink-;e022;63;752 cos αð1 − sin αÞ ¼ 1

2
: (22)

For the new variable S ¼ sin α, Eq. (22) can be rewritten
as a quartic equation

EQ-TARGET;temp:intralink-;e023;63;698S4 − 2S3 þ 2S −
3

4
¼ 0: (23)

This equation has the only real root S ¼ 0.442 within the
domain; the corresponding angle is

EQ-TARGET;temp:intralink-;e024;63;639α0 ¼ 26.261 deg : (24)

Note that this angle is very close to

EQ-TARGET;temp:intralink-;e025;63;599α1∕2 ¼ arctan
1

2
¼ 26.565 deg : (25)

(The difference between two above angles is about 1%). It
means that either of two angles Eqs. (24) or (25) can be prac-
tically used in the sinusoidal approximation with the accu-
racy about 99%.

From a proper (long enough) distance, the short-period
patterns at the angle α0 (or α1∕2) are unrecognizable and
thus are effectively eliminated, see Figs. 8(b) and 8(e).
For the equations in the polar coordinates refer to Ref. 59.

3.2.1 Exercises

1. Point out the terms of Eq. (15) responsible for the
strongest functions given in Eqs. (19) and (20).

2. Write down the equation of strongest waves for the 60-
deg rhomboidal grating combined with a line grating.

3. Find the period of residual moiré patterns at the opti-
mal angle (you may use either of two branches).

4. Find the period of the moiré patterns in square grating
1 mm + line grating 1.1 mm at the angles of 0 deg,
5 deg, and 10 deg.

5. Determine the orientation of the moiré pattern in line
gratings 1 mm + 1.2 mm installed at 10 deg.

4 Sinusoidal Noncoplanar Gratings
Practically, the layers may not lie in the same plane. For
example, a typical structure of the autostereoscopic 3-D dis-
plays contains two parallel layers separated by an air gap.
Such a nonplanar layout makes the moiré patterns alive
and vivid. The visual picture may look dissimilar from

different directions, and the movement of the patterns some-
times looks unexpected; moreover, their behavior may seem
unpredictable. This section is based on Refs. 28 and 60.
Consider two layers observed from a finite distance l as
shown in Fig. 9.

According to Ref. 60, the period of the moiré patterns in
this case (two line gratings) is

EQ-TARGET;temp:intralink-;e026;326;675Tm ¼ 1			 sρ − 1
			 T1; (26)

where ρ is defined in Eq. (13) and s is the geometric factor

EQ-TARGET;temp:intralink-;e027;326;613s ¼ 1þ Δl
l
; (27)

where l is the coordinate of the observer and Δl is the gap
between the layers.

This expression for the period can be rewritten in terms of
the moiré magnification factor; by its physical meaning, the
moiré factor is an amplification coefficient (or a gain factor)
for the period of the grating. The moiré factor corresponding
to Eq. (26) is

EQ-TARGET;temp:intralink-;e028;326;495μ ¼ 1			 sρ − 1
			 : (28)

Note that when ρ ¼ s, the moiré factor Eq. (28) formally
reaches infinity, which means the infinitely long period.
However practically, we cannot measure an infinite period.
The maximum value of the period is always limited by the
size of a screen, where the patterns are observed; this is
because the patterns with the period longer than that screen
cannot be recognized as periodic waves at all. Equation (28)
is graphically shown in Fig. 10.

The particular case of Eq. (28) for the identical gratings
with ρ ¼ 1 is as follows:

EQ-TARGET;temp:intralink-;e029;326;333μ ¼ l
Δl

: (29)

Examples of moiré patterns are shown in Fig. 11 for the
same distance, but different gaps between gratings in
Figs. 11(a) and 11(b), as well as for the same gap but differ-
ent distances in Figs. 11(c) and 11(d).

Fig. 9 Two noncoplanar layers and the observer. Fig. 10 Moiré factor depending on ratio s∕ρ.
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A lateral displacement of the gratings (or the camera) does
not affect the period; however in this case, the patterns are
displaced laterally by the following value:

EQ-TARGET;temp:intralink-;e030;63;387xm ¼ ρx1 − x2
s − ρ

; (30)

where x1 and x2 are the displacements of the gratings. The
physical meaning of this equation is that the displacement of
a grating by its period results in the displacement of the pat-
terns by their period.

Note that our equations were obtained for the camera axis
orthogonal to the plain gratings. The picture may look com-
pletely different in an nonorthogonal case. Compare two
photographs of the same plane pavement in Fig. 12 taken
by the same camera, but with the different angles between
the camera axis and the surface.

In the first case (the camera axis perpendicular to the sur-
face), the shape and size of all bricks (rectangles) in the pho-
tograph are identical. In the second case (the camera with the
axis deviated from the perpendicular), all quadrilaterals (pro-
jections of the rectangular bricks) are different; it means a
strong dependence of their shape and size on coordinates.

4.1 Exercises

1. Find the period of the moiré patterns in the identical
parallel gratings (period 2 mm) installed with the gap
of 1, 5, and 10 mm. The observer distance is 1 m.

2. Rewrite the equation for the moiré factor using one
variable only. What could be its physical meaning?

3. Determine the gap based on the moiré period for:

a. parallel identical gratings.
b. identical gratings in the parallel planes but installed

at the angle.

4. Find the angle of the moiré image for the identical gra-
tings in parallel planes (but not necessarily parallel ori-
entation of gratings).

5. Obtain the homogeneous transformation matrices for
the two cases shown in Fig. 12.

6. What is a condition to see the moiré patterns of the
infinite period from the finite distance in the parallel
players installed with a gap?

7. Is it physically possible for the moiré factor to be equal
to one?

5 Cylindrical Moiré (Orthogonal Projection)
Consider a regular 3-D object: a cylinder made of a wrapped
periodic mesh, see Fig. 13. This section is based on
Refs. 61–63.

Fig. 11 Moiré patterns in identical gratings. Computer simulation of
gratings with period 0.11 cm at the same distance 100 cm, but differ-
ent gaps: (a) 2 cm, (b) 5 cm; one unit = 1 cm. Experimental photo-
graphs of gratings with period 0.3 cm and the same gap 7 cm, but
different distances: (c) 50 cm and (d) 100 cm.

Fig. 12 Two photographs of the same pavement taken by the same
camera, but from different angles. Fig. 13 Cylinder observed through both halves.
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The cylinder can be logically split into two halves, front
and rear, which are made of the same mesh. When we look
through meshes with a gap between them, the moiré patterns
may appear, as described in Sec. 4.

To calculate the period of the moiré patterns, we use the
orthogonal projection of the points lying on the surface of the
cylinder onto a screen which is parallel to the xy-plane.
Correspondingly, the projection lines are always parallel
to the z-axis; the coordinate x can be treated as an impact
parameter. Let R be the radius of the cylinder, L the distance
from the screen S to the center of the circle. An example
projection line in Fig. 14 connects three circular dots, two
on the circle, and one on the screen. The point, where
this line crosses the x-axis, is the orthogonal projection of
two points from the cylindrical surface onto the screen S.

In this section, all distances are measured along the lines
parallel to the z-axis. The distance Δl between the gratings
along the z-coordinate displaced by x is equal to the chord of
the circle. From the equation of the cylinder, the length of the
chord is

EQ-TARGET;temp:intralink-;e031;63;384Δl ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x2

p
: (31)

Then, the distance l from the observer to the first grating
is L minus one half of the chord

EQ-TARGET;temp:intralink-;e032;63;325l ¼ L −
Δl
2

¼ L −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − x2

p
: (32)

With using the polar angle φ ¼ arcsinðx∕RÞ of polar coor-
dinates, Eqs. (31) and (32) can be re-expressed as follows:

EQ-TARGET;temp:intralink-;e033;63;260Δl ¼ 2R cos φ; (33)

EQ-TARGET;temp:intralink-;e034;63;225l ¼ L − R cos φ: (34)

The variables l and Δl for Eq. (29) describing the moiré
effect in the parallel noncoplanar gratings are found.
However in the case of a spatial object as a cylinder, the gra-
tings are not parallel, and therefore the orientation of the
wave vector in space has to be additionally taken into
account. Correspondingly, two types of gratings on the sur-
face of the cylinder should be analyzed: the grating with the
vertical wave vector orthogonal to the base of the cylinder
shown in Fig. 15(a) and the grating with the horizontal
wave vector parallel to the base shown in Fig. 15(b).

In the other words, the former grating consists of the iden-
tical circles uniformly displaced along the y-axis; the latter

consists of the vertical lines uniformly distributed along the
circle, the base of the cylinder. These two cases are well sep-
arated (this fact is confirmed experimentally in Ref. 61) and
therefore can be considered in isolation from one another.

In the orthogonal projection of the first grating onto the
yz-plane, the projected period is equal to the period of the
grating, see Fig. 16(a). However, the projected period of
the second grating is not constant along the x-axis, as
shown in Fig. 16(b), and depends on the local inclination
of the cylindrical surface, which is proportional to the cosine
of the polar angle. Therefore in this case, the projected period
should be multiplied by cos φ.

Based on Eqs. (33) and (34), the moiré periods of these
cases are calculated as follows:

Fig. 14 Horizontal cross section of cylinder.

Fig. 15 Wave vectors of two types of gratings on the cylinder (a) ver-
tical wave vector and (b) horizontal wave vector.

Fig. 16 Orthogonal projections of two types of gratings onto the
screen parallel to xy -plane: (a) vertical wave vector and (b) horizontal
wave vector.
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EQ-TARGET;temp:intralink-;e035;63;495Tv ¼
l
Δl

¼ T
2

�
L

R cos φ
− 1

�
; (35)

EQ-TARGET;temp:intralink-;e036;63;460Th ¼
l
Δl

cos φ ¼ T
2

�
L
R
− cos φ

�
: (36)

The photographs of the moiré patterns in cylinders with
the horizontal and vertical wave vectors are shown in Fig. 17.

The corresponding moiré magnification factors are given
by the following equations:

EQ-TARGET;temp:intralink-;e037;63;376μv ¼
1

2

�
L

R cos φ
− 1

�
; (37)

EQ-TARGET;temp:intralink-;e038;63;333μh ¼
1

2

�
L
R
− cos φ

�
: (38)

A graphical illustration of the theoretical dependences
Eqs. (37) and (38) is shown in Fig. 18. Note that
cos φ ¼ x∕R. Across the radius, the horizontal moiré factor
deviates <1%, whereas the vertical one raises more than
twice.

5.1 Exercises

1. The period of the moiré patterns for the grating period
1 mm and the diameter 10 and 20 mm; the observer
distance is 0.5 m.

2. Draw a sketch of the patterns in wrapped skew gra-
tings (neither vertical nor horizontal layout, but an
intermediate inclination angle between 0 deg and
90 deg) based on Eqs. (35) and (36).

3. Compare the periods of the moiré patterns on the axis
of the cylinder for the grating with the lines parallel to
the axis of the cylinder and for the inclined grating
with the correspondingly inclined parallel gratings
(their gap = diameter of the cylinder).

6 Moiré Wave Vector as a Vector Sum
Now, consider the moiré effect in the spectral domain, where
we deal with the reciprocal distances or, equivalently, with
the wave vectors.

Generally speaking, the wave vector of the moiré patterns
is that linear combination of the wave vectors of gratings
(with coefficients þ1 and −1), which is closest to the origin.
It means either the sum or the difference; whichever is
shorter, see Fig. 19. Typically (but not always), it is the dif-
ference between the wave vectors of two gratings.

Let k1 and k2 be the wave vectors of the gratings and α the
angle between them. Based on these vectors, we will find the
moiré wave vector km and the moiré orientation angle θ.
Figure 19 is an illustration for the wave vectors with
close wave numbers but different orientations.

It can be seen that for close wave numbers and
α > 90 deg, it is the summation; otherwise (i.e., when
α < 90 deg), it is the subtraction. Figure 19(b) actually
shows the layout of the wave vectors for Eq. (10) in Sec. 3.

Figure 20 shows the map of the spectrum of two over-
lapped sinusoidal gratings [Fig. 19(b)]. Among all combina-
tional components, the linear combination with the smallest
wave number is the moiré wave vector.

The extremely important concept of the visibility circle1

models the human visual system in the spectral domain. The
visible vectors lie within the visibility circle, the vectors out-
side the visibility circle are invisible, see Fig. 21.

Consider the triangle with the sides k1 and km and the
angle 2π − θ between them in the case of the subtraction
shown in Fig. 19(b). From the law of cosines for the side k2

Fig. 17 Experimental photographs of the moiré patterns in two types
of gratings.

Fig. 18 Theoretical moiré factors in cylindrical objects for two
orthogonal wave vectors (L∕R ¼ 75).

Fig. 19 The moiré wave vector in two layouts of the wave vectors of
gratings: (a) sum and (b) difference.

Fig. 20 Map of spectrum (all linear combinations of wave vectors) of
two overlapped sinusoidal gratings.
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EQ-TARGET;temp:intralink-;e039;63;588k22 ¼ k21 þ k2m − 2k1km cosð2π − θÞ (39)

and

EQ-TARGET;temp:intralink-;e040;63;554 cosð2π − θÞ ¼ k21 þ k2m − k22
2k1km

: (40)

Similarly to the wave numbers k1 and k2 in Eq. (13),
km ¼ jkmj.

From the law of cosines for the side km, we have the
modulus of the moiré wave vector

EQ-TARGET;temp:intralink-;e041;63;470k2m ¼ k21 þ k22 − 2k1k2 cos α (41)

and accordingly

EQ-TARGET;temp:intralink-;e042;63;427 cosð2π − θÞ ¼ k1 − k2 cos αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 − 2k1k2 cos α

p : (42)

Therefore,

EQ-TARGET;temp:intralink-;e043;63;375 sinð2π − θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2ð2π − θÞ

q
¼ k2 sin αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k21 þ k22 − 2k1k2 cos α
p : (43)

Recall that

EQ-TARGET;temp:intralink-;e044;63;294 sin θ ¼ − sinð2π − θÞ; (44)

EQ-TARGET;temp:intralink-;e045;63;264 cos θ ¼ cosð2π − θÞ: (45)

Thus, the orientation of the wave vector of the moiré pat-
terns is

EQ-TARGET;temp:intralink-;e046;63;216 tan θ ¼ sin θ

cos θ
¼ − sinð2π − θÞ

cosð2π − θÞ ¼ −
k2 sin α

k1 − k2 cos α
: (46)

The two Eqs. (41) and (46) comprise the full solution (the
wave number and the orientation).

The relation for the periods is an inverse wave vector
Eq. (41)

EQ-TARGET;temp:intralink-;e047;63;128Tm ¼ T1T2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 þ T2

2 − 2T1T2 cos α
p : (47)

The orientation Eq. (46) can be also rewritten in terms of
the periods

EQ-TARGET;temp:intralink-;e048;326;752 tan θ ¼ −
1
T2

sin α
1
T1
− 1

T2
cos α

¼ −
T1 sin α

T2 − T1 cos α
: (48)

This is actually the same expression as Eq. (6) in Sec. 2.
Moreover, Eqs. (47) and (48) can be re-expressed in terms of
the ratio of periods ρ ¼ T2∕T1 [compare with the definition
Eq. (13) in Sec. 3.2] as follows:

EQ-TARGET;temp:intralink-;e049;326;667Tm ¼ T2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2 − 2ρ cos α

p ; (49)

EQ-TARGET;temp:intralink-;e050;326;623 tan θ ¼ sin α

ρ − cos α
: (50)

Furthermore, Eq. (49) can be expressed in terms of the
moiré factor

EQ-TARGET;temp:intralink-;e051;326;562μ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2 − 2ρ cos α

p : (51)

6.1 Exercises

1. Rewrite the expression for the wave vector using the
ratio of wave numbers.

2. Determine the minimum/maximum period from
Eq. (49) depending on the angle.

3. Draw the moiré wave vector for three line gratings of
arbitrary periods and angles.

4. Find the orientation of the moiré patterns at min/max
period from exercise 2.

7 Basics of Two-Dimensional Fourier Transform

7.1 Spectra

A relation between variables can be described mathemati-
cally in two ways: either by the functional dependence or
by the spectrum; corresponding examples are given in
Fig. 22. Both ways characterize the same relation from
different perspectives. For example, Figs. 22(a) and 22(b)
describe the sinusoidal wave, whereas Figs. 22(c) and
22(d) the square wave.

The Fourier spectra of real symmetric functions are real
and symmetric, although in general, the spectra of arbitrary
functions (including the real but nonsymmetric functions)
are complex. In the tutorial we consider the power spectra,

Fig. 22 1-D functions (sinusoidal and square waves) and their power
spectra: (a) sinusoidal function and (b) its spectrum of the right col-
umn, (c) square function, and (d) its spectrum of the right column.

Fig. 21 Moiré wave vector and visibility circle.
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i.e., the modules of the Fourier coefficients, which are always
real. For the periodic sinusoidal f1 and rectangular f2 func-
tions shown in Fig. 22, we have

EQ-TARGET;temp:intralink-;e052;63;719f1ðxÞ ¼
1

2
þ sin kx; (52)

EQ-TARGET;temp:intralink-;e053;63;679

8<
: f2ðxÞ ¼

�
1; jxj < 1∕2
0; 1∕2 < jxj < 1

f2ðxþ TÞ ¼ f2ðxÞ
; (53)

and the corresponding spectra are

EQ-TARGET;temp:intralink-;e054;63;616F1ðkÞ ¼
1

2
þ δðkÞ þ δð−kÞ

4
; (54)

EQ-TARGET;temp:intralink-;e055;63;580F2ðkÞ ¼
1

2
þ 2

π

X∞
n¼1;3;5;: : :

1

n
sinð2πnkÞ: (55)

The previous expression can be rewritten in terms of sinc
function defined as follows:

EQ-TARGET;temp:intralink-;e056;63;514sincðxÞ ¼ sinðxÞ
x

: (56)

(Sometimes you can meet an alternative definition sincðxÞ ¼
sinðπxÞ∕πx which differs in the normalization of the coordi-
nate.) The rewritten Eq. (55) is as follows:

EQ-TARGET;temp:intralink-;e057;63;439F2ðkÞ ¼
1

2
þ 4k

X∞
n¼1;3;5;: : :

sincð2πnkÞ: (57)

The sinusoidal grating has three spectral components (one
of them is a constant term, while two others represent a
sinusoidal wave itself). The rectangular grating has many
spectral components; theoretically, an infinite number of
the decayed components. The decay rate of the Fourier coef-
ficients depends on the smoothness of the function64 and par-
ticularly, for a piecewise continuous function is 1∕n. The
spectrum of a symmetric square wave contains only odd har-
monic frequencies, see Fig. 22(d), where all even harmonics
are equal to zero. Figure 22(b) shows that the power spec-
trum of a sinusoidal grating can be thought as a limited (cen-
tral) part of the spectrum of a rectangular grating.

7.2 Two-Dimensional Spectra

Figure 22 of the previous section shows the 1-D functions. A
1-D function of one variable (graphically, the “height” y as a
function of the abscissa x) can be generalized to a 2-D func-
tion of two variables (the “height” z as a function of two
independent coordinates x and y).

The 2-D case looks somewhat complicated, but not very
sophisticated and still understandable. In two dimensions,
the spectrum of a line grating is spread along a slant straight
line (an abscissa of a 1-D spectrum) and repeated (copied) in
the orthogonal direction. A 2-D function represents a surface
and can be displayed, for instance, as a “map”with colors for
the height; the white color may mean the lowest value (say,
zero), while the black color means the highest value (say,
one). Such maps of the plane waves (sinusoidal and square
profile) are drawn in Figs. 23(a) and 23(c) together with their

profiles; the spectra are shown in Figs. 23(b) and 23(d),
respectively.

In many cases, a 2-D grid can be represented as a product
of two 1-D gratings. For illustration, refer to Fig. 7 and to
Eqs. (10) and (11). Many useful details about discrete trans-
forms can be found in Ref. 56.

7.2.1 Exercises

1. Describe the spectrum of the sinusoidal square grid
(which is a superposition of two line gratings).

2. Describe the spectrum of the nonsinusoidal square
grid.

3. Draw the map of peaks for three superposed sinusoidal
gratings at the angle near 60 deg.

4. What is the 2-D Fourier transform of two orthogonal
gratings with the periodic triangular transparency
function?

5. How to find the phase of the wave from the Fourier
coefficients?

6. Distance between the spectral peaks of the func-
tion sinð3xþ 4yÞ.

8 Spectral Trajectories
Generally speaking, parameters of the gratings do not always
remain constant and may change. This change causes the
change of the spectrum. In the case of an incremental change
of a parameter, a set of several spectra represents a richer
picture of the behavior of the patterns. For example, when
a sinusoidal line grating whose initial spectrum is shown
in Fig. 24(a) turned around, its spectrum is also rotated,
see Fig. 24(b). Several overlapped spectra of an incremen-
tally rotated grating are shown in Fig. 24(c) for the angles
0 deg to 40 deg with increment 5 deg; these look like

Fig. 23 2-D functions (sinusoidal and square waves) and their power
spectra.
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a set of discrete points. Schematically, such sets of spectra
can be drawn by continuous trajectories in the spectral
domain, see Fig. 24(d).

Furthermore, one may consider the spectral domain with
the axes u, v as the complex plane with u and v as the real
and the imaginary parts of a complex number z. Then, all
locations and shapes in the complex plane and spectral
domain are identical, but the calculations become convenient
and simple because the complex numbers allow applying
many powerful mathematical theorems.

This section is based on Ref. 57. Consider a superposition
of two rectangular grids, which can be often met in practice.
The equation of the spectral peaks of four gratings arranged in
two layers (each layer consists of two orthogonal gratings) is

EQ-TARGET;temp:intralink-;e058;63;394T2×2 ¼ kðp1σ1 þ ip2Þ þ kρðp3σ3 þ ip4Þeiα; (58)

where p1; : : : ; p4 are integer numbers numbering the harmon-
ics of each of four gratings, σ1 and σ3 are aspect ratios of the
rectangular gratings in two layers (for the square gratings,
σ1 ¼ σ3 ¼ 1), and ρ is the size ratio as that in Eq. (13) in
Sec. 3. The general equation of the spectral peaks and the
equations for other superpositions can be found in Ref. 57.

A picture of trajectories Fig. 24(d) shows where the spec-
tral peaks can be located when the angle varies. The spectral
trajectories are known in many areas, refer, for instance, to

Refs. 65 and 66. For the moiré effect, the spectral trajectories
were first time proposed in Ref. 57.

In the case of two square gratings and the running angle,
the trajectory derived from Eq. (58) is as follows:

EQ-TARGET;temp:intralink-;e059;326;708T2×2αðtÞ ¼ ðp1 þ ip2Þkþ ðp3 þ ip4ÞkρeiαðtÞ: (59)

It can be proven that the trajectories [Eq. (59)] are either
circular arcs or segments of straight lines. Different dimen-
sions of gratings (implying that a line grating is a 1-D struc-
ture, the square grid is a 2-D structure) yield two particular
cases

EQ-TARGET;temp:intralink-;e060;326;622T2×2α11ðtÞ ¼ p1kþ p3kρeiαðtÞ; (60)

EQ-TARGET;temp:intralink-;e061;326;591T2×2α21ðtÞ ¼ ðp1 þ ip2Þkþ p3kρeiαðtÞ: (61)

The trajectories for two line gratings and two square grids
[Eqs. (60) and (59)] are shown in Fig. 25. These trajectories
were observed in experiments.57 Many examples of trajecto-
ries of the sinusoidal gratings for other running parameters
can be found in Ref. 67.

For the moiré effect, it is important that there can be tra-
jectories leaving the visibility circle, approaching, entering,
or crossing it, as well as the trajectories always outside or
always inside the visibility circle. The visibility circle is
shown in Fig. 25 by thin dashed line.

8.1 Exercises

1. Draw a map of peaks in the case of three overlapped
sinusoidal gratings installed at the angle near 60 deg.

2. The same for 30 deg.
3. Draw a sketch of the spectral trajectories of two line

gratings for the running parameter ρ and the angles
α ¼ 15 deg, and α ¼ 20 deg.

4. Write equations of trajectories leaving the origin in
Fig. 25(a).

5. Find the distance to the origin for the trajectories
approaching the origin in Fig. 25(b).

9 Visual Effects on the Move and on the Rotation
In the case of a laterally moved 1-D grating, the correspond-
ing displacement of the visible moiré patterns is also lateral

Fig. 24 Spectra of one rotated grating (a) initial grating, (b) rotated
grating, (c) overlapped spectra of grating rotated by several angles,
and (d) scheme of spectra (spectral trajectory).

Fig. 25 Trajectories [Eqs. (59) and (60)] for sinusoidal gratings (a) two line gratings and (b) two square
grids. (Running angle α between 5 deg and 40 deg, ρ ¼ σ1 ¼ σ2 ¼ 1).
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and given by Eq. (30) in Sec. 4. Similarly, the equation for
displacement of the visible moiré patterns in the case of the
moved observer can be derived from Ref. 60 as follows:

EQ-TARGET;temp:intralink-;e062;63;719x0m ¼ s − 1

s − ρ
xc: (62)

In both cases (the moved grating or the moved observer),
the displacement of the moved object by one of its periods
causes the displacement of the visual picture by one period
of the moiré patterns. This visual picture repeats periodically.
Correspondingly, the laterally moved observer will repeat-
edly see the same visual picture at each period of the
patterns.

In the case of identical gratings (ρ ¼ 1), we have from
Eq. (62)

EQ-TARGET;temp:intralink-;e063;63;577x0m ¼ xc: (63)

Equation (63) represents so-called moiré mirror effect in
the identical gratings, which results in the displacement of
the moiré patterns equal to the displacement of an observer;
i.e., the patterns literally follow the observer’s movement, as
his/her reflection in a plain mirror, see Fig. 26.

When the gratings are turned around, i.e., the angle
between the gratings changes, the period of the moiré pat-
terns also changes. In the case of the sinusoidal square gra-
tings, almost certainly there could be two maxima at 0 and at
45 deg. For nonsinusoidal gratings, there could be several
maxima at the intermediate rational angles (whose tangents
are rational numbers).

At the maxima, the axis of the moiré patterns is parallel to
the axis of the rotated grating and their period is maximal.68

This can be explained in the following way. Although the
spectral trajectory passes the neighborhood of the origin,

the wave number reaches a minimum at that point, where
the trajectory crosses the line connecting the origin and
the center of the trajectory.

According to Eq. (26), the period remains finite for any
relation between the parameters ρ and s, except for the case
of ρ ¼ s. In other words, the maximum period characterizes
the relation between ρ and s. From this perspective, the value
of the maximum magnification factor gives an estimate of
this relation. Theoretically, the maximum period depends
on the particular ratio of periods of the gratings, and for
the coplanar gratings with the integer ratios, the period of
the moiré patterns is infinite. There can exist several local
maxima. For illustration, refer to the computer simulation.69

The moiré factor can only be infinite in the gratings with
parallel wave vectors, when ρ ¼ s, i.e.,

EQ-TARGET;temp:intralink-;e064;326;587ρ ¼ 1þ d
z

(64)

or

EQ-TARGET;temp:intralink-;e065;326;538z ¼ d
ρ − 1

: (65)

This means that to obtain the infinite moiré factor, the size
should correspond to the distance and gap. Before and after
the “critical” distance, the moiré factor is finite. When a
long-distance observer approaches to the gratings, the
moiré factor increases, then reaches infinity at the critical dis-
tance, and finally decreases.

In the identical gratings at zero angle (α ¼ 0), the patterns
are parallel to the gratings and the moiré factor is equal
to z∕d.

In identical gratings (ρ ¼ 1) with an arbitrary angle, both
moiré factor and orientation vary as follows:

EQ-TARGET;temp:intralink-;e066;326;379μ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2 − 2s cos α

p ; (66)

EQ-TARGET;temp:intralink-;e067;326;337 tan φ ¼ s sin α

s cos α − 1
: (67)

These equations mean that at a long distance, the moiré
factor can be large, depending on the angle. When the
observer approaches, the moiré factor drops down practically
to zero, always remaining finite. On that move (approach),
the moiré patterns rotate by∼90 deg from almost orthogonal
orientation to the parallel one.

These situations can be graphically illustrated as follows.
The moiré factor in the identical gratings as a function of the
distance under two conditions: d ¼ const with α parameter is
shown in Fig. 27; the graphs for α ¼ const with d parameter
look similar.

In nonidentical gratings, the moiré factor theoretically can
reach the infinity. The cases of nonidentical gratings (with α
as parameter) and the parallel gratings (with ρ as parameter)
installed at the gap d ¼ 1 are shown in Fig. 28. In the latter
case, the moiré orientation is unchanged because practically
we cannot distinguish between the directions 0 deg and
180 deg.

The moiré factor and the orientation of the moiré patterns
in the nonidentical gratings installed at a small angle are
shown in Fig. 29.

Fig. 26 Lateral displacement of the moiré patterns due to displace-
ment of camera (a) on-axis camera, (b) off-axis (displaced) camera
at the same distance. The patterns are shifted according to
Eq. (63); the shift = lateral displacement of the observer.
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Fig. 28 (a) Moiré factor and (b) orientation in nonidentical gratings. Moiré factor (c) and orientation (d) in
parallel gratings. (The angle φ in degrees.)

Fig. 29 Moiré factor and orientation in nonidentical skew gratings in (a) and (b), respectively. (The angle
φ in degrees.)

Fig. 27 (a) Moiré factor and (b) orientation in identical gratings. (The angle φ in degrees.)
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9.1 Exercises

1. Make a drawing of the square grid combined with the
line grating near the angle of 45 deg. Describe the vis-
ual picture of the moiré patterns for a specific ratio of
periods.

2. Describe the period of the moiré patterns in the gra-
tings when the observer approaches the screen; con-
sider the coplanar and noncoplanar gratings.

3. Describe the moiré picture for noncoplanar square
grids.

4. Can two observers see identical moiré images, if they
stand shoulder to shoulder? Behind each other?

10 Discussion and Conclusion
The tutorial covers several approaches to understand the
moiré effect, to study it, and, particularly, to obtain the char-
acteristics of the visible moiré patterns in the spatial and
spectral domains. The physical meaning of equations is
explained. The cross references between sections are made.
The experimental evidences are provided in figures.

The following topics are covered: the indicial equation,
the moiré wave vector, the sinusoidal coplanar and noncopla-
nar gratings, the moiré effect in the cylinder, as well as the
2-D Fourier transform, the moiré spectra, and the spectral
trajectories. The visual effects in the displaced or rotated gra-
tings are discussed. These topics collected in one article
describe the moiré effect from various perspectives in a vari-
ety of scenarios. This gives readers a flexible opportunity to
find solutions of practical problems using this or that
approach.

For further reading, we would like to provide some addi-
tional references to the moiré effect in displays.70–72

Amazing, but the moiré effect, traditionally considered as a
negative visual effect in displays, can be used to generate
images including 3-D, refer to Refs. 38, 39, and 73. The
color moiré effect is not considered in the tutorial.
However, somebody interested can continue reading
(Refs. 74–78).

As far as the gap effect is concerned, the paper28 is already
mentioned. Some more papers on the gap effect must be
mentioned, too, Refs. 79–81. The related moiré rotation
effect is considered in Ref. 82.

Many sources on the moiré art are available.83–85 Among
the books related to the moiré art, we would highly recom-
mend the book,4 as well as a good interactive illustration.86

There are several modern painters and artists such as A.
Minini, P. Dickens, P. Decrauzat, and C. Cruz-Diez, who
use the moiré effect in their works; many of them are pre-
sented on the websites.87–90

The tutorial is intended for a wide audience, from begin-
ners to specialists. Someone discovers the beauty of the
moiré effect; someone finds details of the patterns, somebody
else reveals a new approach. The authors believe that the
tutorial can be useful for everybody who would read it.
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