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Abstract. Traditional Hough transform-based methods detect objects by casting votes to object centroids from
object patches. It is difficult to disambiguate object patches from the background by a classifier without
contextual information, as an image patch only carries partial information about the object. To leverage the con-
textual information among image patches, we capture the contextual relationships on image patches through
a conditional random field (CRF) with latent variables denoted by locality-constrained linear coding (LLC).
The strength of the pairwise energy in the CRF is measured using a Gaussian kernel. In the training stage,
we modulate the visual codebook by learning the CRF model iteratively. In the test stage, the binary labels
of image patches are jointly estimated by the CRF model. Image patches labeled as the object category
cast weighted votes for object centroids in an image according to the LLC coefficients. Experimental results
on the INRIA pedestrian, TUD Brussels, and Caltech pedestrian datasets demonstrate the effectiveness of
the proposed method compared with other Hough transform-based methods. © The Authors. Published by SPIE under
a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.OE.57.6.063101]
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1 Introduction
Pedestrian detection is a fundamental challenge in computer
vision due to great variation in appearance, changes in
illumination, poor resolution, and partial occlusions. The
general framework of pedestrian detection can be decom-
posed into three modules: (i) generate the region proposals
that represent object hypotheses in a test image, (ii) classify
the region proposals, and (iii) refine the region proposals to
obtain accurate localization of pedestrians.

In the past years, the use of Hough transform framework
has attracted considerable attention for pedestrian
detection.1–10 The applicability of the Hough transform
framework can be attributed to its robustness against partial
occlusions, as indicated in Refs. 1 and 3–5. Another
attractive property of the Hough transform is its simplicity.
The Hough transform framework for pedestrian detection
includes three primary steps: (i) construct visual codebook,
(ii) cast probabilistic votes for object center into a Hough
image according to the codebook using voting elements
of the test image, and (iii) search maxima in the Hough
image as object hypotheses. Although some Hough trans-
form methods demonstrate the significance of the visual
codebook and voting weights1,2,4 for detection performance,
none use contextual information. Voting elements, which
denote the image patches classified into object categories,
cast probabilistic votes into a Hough image.

However, the image patch contains only partial informa-
tion about an object, and its appearance is highly variable.

Thus, it is difficult to disambiguate object patches from back-
ground patches by a classifier at the local level. Therefore,
detection performance can be reduced due to noisy votes
cast by background patches. Fortunately, conditional random
field (CRF) frameworks modeling context have achieved
an impressive performance for semantic segmentation,11–15

image classification,16 saliency detection,17 and object
detection.18 The CRF distribution can be formulated by a
probabilistic graphical model, in which variables are inter-
dependent rather than independent. Given an image, CRF
inference is performed by a maximum a posteriori (MAP)
or maximum posterior marginal criterion, and all patches
can be classified into an object category or background
simultaneously. In other words, the CRF model uses whole
image information instead of local information to obtain all
patch labels.

In this paper, we build a CRF model that regards the local-
ity-constrained linear coding (LLC)19 code of a local feature
as a latent variable, which is more informative than the cor-
responding local feature. In addition, we apply a Gaussian
kernel to neighboring features to measure the strength of
pairwise energy in the CRF framework. In the training
stage, we iteratively modulate the codebook and CRF
model parameters by a max-margin approach with a maxi-
mum-likelihood criterion. Furthermore, to learn the spatial-
occurrence distribution of the codebook, offset vectors of
the local feature to its object center in a training image
are assigned to matching codewords. In the detection stage,
all image patches are classified into an object category or
background simultaneously by CRF inference, and the
patches classified into an object category are used as voting
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elements in the Hough transform. The voting element casts
weighted votes into the Hough image according to its LLC
coefficients on codewords, and the use of LLC enables us to
reduce the reconstruction error for representing the voting
element by a linear combination of codewords.20 This may
result in more balanced probabilistic votes than uniform
votes in the Hough image. Maxima are regarded as object
hypotheses in the Hough image, in which all votes accumu-
late. The proposed method makes three main contributions:

• It optimizes the codebook through CRF learning.
• It casts weighted votes into the Hough image by the

encoding strategy.
• It jointly classifies all image patches into an object

category or background according to the CRF model,
which includes patch-level contextual constraints.

We evaluated our method on the INRIA pedestrian, TUD
Brussels, and Caltech pedestrian datasets. This work com-
promises speed, accuracy, and simplicity. Experiments dem-
onstrated the effectiveness of the proposed method compared
with other Hough transform-based methods, benefiting
from the contextual information in images and the weighted
Hough voting strategy. The rest of the paper is structured
as follows. We review literature on the Hough transform
methods, encoding methods, and CRF in Sec. 2. We describe
our method for pedestrian detection in Sec. 3. We evaluate
the proposed method on several challenging datasets in
Sec. 4, and we provide our conclusions in Sec. 5.

2 Related Work
In this section, we first discuss the Hough transform-based
methods for pedestrian detection and then briefly describe
encoding methods and CRF that are related to the proposed
method.

2.1 Hough Transform Methods

There is extensive literature dedicated to pedestrian detec-
tion.21–39 Here, we review the methods based on the Hough
transform framework1,2,4–68–10 that are most relevant to our
work.

In the past years, applications of the methods based on the
Hough transform framework have resulted in progress in
pedestrian detection. The majority of Hough transform meth-
ods usually focus on codebook learning, voting element gen-
eration, and hypotheses search. The advantage of the Hough
transform methods is that they can detect pedestrians with
low computational cost due to the simple structure9 and can
also locate a partially occluded pedestrian in an image using
a small set of local patches.1,3–5 The implicit shaped model
(ISM)1 has been widely derived by other Hough transform-
based methods, which constructs a visual codebook by clus-
tering local features in an unsupervised manner. Gall and
Lempitsky2 proposed the Hough forest to build decision
trees in a supervised manner, where a set of leaves can be
regarded as a discriminative codebook that produces prob-
abilistic votes with better voting performance. Barinova
et al.4 proposed an MAP inference method rather than non-
maximum suppression (NMS) to seek the maxima in the
Hough image. Wang et al.5 proposed a structured Hough
transform method that incorporates depth-dependent con-
texts into a codebook-based pedestrian detection model.

Cabrera and Lpez-Sastre6 proposed a boosted Hough forest,
in which decision trees are trained in a stage-wise fashion to
optimize a global loss function. Liu et al.9 proposed a pair
Hough model (PHM) for detecting objects whose voting
elements were extracted from interest points to handle
the rotation of objects. In a study by Liu et al.,10 extremely
randomized trees (ERTs) were constructed from features of
soft-labeled training blobs, and a Hough image was accumu-
lated by votes from features based on the soft-labeled ERTs.
Different from other Hough transform methods, the proposed
method regards LLC codes as hidden variables in a unified
CRF framework that exploits the contextual information
between neighboring image patches, from which the visual
codebook and CRF parameters are learned in a supervised
manner.

2.2 Encoding Methods

Many approaches for encoding local features (image
patches) have been proposed.19,20,40 Lazebnik et al.40 pro-
posed spatial pyramid matching (SPM), which is a simple
and computationally efficient extension of an orderless
bag-of-features image representation. Yang et al.20 developed
an extension of the SPM method called ScSPM for nonlinear
codes. Wang et al.19 proposed LLC in place of the vector
quantization (VQ) coding in traditional SPM utilizing the
locality constraint to project each local feature into its
local coordinate system. Moreover, dictionary learning
plays a significant role in encoding.17,41 Bach et al.41 dem-
onstrated that better results can be obtained when dictionary
is modulated to the specific task. Yang and Yang17 proposed
a top-down saliency model that jointly learns a discrimina-
tive dictionary and a CRF to improve sparse coding (SC).
However, codebooks optimized in these methods are utilized
for image classification or saliency detection rather than
Hough transform-based pedestrian detection.

The LLC can represent local features by codewords with
lower reconstruction error than VQ42 and SC.20 This property
of LLC motivated us to utilize the code coefficients of a vot-
ing element as codeword weights to cast better balanced
votes in the Hough image.

2.2.1 Locality-constrained linear coding

Feature encoding decomposes a local feature x into a linear
combination of codewords over the predefined codebook
C ¼ ½c1; c2; : : : ; cM� ∈ RN×M, where ci denotes the i’th
codeword that is N-dimensional. While the SC20 method
applies a sparsity constraint to select similar codewords of
local features from a codebook, the LLC method19 incorpo-
rates a locality constraint that must lead to a sparsity
constraint but not necessarily vice versa. The visual
information of image patches contained in the codebook
is transferred into the latent variables of the CRF model
by the LLC, which is more informative than local features.
The LLC code of a local feature x is obtained by solving
the following optimization problem:

EQ-TARGET;temp:intralink-;e001;326;138Lðx;CÞ ¼ arg min
l
kx − Clk2 þ λkd⊙lk2 s:t: 1⊤l ¼ 1;

(1)

where ⊙ denotes the element-wise multiplication, λ is used
to control the locality constraint, l is the vector of weights
corresponding to the codewords, and d ∈ RM is the locality
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adaptor that corresponds to the similarities between the code-
words and local feature x. Specifically

EQ-TARGET;temp:intralink-;e002;63;730d ¼ exp

�
distðx;CÞ

σ

�
; (2)

where distðx;CÞ ¼ ½distðx; c1Þ; : : : ; distðx; cMÞ�⊤, and
distðx; ciÞ denotes the Euclidean distance between x and
ci. σ denotes the weight-decay speed for the locality adaptor.
Note that the LLC code in Eq. (1) is not sparse in the sense of
the l0 norm, but it is sparse in the sense that the solution has
few significant values. In the LLC method, the solution of
the optimization problem can be translated into the following
equation:

EQ-TARGET;temp:intralink-;e003;63;598L̃ðx;CÞ ¼ ½ðC − 1x⊤ÞðC − 1x⊤Þ⊤ þ λdiagðdÞ� \ 1; (3)

where ðC − 1x⊤ÞðC − 1x⊤Þ⊤ denotes the data covariance
matrix, \ denotes matrix left division, λ is a parameter
controlling the locality constraint, and 1 ∈ RM indicates
the constant 1 vector

EQ-TARGET;temp:intralink-;e004;63;522Lðx;CÞ ¼ L̃ðx;CÞ∕1⊤L̃ðx;CÞ; (4)

where / denotes the division. Equation (4) is used for vector
unitization.

2.3 Conditional Random Field

A CRF is a flexible framework for modeling contextual
information that can be grouped into three levels: pixels,
patches, and objects. It is widely used for image semantic
segmentation and patch-level labeling11–15,18 by addressing
computer vision problems with CRF inference. Kumar
and Hebert18 proposed the discriminative random field,
which inherits the CRF concept for labeling man-made struc-
tures at patch level. To disambiguate local image informa-
tion, He et al.11 proposed a multi-CRF with three separate
components at different scales for image semantic segmen-
tation. Quattoni et al.16 proposed a hidden-state CRF for
image classification that models the latent structure of the
input domain via intermediate hidden variables. Toyoda
and Hasegawa12 proposed a CRF incorporating local and
global image information. Thus, global consistency of
layouts is achieved from a global viewpoint. Shotton et al.13

proposed a CRF model for semantic segmentation that uses
a texture-layout filter incorporating texture, layout, and con-
textual information. Owing to the need to solve excessive
boundary smoothing for semantic segmentation using an
adjacency CRF structure, Krähenbühl and Koltun14 proposed
a fully connected CRF that establishes pairwise potentials
consisting of a linear combination of Gaussian kernels on
all pairs of pixels in the image. Chen et al.15 proposed a
DeepLab system that utilizes a fully connected CRF coupled
with a deep convolutional network-based pixel-level classi-
fier as well as long range dependencies to capture fine edge
details. Yang and Yang17 proposed a top-down saliency
model by constructing a CRF upon SC of image patches;
the codebook was optimized by jointly learning the CRF
model. To speed-up the saliency detection procedure, Yang
and Xiong43 proposed a saliency detection method by com-
bining LLC and CRF. While these saliency detection meth-
ods use CRF to generate saliency maps directly, the proposed

method builds the CRF model to obtain Hough voting
elements.

The CRF13,18 is a conditional distribution over the labels
Y ¼ fyigi∈S given the observations X ¼ fxigi∈S, which can
be written as

EQ-TARGET;temp:intralink-;e005;326;697PðYjXÞ ¼ 1

Z
exp

�X
i∈S

ϕiðyijXÞ þ α
X
i∈S

X
j∈Ni

ϕijðyi; yjjXÞ
�
;

(5)

where Z is a normalizing constant known as the partition
function, ϕi and ϕij are the unary and pairwise potentials,
respectively, S is a set of sites that refers to elements (pixels
or patches) in an image, Ni is a set of neighbors of site i, and
α is a coefficient that modulates the effect of the pairwise
potential ϕij. In general, the unary potential ϕi denotes
the penalty for a local classifier applied to an image patch
and ignoring its neighbors. The pairwise potential ϕij is
seen as a penalty of label inconsistency that assumes neigh-
boring pixels or patches should be classified into the same
object category.

3 Our Method
Our pedestrian detection system consists of two modules:
(i) a CRF model with latent variables denoted by LLC
codes of image patches. The visual codebook can be opti-
mized by learning this model and can further learn a spatial-
occurrence distribution that specifies where each codeword
may be found on the object. (ii) A Hough voting module.
Patch labels are jointly estimated in a test image by CRF
inference, and the patches classified into the object category
are voting elements that cast weighted votes into the Hough
image. Maxima in the Hough image are regarded as object
hypotheses. An overview of the detection procedure is
shown in Fig. 1.

3.1 Conditional Random Field Model

We exploit the contextual information in an image by a CRF
model that uses LLC codes as latent variables and applying a
Gaussian kernel to measure the strength of pairwise energy.
This model is used for two purposes: (i) to optimize the code-
book by learning the CRF model and (ii) to jointly classify
image patches into the object category or background by
CRF inference. To reduce Hough image noise resulting from
background patches, image patches classified into the object
category are used as voting elements (Sec. 3.4).

Yang and Yang17 developed a CRF model upon SC of
image patches for saliency detection. Inspired by this CRF
model, we build a CRF framework for modeling the context
constraint that uses a Gaussian kernel to measure the local
feature similarity between neighboring nodes for pairwise
energy

EQ-TARGET;temp:intralink-;e006;326;167P½YjLðX;CÞ;υ� ¼ 1

Z
e−E½LðX;CÞ;Y;υ�; (6)

where Z is the partition function for normalization,
X ¼ fxigi∈S denotes a set of local features that is sampled
from different sites S of the image, Y ¼ fyigi∈S denotes
the corresponding labels, C is the visual codebook,
E½LðX;CÞ;Y;υ� is the energy function, LðX;CÞ ¼
fLðxi;CÞgi∈S are the latent variables denoting LLC codes
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of a set of local features X, and υ ¼ ½υ1;υ2� is the model
parameter vector. For clarity, we simplify the notation by
writing li ≜ Lðxi;CÞ and L ≜ LðX;CÞ. The energy function
is decomposed into unary and pairwise energy terms

EQ-TARGET;temp:intralink-;e007;63;290EðL;Y;υÞ ¼
X
i∈S

φiðli; yi;υ1Þ

þ
X
i∈S

X
j∈Ni

φijðli; lj; yi; yj;υ2Þ; (7)

where S is a set of sites that refers to patches in an image and
Ni is a set of neighbors of site i. The unary energy φi can be
measured by the total contribution of sparse codes −yiυ⊤

1 li,
where υ1 ∈ RM is the weight vector andM denotes the num-
ber of codewords. The pairwise energy φij can be denoted as
υ2Gðli; ljÞμðyi; yjÞ, where the scalar υ2 measures the weight
of the pairwise energy term, Gðli; ljÞ is a Gaussian kernel to
measure the strength of pairwise energy, and μ is an indicator
function equaling 1 for different labels. The Gaussian kernel
is defined as

EQ-TARGET;temp:intralink-;e008;63;109Gðli; ljÞ ¼ exp

�
−
jli − ljj2
2θ2

�
; (8)

where li and lj denote the LLC codes of neighboring local
features xi and xj, respectively. The degree of similarity is
controlled by the parameter θ.

Like most CRF models,11–13 the energy function is linear
with the parameter υ ¼ ½υ1;υ2�, but it is nonlinear with the
codebook C, which is implicitly defined by Lðx;CÞ in
Sec. 2.2. This nonlinear parametrization makes it challeng-
ing to learn the model. We discuss the learning approach
in Sec. 3.2.

3.2 Joint CRF and Codebook Learning

Following Yang and Yang’s17 method, we learn the CRF
parameters and codebook in accordance with the CRF
model. Let X ¼ fXðkÞgKk¼1 be a set of K training images
and Y ¼ fYðkÞgKk¼1 be corresponding set of labels. We aim
to estimate the CRF parameter vector υ and the codebook C
by maximizing the joint likelihood of training data

EQ-TARGET;temp:intralink-;e009;326;560 max
υ∈RMþ1;C∈C;LðkÞ

YK
k¼1

PfYðkÞjL½XðkÞ;C�;υg; (9)

where LðkÞ ≜ L½XðkÞ;C� and C is the convex set of codebooks
that satisfies the following constraint:

EQ-TARGET;temp:intralink-;e010;326;489C ¼ fC ∈ RN×M; kcik2 ≤ 1; ∀i ¼ 1;2; : : : ;Mg: (10)

The evaluation of the partition function Z of Eq. (6) is an
NP-hard problem. Referring to the max-margin CRF learn-
ing approach,44 we look for the optimal weights υ and code-
book C that assign the training labels YðkÞ, a probability that
is greater than or equal to any other labeling Y of instance k

EQ-TARGET;temp:intralink-;e011;326;402P½YðkÞjLðkÞ;υ� ≥ P½YjLðkÞ;υ� ∀Y \ YðkÞ ∀k: (11)

The partition function Z can be canceled from both sides
of the constraints [Eq. (7)], and we express the constraints in
terms of energies

EQ-TARGET;temp:intralink-;e012;326;337E½YðkÞ;LðkÞ;υ� ≤ E½Y;LðkÞ;υ�: (12)

Moreover, we desire the energy of ground truth
E½YðkÞ;LðkÞ;υ� to be lower than that of any other energies
E½Y;LðkÞ;υ� of label configurations on the training data.
Thus, we have a new constraint set

EQ-TARGET;temp:intralink-;e013;326;261E½YðkÞ;LðkÞ;υ� ≤ E½Y;LðkÞ;υ� − Δ½Y;YðkÞ�: (13)

The margin function Δ½Y;YðkÞ� ¼ P
m
i¼1 I½yi; yðkÞi �, where

I is an indicator function equal to 1 for different labels. There
are an exponential number of constraints with respect to
labeling YðkÞ for each training image. Inspired by the cutting
plane algorithm,45 the most violated constraints can be found
by solving

EQ-TARGET;temp:intralink-;e014;326;162ŶðkÞ ¼ arg min
Y

E½Y;LðkÞ;υ� − Δ½Y;YðkÞ�: (14)

Therefore, the optimal weight υ and the codebook C can
be learned by minimizing the following objective function:

EQ-TARGET;temp:intralink-;e015;326;102 min
υ;C∈C

γ

2
kυk2 þ

XK
k¼1

lkðυ;CÞ; (15)

Detection result

Hough image

The conditional random field

Latent variable

Image patch

Input image

Label field

Fig. 1 Overview of the detection procedure. Local features (image
patches) are densely extracted from the input image and encoded
by LLC as latent variables in the CRF model; the codebook, as a vis-
ual dictionary, represents a set of object parts; all patches in the input
image are classified into the object category or background simulta-
neously by CRF inference. The label field indicates a set of category
labels on all image patches. Image patches classified into the object
category are regarded as voting elements. A voting element casts
weighted votes into the Hough image by its LLC code. A Hough
image was accumulated by votes from voting elements. Maxima in
the Hough image are regarded as object hypotheses. Best viewed
in color.
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where lkðυ;CÞ ≜ E½ŶðkÞ;LðkÞ;υ� − E½YðkÞ;LðkÞ;υ� and γ
controls the regularization of the weight υ.

The above objective function is optimized by a stochastic
gradient descent algorithm, which is summarized in
Algorithm 1.

3.3 Learning the Spatial-Occurrence Distribution

In this section, we learn the nonparametric spatial-occur-
rence distribution PC for each codeword of the optimized
codebook C, which can be used to cast votes into the
Hough image in the test stage. An occurrence represents
an image patch of the training images, which matches a
codeword. As in the other Hough transform methods,1,4,5

a codeword represents a specific object part whose position
relative to the object center is uncertain. Each codeword
corresponds to a set of occurrences in the training images.

As shown in Algorithm 2, we perform an iteration over all
training images to match the codewords to local features.
Here, we activate the codewords whose similarity exceeds
a matching threshold of 0.7 (discussed in Sec. 4.1). For
every codeword, we store all occurrence positions that reflect
its spatial distribution over the object area in a nonparametric
form (as a list of occurrences).

3.4 Weighted Hough Voting Strategy

In Sec. 3.3, the visual codebook Cwas optimized by learning
the CRF model iteratively, and voting elements were
obtained by CRF inference in the test image. We now
describe the Hough voting procedure based on the CRF
model that regards the LLC code of an image patch as
a latent variable. A flowchart of the detection procedure is
shown in Fig. 1. The voting element consistently casts
weighted votes into the Hough image according to its
LLC code. To locate the objects in the test image, maxima
in the Hough image are regarded as object hypotheses.
Moreover, to handle scale variations, a test image is resized
by a set of scale factors, and hypotheses are computed
independently in the Hough images at each scale.

Different from other Hough transform approaches,1,2,4–6,8–10

our Hough voting procedure is cast into a probabilistic
framework with a coding strategy. Let x be the local feature
observed at location l̃ in the test image. By matching it to
the visual codebook, a set of valid interpretations ci with
probabilities pðcijx; l̃Þ can be obtained. If a codeword
matches, it casts votes for different object positions. That is,
for every ci, votes for several object categories On and
a position h can be obtained according to the learned
spatial-occurrence distribution pðOn; hjci; l̃Þ. The voting
probability of a local feature can be formally expressed by
the following marginalization:

EQ-TARGET;temp:intralink-;e016;326;206pðOn; hjx; l̃Þ ¼
X
i

pðOn; hjx; ci; l̃Þpðcijx; l̃Þ; (16)

for i ¼ 1; : : : ; N, where N is the number of codewords. Since
the unknown local feature x has been replaced by a known
interpretation ci in the test image, the first term can be con-
sidered independent from x. Also, local features matched to
the codebook are independent of their location. Thus, the
equation is reduced to

EQ-TARGET;temp:intralink-;e017;326;98pðOn;hjx; l̃Þ ¼
X
i

pðOn; hjci; l̃ÞpðcijxÞ; (17)

Algorithm 1 Joint CRF and codebook learning

1: Input: X (training images) and Y (patch labels);
Cð0Þ (initial dictionary); υð0Þ (initial CRF weight vector);
T (number of iterations); K (number of training images).

2: Output: the codebook C and the weight υ.

3: for t ¼ 1 to T do

4: Permute training samples ðX ;YÞ

5: For k ¼ 1 to K do

6: Evaluate the latent variables li by Eq. (1)

7: Solve the most violated labeling ŶðkÞ by Eq. (14)

8: Update the weight υt and codebook Ct by the loss function
lk ðυ;CÞ

9: end for

10: end for

Algorithm 2 Learning the spatial-occurrence distribution

1: Input: X (training images); K (number of training images);
C (the codebook learned in Algorithm 1);
M (number of codewords).

2: Output: the occurrences U.

3: //U½m�, a list of occurrences, denotes the spatial distribution of
codeword cm in a nonparametric manner.

4: for m ¼ 1 to M do

5: U ½m� ¼ ∅//Initialize occurrences for codeword cm .

6: end for

7: for k ¼ 1 to K do

8: Let (ox , oy ) be the object center.

9: Extract local features in image XðkÞ.

10: for j ¼ 1 to J do// J local features in image XðkÞ.

11: Let xj be the local feature at location (l x , l y , l s).

12: for m ¼ 1 to M do

13: if similarity ðcm;xj Þ ≥ t then

14: //Record an occurrence of codeword cm

15: U ½m� ¼ U½m� ∪ ðox − l x ; oy − l y ; lsÞ

16: end if

17: end for

18: end for

19: end for
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EQ-TARGET;temp:intralink-;e018;63;752 ¼
X
i

pðhjOn; ci; l̃ÞpðOnjci; l̃ÞpðcijxÞ; (18)

where pðhjOn; ci; l̃Þ is the voting probability for an object
position given its category label On, codeword ci, and loca-
tion l̃. The probability pðOnjci; l̃Þ denotes the confidence that
the codeword is matched on the object category On against
the background. Finally, pðcijxÞ denotes the probability that
local feature x matches to codeword ci. The object scale is
regarded as a third dimension in the voting space. If a local
feature extracted from location ðx; y; sÞ matches a codeword
that has been observed at position ðxl̃; yl̃; sl̃Þ on a training
image, it votes for the following coordinates:

EQ-TARGET;temp:intralink-;e019;63;609xvote ¼ x − xl̃ðs∕sl̃Þ; (19)

EQ-TARGET;temp:intralink-;e020;63;579yvote ¼ y − yl̃ðs∕sl̃Þ; (20)

EQ-TARGET;temp:intralink-;e021;63;554svote ¼ s∕sl̃: (21)

Thus, the voting probability pðhjOn; ci; l̃Þ is obtained by
summing the votes for all stored observations from the
learned occurrence distribution Pc. The ensemble of all such
votes is used to obtain a nonparametric probability density
estimate for the position of the object center.

The probability pðcijxÞ of a match between a local feature
and codeword is obtained according to the LLC algorithm19

described above. In other words, the LLC code l ¼ Lðx;CÞ
is regarded as weighted probabilities for Hough voting.

Next, maxima are sought to be object hypotheses in the
Hough voting space, in which all votes are accumulated.
The search process includes two stages. We first accumulate
the voting probabilities in a three-dimensional Hough space
and find maxima as candidates. We then employ the
mean-shift algorithm1 to refine the locations of hypotheses.
Intuitively, the probability pðOn; hÞ of an object hypothesis
is obtained by summing the individual voting probabilities
pðOn; h; xk; l̃kÞ over all observations, and we arrive at
the following equation:

EQ-TARGET;temp:intralink-;e022;63;318pðOn; hÞ ¼
X
k

pðOn;hjxk; l̃kÞpðxk; l̃kÞ; (22)

for k ¼ 1; : : : ; K, where K is the number of local features in
the test image. pðxk; l̃kÞ is the probability of local feature
ðxk; l̃kÞ being sampled for object On located at h.
Nonetheless, it is necessary to tolerate small shape deforma-
tions to be robust for intraclass variations of the object. Thus,
the mean-shift framework1 is formulated with the following
kernel density estimate:

EQ-TARGET;temp:intralink-;e023;63;199p̂ðOn; hÞ ¼
1

Vb

X
k

X
j

pðOn; hjjxk; l̃kÞG
�
h − hj

b

�
; (23)

where the Gaussian kernel G is a radially symmetric, non-
negative function, centered at zero and integrating to one,
b is the kernel bandwidth, and Vb is its volume. The mean-
shift search using this formulation will quickly converge to
local modes of the underlying distribution. Moreover, the
search procedure can be interpreted as kernel density estima-
tion for the position of the object center.

Candidates of objects with high scores are usually close to
each other in the Hough image. This may lead to the same
object corresponding to multiple candidates, resulting in
false positives. To reduce redundancy, we adopt NMS on
the overlapped object hypotheses. We fix the intersection
over union (IoU) threshold for NMS at 0.7.

4 Experiments

4.1 Datasets

To evaluate the effectiveness of the proposed method in dif-
ferent scenes, we choose three publicly available pedestrian
datasets, namely, INRIA pedestrian, TUD Brussels, and
Caltech pedestrian. Pedestrians in these datasets are mostly
upright but are of different degrees of occlusions, and pose
and scale changes, together with the variations in back-
ground and illuminations.

4.1.1 INRIA Pedestrian

The INRIA pedestrian dataset consists of 614 training
images and 288 test images, which is challenging due to
the variability of pedestrian poses, illumination changes,
and highly cluttered backgrounds (mountains, buildings,
vehicles, etc.).

4.1.2 TUD Brussels

The TUD Brussels dataset contains 508 images (one pair per
second) at a resolution of 640 × 480, which are recorded
from a car driving in the inner city of Brussels. This dataset
is challenging due to partial occlusion, cluttered back-
grounds (e.g., poles, parked cars, buildings, and crowds), and
numerous small-scale pedestrians.

4.1.3 Caltech Pedestrian

The Caltech pedestrian dataset and its associated benchmark
are among the most popular pedestrian detection datasets.
It consists of about 10 h of videos (30 frames per second)
collected from a vehicle driving through urban traffic.
Every frame in the Caltech dataset has been densely anno-
tated with the bounding boxes of pedestrian instances.
In total, there are 350,000 bounding boxes of about 2300
unique pedestrians labeled in 250,000 frames. The pedes-
trians in the Caltech pedestrian dataset appear in many posi-
tions, orientations, and background variety. In the reasonable
evaluation setting, the performance is evaluated on pedes-
trians over 50-pixels tall with no or partial occlusion.

4.2 Experiment Procedure

All experiments are carried out on a workstation equipped
with a Titan Xp GPU and an Intel Xeon(R) CPU E5-
2620 v4 @ 2.10 GHz. The evaluation tool is based on the
codes from the official websites of Caltech and PASCAL
VOC. Bounding boxes of objects are predicted in an
image at test time. By default, predicted bounding boxes
are considered positives when the IoU overlaps by more
than 0.5 with ground-truth bounding boxes, and the rest
are considered negatives. We use precision recall (PR)
curve to evaluate pedestrian datasets.4,26,28 Following,9,28

we use average precision (AP) to measure detection perfor-
mance on these datasets, which denotes the area under the
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PR curve. The AP was calculated in accordance with the
criteria of PASCAL VOC.

We densely extract scale-invariant feature transform fea-
tures from images with a step length of 16 pixels. The code-
book is optimized by training the CRF model with 12
iterations. The matching threshold is set to 0.7 for learning
the spatial-occurrence distribution of the optimized code-
book C (Sec. 3.3). The number K of LLC neighbors is set
to 20. The codebook size M is set to 512. Implemented on
a CPU to detect pedestrians from the Caltech pedestrian data-
set, the Hough transform-based ISM1 and Barinova et al.’s
method4 require 0.48 and 0.55 s per image, respectively,
whereas the proposed method requires 0.62 s per image.
Our method only requires 0.14 s (per image) extra computa-
tional time than ISM, because it mainly benefits from the
efficient LLC19 and inference algorithms in the CRF model.

4.3 Result Analysis

Figure 2 shows the PR curves of our method compared
to conventional pedestrian detection approaches (HOG,21

FPDW,23 CrossTalk,25 LatSvm-V2,22 ACF,30 Roerei,26 MT-
DPM,27 and NAMC32) on the INRIA pedestrian, TUD
Brussels, and Caltech pedestrian datasets according to the
reasonable setting. The APs of these methods are shown
in Table 1. It can be observed that our method obtained
obvious improvements over the Hough transform-based
methods1,4,9 on these datasets. This is mainly attributable
to two properties of our method that solve two challenging
problems in the INRIA, TUD, and Caltech datasets: (i) the
proposed method relies on image patches; hence, it can cope
with the partial occlusions that are common in pedestrian
datasets and (ii) the CRF model can effectively reduce the
voting noise generated by the cluttered background.

We further evaluated the proposed method on three sub-
sets of the Caltech pedestrian dataset according to its evalu-
ation settings (“Occ = none,” “Occ = partial,” and “Occ =
heavy”). Pedestrians are full, 65% to 100%, and 20% to
65% on those three settings, respectively. Table 2 shows
that our method achieved APs of 66.4%, 47.3%, and 25.5%
on these respective evaluation settings. Our method shows
obvious improvements over the Hough transform-based
methods1,4,9 on these evaluation settings.

For the TUD pedestrian dataset, we masked ground-truth
objects with proportions of 20%, 40%, and 60% from the left

to right side, respectively, owing to an absence of occlusion
information in this dataset. As shown in Fig. 3, our method
has obvious improvements on these masked proportions
compared to Hough transform-based ISM1 and Barinova
et al.’s4 method.

In addition, we verified the significance of codebook opti-
mization, codebook size, number of LLC neighbors, and
weighted voting strategy on detection performance.

4.3.1 Impact of the codebook optimization

We initialized the codebook by the K-means clustering algo-
rithm and then optimized the codebook by learning the CRF
model. The codebook optimization was driven by top-down
prior knowledge in a supervised manner. As shown in
Fig. 4(a), detection performance improved rapidly in the
first several iterations and converged after 12 iterations.

Fig. 2 Detection performance comparisons of our method and other methods on the (a) INRIA, (b) TUD
Brussels, and (c) Caltech pedestrian datasets according to the reasonable setting. Best viewed in color.

Table 1 Performance comparison in terms of AP (%) on the INRIA,
TUD Brussels, and Caltech pedestrian datasets according to the rea-
sonable setting.

Dataset INRIA TUD Caltech

HOG21 73.3 40.1 26.5

LatSvm-V222 91.0 51.5 35.9

Roerei26 93.9 54.8 51.9

FPDW23 88.3 60.3 40.3

CrossTalk25 88.7 60.0 45.1

ACF30 90.6 63.6 47.9

NAMC32 91.7 — 66.7

ISM1 86.0 54.2 49.5

Barinova et al.’s4 90.2 58.4 57.3

PHM9 86.5 — —

Ours 94.4 67.1 65.0

Note: The bold values denote the best detection performances in
terms of AP.
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The stochastic nature of the learning algorithm resulted in
some performance perturbation in some iterations.

4.3.2 Impact of the matching threshold

At test time, occurrence distributions of the codebook Cwere
used to cast votes into the Hough image for pedestrian detec-
tion; thus, they are significant to detection performance of
the proposed method. Learning occurrence distributions
mainly depends on the matching threshold that represents
the similarity between a codeword and an object patch of
a training image. Intuitively, the occurrence distributions
may be impacted by noise when the matching threshold is
set to a relatively low value. On the contrary, the occurrence
distributions are likely to lack some important occurrences
when the matching threshold is set to a relatively high
value. To find the optimal matching threshold, we evaluated
the detection performance with different values of the match-
ing threshold. Figure 4(b) shows the detection results on the
INRIA pedestrian and TUD Brussels datasets with different
values of the matching threshold. We found that our method
achieved a relatively high AP when the matching threshold
was 0.7.

4.3.3 Impact of the LLC parameter K

To focus on the impact of the number K of LLC neighbors,
the codebook size was fixed at 512. As shown in Fig. 4(c),
detection performance improved dramatically when K was
<15, and it converged when K was >20. The experimental
results show that the number of LLC neighbors had a great
impact on detection performance.

4.3.4 Impact of the codebook size

To investigate the impact of codebook size on detection per-
formance, we compared detection performance with code-
book sizes of 256 and 512, with the parameter K of LLC
fixed at 20. As shown in Table 3, the AP was 92.6% when
M ¼ 256 on the INRIA pedestrian dataset and 94.4% when
M ¼ 512. The AP was 62.7% when M ¼ 256 on the TUD
Brussels dataset and 67.1% when M ¼ 512. We found that
M ¼ 512 gives better detection results than M ¼ 256.

Table 2 Detection performance comparisons of our method and
other methods on three Caltech evaluation settings (“Occ = none,”
“Occ = partial,” and “Occ = heavy”).

Method Occ = none Occ = partial Occ = heavy

MT-DPM + Context27 65.6 16.3 7.7

NAMC32 69.4 22.7 3.9

DeepCascade33 71.6 26.9 5.3

SCF + AlexNet46 80.5 34.5 15.3

TA-CNN35 81.4 45.9 16.4

SA-FastRCNN37 91.3 44.5 14.4

DeepParts47 89.5 67.1 24.2

F-DNN + SS38 92.8 60.4 30.9

Ours 66.4 47.3 25.5

Note: The bold values denote the best detection performances in
terms of AP.
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Fig. 3 Detection performance comparisons of our method and other
methods on the TUD Brussels dataset with several masked propor-
tions (none, 20%, 40%, and 60%). Our method achieved APs of
67.1%, 57.9%, 45.5%, and 29.6% on these respective masked pro-
portions, which shows obvious improvements over the other Hough
transform-based methods.

Fig. 4 (a) Detection results of our method when thematching threshold varies. (b) Detection results when
the parameter K of LLC varies and codebook sizeM is 512. (c) Performance gain with training iterations
when the parameter K of LLC is 20 and codebook size M is 512.
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4.3.5 Performance of the weighted voting strategy

As for the weighted voting strategy (Sec. 3.4), we used the
LLC coefficients instead of uniform weights as voting
weights on codewords. The codebook size was fixed at 512.
The parameter K of LLC was fixed at 20. As shown in
Table 4, the APs of the weighted voting were 4.0% and
2.9% higher, respectively, than the uniform voting on the
INRIA pedestrian and TUD Brussels datasets.

4.3.6 Effectiveness of the CRF model using the deep
convolutional features

To investigate the effectiveness of the CRF model in
detecting pedestrians using the deep convolutional features,
we capture contextual relationships on the high-quality
object candidates provided by the method RPN + BF.36

The region of interest (RoI) features of size 512 × 7 × 7

are naturally extracted from the object candidates in the fea-
ture maps as in Ref. 36. An object candidate is regarded as a
node in the CRF model within a fully connected form. The
unary potential of the CRF model is the cost of the confi-
dence score on an object candidate outputted by RPN +
BF, which denotes the inverse likelihood of an object can-
didate taking the label of pedestrian. The pairwise potential
relies on the RoI features of a pair of object candidates,
which measures the cost of similar object candidates with
different labels (e.g., the binary labels, pedestrian, and back-
ground) as in Refs. 48 and 49. We feed the RoI features of
object candidates of all test images into the CRF model.
Finally, the marginal probability distributions of all object
candidates can be simultaneously obtained using the mean
field inference in the CRF model. The PR curves are
obtained by utilizing the marginal probabilities (as the con-
fidence scores) of the pedestrian label, rather than utilizing
the initial confidence scores provided by RPN + BF. In
Fig. 5, it can be observed that the CRF model achieved
APs of 98.7% and 93.2% on the INRIA and Caltech datasets,
respectively, which obtains improvements of 1.3% and 2.2%
over the RPN + BF.

5 Conclusion
In this work, we propose a pedestrian detection method that
integrates context modeling and weighted voting strategy in
a unified Hough transform framework. The noisy votes from
background patches can be reduced by exploiting contextual
information on image patches in an image. The coding
coefficients based on the optimized codebook contribute
to casting highly balanced votes in the Hough image.
The experimental results on the INRIA pedestrian, TUD
Brussels, and Caltech pedestrian datasets demonstrated
the effectiveness of the proposed method compared with
other Hough transform-based methods. In future studies,
we intend to exploit contextual information among multiple
images for pedestrian detection since the contextual informa-
tion that we try to exploit in this work is only from a single
image.

Table 3 Performance comparison in terms of codebook size M on
the TUD Brussels and INRIA pedestrian datasets.

Method TUD INRIA

M ¼ 256 62.7 92.6

M ¼ 512 67.1 94.4

Note: The bold values denote the best detection performances in
terms of AP.

Table 4 Performance comparison in terms of voting strategies on the
TUD Brussels and INRIA pedestrian datasets.

Method TUD INRIA

Uniform voting 63.1 91.5

Weighted voting 67.1 94.4

Note: The bold values denote the best detection performances in
terms of AP.

Fig. 5 Detection performance comparisons on the (a) INRIA and (b) Caltech pedestrian datasets accord-
ing to the reasonable setting. Best viewed in color.
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