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Introduction
Here we offer a brief review of wavelet transforms and their
applications to serve as background information for the papers
includedin this specialsection. We thoughtitalso appropriate to
explain how and why these papers came to be written.

Several papers in this special section came out of conversa-
lions at the 1991 Gordon Research Conference on holography
and optical computing. We all were excited about wavelet
transforms and their applications. We all suspected that optics
held great promise for the computationally intense tasks of
wavelet transformation and inverse wavelet transformation. As
evidenced by the papers that follow, everyone has their own
scheme. The setofmethocls described below represents many of
the possible approaches to optical wavelet transformation. We
hope more willbe invented. The field needs a variety of methods
so that a person can choose the best one for their particular need.

A Brief Introduction to Wavelet Transforms
Wavelet transforms are linear and square-integrable transforms
just as are the more familiar Fourier, Laplace, Hilbert, Radon,
and Hadamard transforms. They are made special by their
kernels called wavelets. Indeed, instead ofa fixed kernel, we use
many (possibly an infinite amount in some cases) kernels, all of
which are derived from a "mother" kernel or wavelet by scale
changes. Thus, in addition to "frequency" coordinates, there are
shift coordinates.
The general 1-D wavelet is of the form

h[(x-b)/a] / Ti

whereb is the shift, a is the scale, Ti is a normalization factor,
and h[x] is the mother wavelet (b =0, a = 1). Usually h[x] is of
the form

h[x] = w(x)f(x)

where w(x) is a window function (often Gaussian) andftx) is a
modulation term. Both w(x) andftx) are scaled and shifted.

Like Fourier transforms, wavelet transforms come in two
varieties: (1) discrete wavelet transforms (DWT) in which the
scale and the shift variations are discrete and (2) continuous

wavelet transforms (CWT) in which scale and shift vary con-
tinuously. With optics, we sometimes perform a hybrid wavelet
transform, e.g., discrete scales and continuous shifts.

Note that for every input coordinate (space, time, etc.), there
are two output coordinates. Thus, a 1-D signal produces a 2-D
wavelet transform and a 2-D signal produces a 4-D wavelet
transform. Thus, even "fast" wavelet transforms can be quite
slow digitally. Optics may be more attractive if it can perform
the wavelet transform in parallel. Furthermore, Fourier optics
can map shift continuously into the lightwave complex phase
information that becomes invariant under the square-law inten-
sity detector, while a slight error in the digital computing of shift
variables can produce a large error in wavelet coefficients.

In the 1-D signal case (easily generalized to N dimensions),
the DWT is

w(a,b) = s(x) h[(x- b) / a] / Ti

Likewise, we can invert the DWT as

s(x) - b)/ a] /

While the generalization to the CWT is obvious, the precise
orthonormality andcompleteness conditionsremain tobe math-
ematically scrutinized for each kernel.

Applications
Wavelet transforms sometimes give more useful information
about a signal than the other transforms listed previously.
Unlike Fourier transforms, wavelet transforms are constant Q
operations, where

Q=f/LY
inelectronics and mechanics, withf being the frequency and itf
beingthe frequency resolution. Likewise for a wave distance or
wavelength ,

Q=i/.
Thus, regions of slow change are preferentially sampled at a
slow rate, etc. That is, those terms dominate the wavelet trans-
forms. This suggests that wavelet transforms mightbe excellent
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forbandwidth reduction, which is indeed the case. Likewise, if we
want a special "camera" with high resolution near the center and
lower resolution farther from the center, wavelets might make
good basis functions. It turns out that, to within detection noise
error, the human retina is exactly describable in this manner.
These illustrations hint at the great power and versatility of
wavelet analysis for optimum multiresolution decomposition.

Conclusion
We hope that this very brief introduction serves to motivate the
reader to study the following papers on optical wavelet transforms
and to apply the concepts to their own work.
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