
Multiwavelength surface contouring
from phase-coded noisy diffraction
patterns: wavelength-division optical
setup

Vladimir Katkovnik
Igor Shevkunov
Nikolay V. Petrov
Karen Egiazarian

Vladimir Katkovnik, Igor Shevkunov, Nikolay V. Petrov, Karen Egiazarian, “Multiwavelength surface
contouring from phase-coded noisy diffraction patterns: wavelength-division optical setup,” Opt.
Eng. 57(8), 085105 (2018), doi: 10.1117/1.OE.57.8.085105.



Multiwavelength surface contouring from phase-coded
noisy diffraction patterns: wavelength-division optical
setup

Vladimir Katkovnik,a Igor Shevkunov,a,b,* Nikolay V. Petrov,b and Karen Egiazariana

aTampere University of Technology, Department of Signal Processing, Tampere, Finland
bITMO University, Department of Photonics and Optical Information Technology, St. Petersburg, Russia

Abstract. We propose an algorithm for absolute phase retrieval from multiwavelength noisy phase coded
diffraction patterns. A lensless optical system is considered with a set of successive single wavelength experi-
ments (wavelength-division setup). The phase masks are applied for modulation of the multiwavelength object
wavefronts. The algorithm uses the forward/backward propagation for coherent light beams and sparsely encod-
ing wavefronts, which leads to the complex-domain block-matching three-dimensional filtering. The key-element
of the algorithm is an original aggregation of the multiwavelength object wavefronts for high-dynamic-range
absolute phase reconstruction. Simulation tests demonstrate that the developed approach leads to the effective
solutions explicitly using the sparsity for noise suppression and high-accuracy object absolute phase
reconstruction from noisy data. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE
.57.8.085105]

Keywords: multiwavelength phase retrieval; absolute phase retrieval; surface contouring; phase imaging; discrete optical signal
processing.

Paper 180624 received May 1, 2018; accepted for publication Jul. 31, 2018; published online Aug. 26, 2018.

1 Introduction
We consider lensless diffraction imaging where information
on the object phase and amplitude in question is given by
intensities of phase-coded diffraction patterns. The problem
of the complex-valued object reconstruction from intensity
measurements is well known as the phase retrieval, where
“phase” emphasizes that this missing variable missing in
observations defines the principle difficulties of the prob-
lem in particular, with respect to holography and interfer-
ometry, where reference beams allow to preserve phase
information. The phase retrieval is from the class of the
challenging illposed problems especially difficult for
noisy observations. The phase/observation diversity suffi-
cient for reliable reconstruction of the object phase from
the intensity patterns is a crucial moment of the problem.
Defocusing and phase modulation are known as effective
instruments for solving the problem (e.g., Refs. 1–4).
Diffraction optical elements are used to design the diffrac-
tion phase imaging systems.5

The Gerchberg–Saxton (GS) algorithms6,7 are from the
most popular in the field of phase retrieval. These iterative
algorithms originally proposed the noiseless data use, alter-
nating projection between the complex-valued object uo and
complex-valued wavefronts us at the sensor plane. In these
iterations, the amplitudes in us are replaced by square roots
of the corresponding items of the measurements. The back-
projection of the us to the object uo is modified according to
the prior information on the object, e.g., support size and
shape, amplitude value, etc. The GS algorithms exist in vari-
ous modifications.8,9 The review and analysis of this type of

the algorithms as well as further developments can be found
in Ref. 10.

Many publications concern variational formulations for
the GS-type algorithms. In particular, the links between
the conventional GS and variational techniques are studied
in Refs. 11–13. Contrary to the intuitively clear heuristic
of the GS algorithms, the variational approaches usually
have a strong mathematical background including image
formation modeling, formulation of the objective function
(criterion), and finally going to numerical techniques solving
corresponding optimization tasks.

In recent years, there has been an increase in demand for
multispectral imaging. Multispectral information by recording
object waves with multiple wavelengths that are irradiated
from multiwavelength/color light sources helps to analyze
and recognize objects, to clarify color and tissue distributions
of an object and dramatically improve the quality of imaging.
Multiwavelength digital holography has an enhanced ability
for three-dimensional (3-D) wide-range shape measurements
using multiwavelength phase unwrapping, due to the
recording of quantitative phase information with multiple
wavelengths. In phase retrieval, the multiwavelength is an
effective instrument enabling good phase/data diversity.

The multiwavelength phase retrieval is much less studied
as compared with the standard single-wavelength formu-
lation. These works by the principle of measurements can
be separated into two groups. In the first one, the absolute
phase is estimated from phase measurements obtained in
some or another way. This scenario is typical for interfer-
ometry/holography where reference beams are applied to
reveal the phase information, e.g., Refs. 14–17. The phase
unwrapping algorithms for two-dimensional (2-D) images
with simultaneous processing of multiple noisy complex-
exponent observations have been developed based on the
maximum-likelihood techniques.18

*Address all correspondence to: Igor Shevkunov, E-mail: Igor.Shevkunov@tut
.fi

Optical Engineering 085105-1 August 2018 • Vol. 57(8)

Optical Engineering 57(8), 085105 (August 2018)

https://doi.org/10.1117/1.OE.57.8.085105
https://doi.org/10.1117/1.OE.57.8.085105
https://doi.org/10.1117/1.OE.57.8.085105
https://doi.org/10.1117/1.OE.57.8.085105
https://doi.org/10.1117/1.OE.57.8.085105
https://doi.org/10.1117/1.OE.57.8.085105
mailto:Igor.Shevkunov@tut.fi
mailto:Igor.Shevkunov@tut.fi
mailto:Igor.Shevkunov@tut.fi


Another group of the techniques uses amplitudes or inten-
sities (powers) as measurements. These formulations are
from the class of the multiwavelength phase retrieval prob-
lems, e.g., Refs. 19–22. The Chinese Remainder Theorems
provide a class of the methods with a good theoretical
background.23 The reformulation of these approaches for
more practical scenarios with noisy data and for robust esti-
mation leads to the techniques similar to various forms of
the maximum likelihood.24,25

An approach to multiwavelength phase retrieval has been
proposed in our recent papers.26,27 The phase retrieval in the
wavelength multiplexing (WM) setup is studied in the first of
these two papers. A broadband light source radiates all wave-
lengths (RGB in our tests) simultaneously and a CMOS sen-
sor equipped with a color filter array (CFA) registers spectral
measurements. In the second paper,27 we consider a wave-
length division (WD) setup with successive and separate
three RGB wavelength exposures registered by a broadband
CCD sensor without CFA. The algorithms for these two set-
ups are quite different, in particular because the WM algo-
rithm requires interpolation of the RGB data subsampled by
CFA for pixels where there are no observations of some of
the wavebands. The WD algorithm deals with the observa-
tions obtained for all pixels for each of the RGB bands
separately.

This paper is a further development of the WD setup27

with more details concerning the approach and the algorithm
as well as the simulation study performed for the complex-
valued objects and parameters of the experiments different
from those in Ref. 26. The main results of this paper can
be summarized as an extension of the conference paper27

with demonstration of the efficiency of the proposed algo-
rithm, which is computationally simpler, much more accu-
rate and faster than the algorithm for WM in Ref. 26. The
experimental study of the algorithm is restricted to simula-
tion tests.

The algorithms presented in Refs. 26 and 27 as well as in
this paper can be treated as a development of the sparse phase
and amplitude reconstruction (SPAR) algorithm28 and the
maximum likelihood absolute phase reconstruction for
multiwavelength observations.18 The paper is organized as
follows. The multiwavelength object and image formation
modeling as well as the Poissonian noise observations are
discussed in Sec. 2. The development of the algorithm for
the WD optical setup is a topic of Sec. 3. Simulation tests
and results are discussed in Sec. 4.

2 Image Formation Model
The notation and the image formation model presented in
this section follow those in our paper.26 We present these
results here for completeness of the presentation and in
order to make clearer relations of the problems considered
in Ref. 26 and in this paper.

2.1 Multiwavelength Object and Image Modeling

Let hoðxÞ, x ∈ R2, be a profile of the transparent 2-D object
to be reconstructed. A coherent multiwavelength light
beam generates corresponding complex-valued wavefronts
uo;λ ¼ bo;λ expðjφo;λÞ, λ ∈ Λ, where Λ is a set of the wave-
lengths and φo;λ ¼ 2π

λ hoðnλ − nenvÞ are phase delays corre-
sponding to ho, where nλ is the refractive index of the

object and nenv is the refractive index of the environment,
for the air nenv ¼ 1, what is assumed in our tests.

In the lensless phase retrieval, the problem at hand is a
reconstruction of the profile hoðxÞ from the noisy observa-
tions of diffractive patterns, registered at some distance
from the object. For the high magnitude variation of ho,
the corresponding absolute phases φo;λ take values beyond
the basic phase interval ½−π; π�, then only wrapped phases
can be obtained from uo;λ for separate λ.

In what follows, we apply dimensionless relative frequen-
cies μλ ¼ λ 0ðnλ−1Þ

λðnλ 0−1Þ, which replace common notation for object

wavefront as

EQ-TARGET;temp:intralink-;e001;326;614uo;λ ¼ bo;λ expðjμλφoÞ; λ ∈ Λ; (1)

where uo;λðxÞ ∈ C2, φoðxÞ ∈ R2 is the object absolute phase
φo ¼ 2π

λ 0 hoðnλ 0 − 1Þ, and Λ ¼ ½λo; λ1; : : : ; λnλ−1� is the set of
the wavelengths.

Here λ 0 ∈ Λ is a reference wavelength and φo is an abso-
lute phase corresponding to this wavelength. The parameter
μλ establishes a link between the absolute phase φo and
wrapped phase ψo;λ of uo;λ, which can be measured at the
λ-channel. The wrapped phase is related with the true abso-
lute phase, φo, as μλφo ¼ ψo;λ þ 2πkλ, where kλ is an integer,
ψo;λ ∈ ½−π; πÞ. The link between the absolute and wrapped
phase conventionally is installed by the wrapping operator
Wð·Þ as follows:
EQ-TARGET;temp:intralink-;e002;326;442ψo;λ ¼ WðμλφoÞ ≡modðμλφo þ π; 2πÞ − π: (2)

Wð·Þ decomposes the absolute phase μλφo into two parts:
the fractional part ψo;λ and the integer part defined as 2πkλ.

The image and observation modeling are defined as

EQ-TARGET;temp:intralink-;e003;326;377us;λ ¼ Ps;λ;dfuo;λg; (3)

EQ-TARGET;temp:intralink-;e004;326;345ys;λ ¼ jus;λj2; (4)

EQ-TARGET;temp:intralink-;e005;326;317zs;λ ¼ Gfys;λg; s ¼ 1; : : : ; S; λ ∈ Λ; (5)

where us;λ is a wavefront propagated to the sensor plane,
Ps;λ;dfg is an image (diffraction pattern) formation operator,
i.e., the propagation operator from the object to the sensor
plane, including in particular random phase masks used
for wavefront modulation, d is a propagation distance, ys;λ
is the intensity of the wavefront at the sensor plane, and
zs;λ are noisy observations as defined by the generator
Gfg of the random variables corresponding to ys;λ, and S
is a number of experiments.

The considered multiwavelength phase retrieval problem
consists of reconstruction of φo and bo;λ from the observation
zs;λ provided that μλ, Ps;λ;dfg, and Gfg are known. If the
phases μλφo ∈ ½π;−πÞ, the problem is trivial as estimates
of μλφo and bo;λ can be found processing data separately
for each λ by any phase retrieval algorithm applicable
for complex-valued object, in particular by the SPAR
algorithm.29 However, if the phases μλφo go beyond the
range ½π;−πÞ, the problem becomes nontrivial and challeng-
ing since a phase unwrapping must be embedded in the mul-
tiwavelength phase retrieval.
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We are focused on the reconstruction of the absolute
phase φo from a set of single wavelength experiments
produced in a successive manner, which are registered by
a wide-band gray-scale CCD sensor, instead of using all
wavelengths simultaneously with CFA and demosaicing
processing as it is done in the WM algorithm derived in
Ref. 26.

The proposed WD algorithm demonstrates a faster con-
vergence than the WM algorithm,26 but makes the experi-
mental realization more complex as it requires separate
experiments and measurements for each wavelength. A sin-
gle wavelength is used for each experiment and the obtained
observations fzs;λg are used jointly for reconstruction of
φoðxÞ and hoðxÞ.

Note also that the proposed approach assumes that
the refractive indexes of the object are known for the con-
sidered set of the wavelengths. Only in this case, the problem
of the absolute phase retrieval and contouring can be
resolved.

2.2 Noisy Observation

For noise simulation, we use independent Poisson random
variables since a measurement process in optics amounts
to count the photons hitting the sensor’s elements (e.g.,
Ref. 30). The presented form of the noisy observations
corresponds to Refs. 26 and 27.

The probability that a random Poissonian variable zs;λðxÞ
of the mean value ys;λðxÞ takes a given non-negative integer
value k, is given as

EQ-TARGET;temp:intralink-;e006;63;428p½zs;λðxÞ ¼ k� ¼ exp½−ys;λðxÞχ�
½ys;λðxÞχ�k

k!
; (6)

where ys;λðxÞ is the intensity of the wavefront at the
pixel x. The parameter χ > 0 in Eq. (6) can be interpreted
as an exposure time and as sensitivity of the sensor with
respect to the input radiation. Defining the observation
signal-to-noise ratio (SNR) as the ratio between the
square of the mean and variance of zs;λðxÞ, we have
SNR ¼ E2fzs;λðxÞg∕varfzs;λðxÞg ¼ ys;λðxÞχ. Thus, the
relative noisiness of observations becomes stronger
as χ → 0ðSNR → 0Þ and approaches zero when
χ → ∞ðSNR → ∞Þ. The latter case corresponds to the
noiseless scenario: zs;λðxÞ∕χ → ys;λðxÞ with the probability
equal to 1.

Another useful noise characteristic is the mean
value of photons per pixel. It is defined as Nphoton;λ ¼P

xzs;λðxÞ∕Nsensor, where Nsensor is the number of sensor
pixels. As in case of SNR, smaller values of χ lead to smaller
Nphoton, i.e., to noisier observations zs;λðxÞ.

3 Development of Algorithm
We consider the problem of the absolute phase retrieval as an
estimation of the object wavefront uo ∈ Cn from noisy
observations fzs;λg. The problem is challenging mainly
due to the periodic nature of the likelihood function with
respect to the phase φo and the nonlinearity of the observa-
tion model.

Following Ref. 26 and using the same notation, the
maximum likelihood function leads to the criterion function

EQ-TARGET;temp:intralink-;e007;326;752

Lðus;λ; uo;λ; bo;φo; δλÞ ¼
X
λ;s;x

l½zs;λðxÞ; jus;λðxÞj2�þ

þ 1

γ1

X
λ;s

kus;λ − Ps;λ;dfuo;λgk22

þ 1

γ2

X
λ

kbo:λ exp½jðμλ · φo þ δλÞ� − uo;λk22; (7)

where γ1; γ2 > 0 are regularization parameters, and k · k22
stands for the Hadamard norm.

Here we introduce invariant additive errors δλ, which
model phase errors for different wavelengths that occur
due to uncertainty in the phase retrieval problem with respect
to invariant errors in the phase appearing for each wave-
length. The criterion Eq. (7) is minimized with respect to
us;λ, uo;λ, bo, and φo as well as with respect to the phase-
shifts δλ.

The algorithm is composed from the following steps.

1. Minimization with respect to us;λ concerns the first
two summands in L. In contrast with minimization
for WM in Ref. 26, where the observations are
recorded simultaneously for all wavelengths, the
step is simplified due to separate processing for
each wavelength. The problem is additive on λ and
x and, respectively, can be obtained separately for
each λ and each x. The corresponding analytical
solution is obtained in Ref. 28. This solution defines
us;λ as functions of the noisy observation zs;λ and
projection Ps;λ;dfuo;λg of uo;λ on the sensor. The
amplitudes of us;λ are updated accordingly to given
observations and the phases are preserved.

2. Minimization with respect to uo;λ goes to the last two
summands of the criterion. It is a quadratic problem
with the solution of the form
EQ-TARGET;temp:intralink-;e008;326;358

ûo;λ ¼
�X

s
P�

s;λ;dPs;λ;d þ Iγ1∕γ2
�
−1

×
�X

s

P�
s;λ;dus;λ þ γ1∕γ2bo;λ expðjμλφoÞ

�
; (8)

where I stands for the identity operator.
Here the operator P�

s;λ;d is Hermitian adjoint for
Ps;λ;d. IfPs;λ;d are orthonormal such that

P
sP

�
s;λPs;λ;d

is the identity operator,
P

s P
�
s;λ;dPs;λ;d ¼ I, then the

solution is simplified to the form

EQ-TARGET;temp:intralink-;e009;326;237ûo;λ ¼
P

sP
�
s;λ;dfus;λg þ γ1∕γ2bo;λ expðjμλφoÞ

1þ γ1∕γ2
: (9)

3. Minimization on bo;λ, φo, and δλ (the last summand in
the criterion) is the nonlinear least square fitting of
the wavelength dependent uo;λ by the object phase φo
invariant with respect λ, amplitudes bo;λ, and spatially
invariant phase-shifts δλ. The criterion for this problem
can be given in the equivalent form as

EQ-TARGET;temp:intralink-;e010;326;125L1ðbo;λ;φ ;δλÞ
¼
X
λ

kbo:λ exp½jðμλ ·φoÞ�− juo;λjexp½jðψo;λ−δλÞ�k22;

(10)
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where ψo;λ ¼ angleðuo;λÞ, i.e., the wrapped phase of
uo;λ. In this representation, the phase shifts δλ are
addressed to the wrapped phases ψo;λ in order to stress
that the complex exponents exp½jðψo;λÞ� can be out-of-
phase with exp½jðμλ · φoÞ� and the variables δλ serve in
order to compensation this phase difference and make
the phase modeling of the object by exp½jðμλ · φoÞ�
corresponding to the complex exponent exp½jðψo;λÞ�.

Minimization of L1, with respect to φo and the phase-
shifts δλ, is implemented as minimization on the grids of
these variables. The derivation of this algorithm and its
details can be seen in Ref. 26, where it was done for the
WM optical setup. This algorithm was named absolute
phase reconstruction, and it is shown in step 4 of Table 1
with the abbreviation APR.

3.1 Algorithm’s Implementation

Using the above solutions, the iterative algorithm is devel-
oped of the structure shown in Table 1. The initialization
by the complex-valued u1o;λ is obtained from the observations
fzs;λg by the SPAR algorithm28 separately for each wave-
length. The main iterations start from the forward propaga-
tion (step 1) and follow by the amplitude update for uts;λ at
step 2. The operator Φ1 derived in Ref. 28 is defined as

utþ1∕2
s;λ ¼ Φ1ðuts;λ; zs;λÞ, that means utþ1∕2

s;λ ¼ w ·
uts;λ
juts;λj. Here

the ratio
uts;λ
juts;λj denotes that the variables uts;λ and utþ1∕2

s;λ

have identical phases. The amplitude w is calculated as

EQ-TARGET;temp:intralink-;e011;63;419w ¼
juts;λj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juts;λj2 þ 4zs;λγ1ð1þ γ1χÞ

q
2ð1þ γ1χÞ

: (11)

The backpropagation is realized in step 3, and the
operator Φ2 is defined by Eq. (9). The absolute phase
reconstruction from the wrapped phases of utþ1

o;λ is produced
in step 4 by the APR algorithm.26 The obtained amplitude
and phase update utþ1

o;λ at step 5.

The steps 3 and 4 are completed by the block-matching
3-D (BM3D) filtering.29 In step 3, it is the filtering of
complex-valued utþ1∕2

o;λ produced separately for the wrapped

phase and amplitude of utþ1∕2
o;λ . In step 4, this filtering is

applied to the absolute phase φtþ1∕2
o . These BM3D filters

are derived from the groupwise sparsity priors for the filtered
variables. This technique is based on the Nash equilibrium
formulation for the phase retrieval instead of the more con-
ventional constrained optimization with a single criterion
function as it is in Eq. (7). We do not show here this deri-
vation as it is quite similar to that developed in Ref. 28. The
sparsity rationale assumes that there is a transform of image/
signal such that it can be represented with a small number of
transform coefficients or in a bit different terms with a small
number of basic functions.31 This idea is confirmed and
supported by the great success of many sparsity-based tech-
niques developed for image/signal processing problems.
Within the sparse theory, a family of the BM3D algorithms
has been developed where both ideas of grouping similar
patches and the transform design are taken into considera-
tion. This type of the algorithms proposed initially for image
denoising29 being modified for various problems demonstrates
the state-of-the-art performance.32 The details of BM3D as
an advanced image filter can be seen in Ref. 29.

In step 3 of the proposed algorithm, utþ1
o;λ ¼

BM3Dðutþ1∕2
o;λ Þ, the BM3D is applied to the complex-valued

variables utþ1∕2
o;λ . It is implemented in this paper as indepen-

dent filtering of amplitude and wrapped phase
EQ-TARGET;temp:intralink-;e012;326;424

jutþ1
o;λ j ¼ BM3Damplðjutþ1∕2

o;λ jÞ;
ψ tþ1
o;λ ¼ BM3Dphaseðψ tþ1∕2

o;λ Þ; (12)

here ψ tþ1∕2
o;λ ¼ angleðutþ1∕2

o;λ Þ, thus the updated complex-
valued utþ1

o;λ is calculated as utþ1
o;λ ¼ jutþ1

o;λ j expðj · ψ tþ1
o;λ Þ.

In step 4 of the proposed algorithm, φtþ1
o ¼

BM3Dðφtþ1∕2
o Þ, the BM3D is applied for filtering of the

real-valued variable φo. In presented experiments, the param-
eters of the algorithm are fixed for all tests: γ1 ¼ 1∕χ, where
χ is the parameter of the Poissonian distribution, γ1∕γ2 ¼
0.2. The parameters of BM3D filters can be seen in Ref. 28.

The algorithm presented in Table 1 differs from the WM
algorithm26 by steps 2 and 3. The main iterations in Ref. 26
also start from the forward propagation and follow by the
amplitude update and the interpolation for the CFA sensor
pixels where there are no observations (step 2). In the
WD algorithm, there are no updates and interpolation.
In step 3 in Ref. 26, the wavefront pixels not given in
observations preserve values obtained in step 2 and used
for backpropagation. This manipulation with wavefront
reconstruction for RGB pixel is not given in observations
from the principal difference with the WD algorithm, pre-
sented here in Table 1. The other steps of the algorithms
for WM and WD, as it is in this paper, concerning filtering
and forward- and backward propagation are identical.

Comparing the presented WD algorithm developed for
the WD setup with that developed in Ref. 26 for the WM
setup, we may note that the faster convergence and better
accuracy are obtained for WD, but it requires a larger number
of observations, because each experiment gives the data of

Table 1 WD phase retrieval algorithm.

Input: fzs;λg; s ¼ 1; : : : ; S, λ ∈ Λ

Initialization: u1
o;λ, λ ∈ Λ

Main iterations: t ¼ 1;2; : : : ; T

1. Forward propagation: ut
s;λ ¼ Psut

o;λ; s ¼ 1; : : : ; S, λ ∈ Λ

2. Noise suppression and update of ut
s;λ: u

tþ1∕2
s;λ ¼ Φ1ðut

s;λ; zs;λÞ

3. Backward propagation and filtering: utþ1∕2
o;λ ¼ Φ2ðutþ1∕2

s Þ,
utþ1
o;λ ¼ BM3Dðutþ1∕2

o;λ Þ

4. Absolute phase retrieval and filtering: φtþ1∕2
o ¼ APRðutþ1

o;λ Þ,
φtþ1
o ¼ BM3Dðφtþ1∕2

o Þ

5. Object wavefront update: utþ1
o;λ ¼ jutþ1

o;λ jexpðjφtþ1
o μλÞ, λ ∈ Λ

Output: φTþ1
o , uTþ1

o;λ
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a single wavelength only, while in WM we obtain the obser-
vations for all wavelength simultaneously.

4 Simulation Tests

4.1 Proposed Setup

In simulation, we model a lensless optical system (Fig. 1),
where a thin transparent phase object is illuminated
by monochromatic three color (RGB) coherent light
beams from lasers or LEDs. The wavelengths are Λ ¼
½417; 532; 633� nm, with the corresponding refractive
indexes [1.528, 1.519, 1.515] as taken for BK7 optical
glass. The reference wavelength λ 0 ¼ 417 nm then the
relative frequencies take values μλ ¼ ½1; 0.7705; 0.6425�.
The pixel sizes of the CMOS camera and SLM are 1.4
and 5.6 μm, respectively. The distance d between the object
and CMOS camera is equal to 5 mm.

The free propagation of the wavefronts to the sensor is
given by the Rayleigh–Sommerfeld model with the transfer
function defined through the angular spectrum (AS).33

For the proper numerical AS propagation without aliasing
effects, the zero-padding of the object must be applied.
Its size is obtained from the inequality34

EQ-TARGET;temp:intralink-;e013;63;397N ≥
λ · d
Δx2

; (13)

which binds the propagation distance d and number of
pixels N in one-dimension of the zero-padded object for a
given values of pixel size of the sensor Δx and λ. For the
distance d ¼ 5 mm, Δx ¼ 1.4 μm, λ ¼ 633 nm, and object
100 × 100 pixels the zero-padded object has a support of
1700 × 1700 pixels.

The intensities of the light beams registered on the
sensor are calculated as zs;λ ¼ GfjASλ;dfMs ∘ uo;λgj2g,
s ¼ 1; : : : ; S, λ ⊂ Λ. HereASλ;d denotes the AS propagation

operator and Ms are the modulation phase masks inserted
before the object and pixelated as the object, “∘” stands
for the pixelwise multiplication of the object and phase
masks. These phase masks enable strong diffraction of
the wave-field and are introduced in order to achieve the
phase diversity sufficient for reconstruction of the com-
plex-valued object from intensity measurements. As it was
described in Ref. 33, we use the Gaussian random phase
masks. Thus, in our simulations the propagation operator
Ps;λ;d in Eq. (3) is implemented as a combination of the
AS propagation ASλ;d and the modulation phase mask Ms.

4.2 Reconstruction Results

The illustrating reconstructions are presented for two phase
objects with the invariant amplitudes equal to 1 and the
phases: Gaussian distribution (100 × 100) and US Air
Force (USAF) resolution test-target (64 × 64). The absolute
and wrapped phases of these test-objects are shown in Fig. 2.
The Gaussian and USAF phases are very different, the first
one has a smooth continuous shape while the second one is
discontinuous binary. Both phases are taken with the high
peak-value equal to 30π rad, what corresponds to about
30 reference wavelengths λ 0 in variations of the profile ho.

As a result of this high peak-value of the absolute phases,
the corresponding wrapped phases are very complex with
fringes overlapping for the Gaussian phase and lack of
height information in the USAF test-phase. Due to this
complexity, the unwrapping is not possible using single
frequency wrapped phases only. We show that the proposed
multiwavelength WD algorithm is quite successful and
is able to reconstruct the absolute phase even from very
noisy data.

We demonstrate the performance of the WD algorithm for
the very difficult scenarios with very noisy Poissonian
observations. The noisiness of observations is characterized
by SNR and by the mean number of photons per sensor
pixel, Nphoton.

The accuracy of the object reconstruction is characterized
by the relative root-mean-square error (RRMSE) criteria
calculated as RMSE divided by the root of the mean square
power of the signal

EQ-TARGET;temp:intralink-;e014;326;296RRMSEφ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kφ̂est − φtruek22

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kφtruek22

p : (14)

Fig. 1 Optical setup. R, G, B lasers,– red, green, and blue light
sources; L1; L2, lenses; SLM, spatial light modulator; CMOS, registra-
tion camera.

Fig. 2 Wrapped and absolute phases of the investigated objects Gauss and USAF, the reference
wavelength λ 0 ¼ λ1.
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Figure 3 shows the performance of the WD algorithm
with respect to different noise levels characterized by the
parameter χ. The RRMSE curves for Gaussian and USAF
phases demonstrate a similar behavior and go down for
growing χ numbers, but RRMSE curve for the USAF object
goes down more sharply and takes values smaller than 0.1 at
χ ¼ 20, while RRMSE curve for Gaussian phase takes
a close value only at χ ¼ 50. Nevertheless, in both cases,
the reconstructions are nearly perfect even for very noisy

observed data with SNR values as low as 3.8 and 6.5 dB
and very small photon numbers Nphoton ¼ 0.75 and 1.87,
respectively.

RRMSEs for the Gaussian phase are shown in Fig. 4 as
functions of the experiments number S and SNR. Number
of experiments S is in range of 1 to 10, and SNR from
1 (noisiest case) to 25 dB (noiseless case). Nearly horizontal
(dark blue) areas correspond to high-accuracy reconstructions
with small values of RRMSE, for other areas RRMSE values
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are much higher and the accuracy is not so good. For 50
iterations (left image), the high accuracy can be achieved
starting from S ¼ 8 even for very noisy data with
SNR ¼ 4. For the number of experiments smaller than
S ¼ 4, the algorithm fails to converge even for low noise
levels due to a not sufficient diversity of the observed
diffraction patters. The smallest number of experiments
that can be used for reconstruction is S ¼ 4. However,
even for S ¼ 4 good results can be obtained only after
100 iterations (right image). It follows from Fig. 4 that

some improvement in the accuracy can be achieved at the
price of the larger number of experiments S and the larger
number of iterations.

In comparison with the WM algorithm26 such small val-
ues for RRMSE can be obtained only after a larger number of
iterations, about T ¼ 300, mainly because of 75%, 50%, and
75% of CFA pixels lacking intensity measurements for red,
green, and blue wavelengths, respectively. This information
is recovered by the WM algorithm but at the price of the
larger number of iterations.

Fig. 5 Gaussian phase reconstructions RRMSE ¼ 0.0086 for SNR ¼ 6.5 dB (Nphoton ¼ 1.87), (a) 3-D
surfaces and (b) 2-D absolute phases. From left to right: the WD algorithm, and the single wavelength
reconstructions for λ1, λ2, and λ3, respectively.

Fig. 6 USAF phase reconstructions RRMSE ¼ 0.030 for SNR ¼ 3.8 dB (Nphoton ¼ 0.75), (a) 3-D surfa-
ces and (b) 2-D absolute phases. From left to right: the WD algorithm, and the single wavelength recon-
structions for λ1, λ2, and λ3, respectively.
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In what follows, we provide the images of the recon-
structed absolute phase obtained for S ¼ 4 and the iteration
number T ¼ 100.

Figures 5 and 6 show absolute phase reconstructions
(3-D/2-D images) obtained by the WD algorithm and by
the SPAR algorithm reconstructing the wrapped phases for
the separate wavelengths following by the phase unwrapping
by the PUMA phase unwrapping algorithm.18 The conditions
of the experiments are: SNR ¼ 6.5 dB, Nphoton ¼ 1.87 for
the Gaussian object and SNR ¼ 3.8 dB, Nphoton ¼ 0.75 for
the USAF object. The WD algorithm demonstrates a strong
ability to reconstruct the absolute phases while the single
wavelength-based approach completely failed. The accuracy
of the WD reconstruction is very high despite a high level
of the noise.

The wrapped phase pattern for such high peak-value
of the object phases is very complex and irregular (see
Fig. 2) so that it is not possible to unwrap it by modern
2-D unwrapping algorithms, but the proposed algorithm is
able to resolve the problem even for such complex case.
Especially it is challenging task to reconstruct objects
such as USAF with big differences between adjacent pixels
exceeding 2π, but the WD algorithm successfully recon-
structs both objects with high reconstruction quality.

For simulations, we use MATLAB R2016b on a computer
with 32 GB of RAM and CPU with a 3.40 GHz Intel®

CoreTM i7-3770 processor. The computation complexity of
the algorithm is characterized by the time required for
processing. For 1 iteration, S ¼ 4, and 100 × 100 pixels
images, zero-padded to 1700 × 1700, this time equals to 12 s.

5 Conclusion
The multiwavelength absolute phase retrieval and surface
contouring from noisy intensity observations is considered.
The observations are recorded by a broadband monochro-
matic sensor in the successive manner for each wavelength
in the WD optical setup. The maximum likelihood criterion
used in the developed variational derivation of the phase
retrieval algorithm defines the general intention to reach
statistically optimal estimates. The phase retrieval is an ill-
posed inverse problem where the observation noise is ampli-
fied and transferred to phase and amplitude as variables of
optimization. The sparse modeling enables a regularization
of this inverse problem and efficient suppression of these
random errors by BM3D filtering of phase and amplitude.
The efficiency of the developed algorithm is demonstrated
by simulation tests for the coded diffraction pattern WD
scenario.
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